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Abstract

This paper is an enquiry into the interaction between multiple description coding (MDC) and network routing. We

are mainly concerned with rate-distortion optimized network flow of an MD source from multiple servers to multiple

sinks. Maximizing a collective metric of the MD source reconstructed at all sinks, constrained by edge capacities, is

a very different problem from conventional maximum network flow. The objective function involves not only the flow

volume but also the diversity of the flow contents (distinct MDC descriptions), hence the term of rainbow network

flow (RNF). The RNF problem is also closely related to lossy network coding. For general network topology, general

fidelity function, and an arbitrary distribution of MDC descriptions on the servers, we prove that the RNF problem is

Max-SNP-hard, i.e., there is no polynomial-time algorithm to even approximate the optimal solution with arbitrarily

good approximation ratio, unless P=NP. However, the problem becomes tractable in many practical scenarios, such

as when MDC is balanced with descriptions of the same length and importance, when all source nodes have the

complete set of MDC descriptions, and when the network topology is a tree or has only one sink. Polynomial-time

RNF algorithms are developed for these cases.

Keywords: Multiple description coding, network routing, network coding, optimization, complexity.

I. I NTRODUCTION

Packet switched lossy networks, such as the Internet, peer-to-peer, ad hoc, and diversity wireless networks,

inevitably experience packet losses and delays problems. Packet retransmission is undesirable either due to latency

constraints in real-time applications or due to bandwidth economy or both. In contrast, transmission policies on a

best-effort basis offer simpler, faster, and less expensive solutions, in which no acknowledge from the receiver is

needed, nor is there guarantee that the data packets will arrive in order, or at all. This simple send-only machinery

shifts the burden of reliability from the network protocols toward the design of network-aware codes. The need for

more sophisticated codes to compensate for less network provisions has led to a proliferation of research literature

on multiple description coding (MDC) for packet-switched networks and erasure channels [4].

MDC is an effective technique to maintain the quality of service at times of network congestions and server

breakdowns by offering a client multiple accesses to a given content. Different descriptions of an MDC-coded

source can be transmitted to the client via different paths and from different servers in the network. In this paper

Parts of the paper were presented at NetCod 2005 and ISIT 2005. The work is supported by Natural Sciences and Engineering Research
Council of Canada.
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we consider a network of a fixed topology, modeled by a graphG = 〈V, E〉. The nodes in the setV correspond to

servers, clients, and possibly relays in the network. The edges in the setE represent directed links between these

nodes. Each edge has a capacity, reflecting the capacity of the underlying channel.

Suppose that a source is coded by an MDC into a set ofN ≥ 2 descriptionsX = {x1, x2, · · · , xN}. Let

Xk = {xk,1, xk,2, · · · , xk,nk
} ⊆ X be the subset of descriptions at serverk. SubsetsXk andXj residing at servers

k andj are in general not disjoint,Xk∩Xj 6= ∅, for a desired degree of redundancy in case of server or link failures.

Any client in the network can decode the MDC-coded source upon receiving a subsetX ⊆ X of descriptions with

fidelity F (X ). The quality of service (QoS) for all the network clients depends on the network graphG = 〈V, E〉,

the edge capacities, the distribution of the descriptions at the servers, and most of all on the network flow of the

MDC descriptions.

An interesting and important problem arises naturally when considering how to best route MDC descriptions in

a network. Given the topology and edge capacities of a network and given the distribution of MDC descriptions

on a set of servers, what are the optimal network flows of the different descriptions in terms of maximizing the

reconstruction quality at one or a group of sinks (clients)? The optimal network flow of MDC descriptions in

rate-distortion sense behaves very differently from maximum flow of commodities in network problems treated in

classic operation research literature. Computationally, the former is far more complex than the latter because the

reconstruction fidelity achieved by a decoder is not additive of the fidelities offered by the individual descriptions

received. Our objective is to maximize not the total volume of commodities (descriptions) that can flow into the

sink(s), but rather the total fidelity achievable over all possiblesets of descriptionsthat can flow into the sink(s),

constrained by edge capacities. In the case of balanced MDC of equally important packets of the same size, the

coding gain realized by a sink becomes the number ofdistinct packets received by it. For a given sink receiving

two or more copies of the same MDC packet makes no additional coding gain. For this unique property of MDC,

we call the problem of optimizing the routing of MDC code streams the rainbow network flow (RNF) problem. The

terminology carried an intuitive connotation: distinctively color the MDC descriptions and optimize the network

flows to achieve the rainbow effect of getting as wide a spectrum of colors as possible at the sinks.

The RNF problem is also an integral aspect of joint network-source coding (JNSC), a study recently initiated

by the authors [13]. The inquiry of JNSC is about how to code a (usually real valued) source, communicate and

reconstruct the coded source in a network to a maximal collective fidelity over a given set of sinks, while the flows

of the code streams meet the edge capacities of the network. JNSC can be considered as a lossy version of the
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Fig. 1. An example of flow of a two description code.

(lossless) network coding problem [1], since the reconstruction dose not need to be perfect. An interesting and

profound observation made in our study of JNSC is that MDC, if coupled with optimized network routing, can

improve the overall rate-distortion performance. Remarkably, this is trueeven when all the communication links

of the network are error free, in spite of a prevailing folklore that the redundancy of MDC can only be justified

in the presence of channel errors (indeed, the research of MDC seemed solely motivated by the desire for robust

networked communications against packet erasure errors). Our point can be illustrated by the following example.

In Fig. 1, a server (node 1) feeds a coded source into a network of four sink nodes (nodes 2-5). The goal is to

have the best reconstruction of the source at each of these four nodes. All link capacities areC bits per source

symbol. MDC encodes the source into two descriptions (shown by solid and dashed boxes in the figure), each of

rateC. Descriptions 1 and 2 are sent to nodes 2 and 3 respectively. Node 2 duplicates description 1 and sends to

nodes 4 and 5 each a copy, while node 3 duplicates description 2 and sends a copy to nodes 4 and 5. The RNF

consists six directed paths:1 → 2, 1 → 2 → 4, 1 → 2 → 5, 1 → 3, 1 → 3 → 4, 1 → 3 → 5. To distinguish

these paths by color (description), we form two sets of colored paths:P1 = {1 → 2, 1 → 2 → 4, 1 → 2 → 5} and

P2 = {1 → 3, 1 → 3 → 4, 1 → 3 → 5}

To see how the nodes in the network benefit from MDC, letD1(C), D2(C), D12(C) be the distortion in

reconstructing the source given description 1 or 2 or both. Lets minimize the average distortion at all nodes 2

through 5 in Fig. 1 (assuming all sink nodes with equal weight)

d =
2D12(C) + D1(C) + D2(C)

4
(1)

For an iid Gaussian source of unit variance, the achievable distortions of two description coding are completely
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derived by Ozarow [10]. The symmetry in indices 1 and 2 ensures that (1) is minimized when the two descriptions

are balanced, that is,D1(C) = D2(C) = D. Ozarow’s result, when specialized to balanced MDC states that the

following set of distortions are achievable:

D1 = D2 = D ≥ 2−2C (2)

D12 ≥ 2−4C

(D +
√

D2 − 2−4C)(2−D −√D2 − 2−4C)

The minimum valued
∗
M (C) of the average distortion (1) under the constraints of (2) can be computed via a

convex optimization procedure, because the region (2) is convex. On the other hand, by separating source from

network coding, the reconstruction distortion at nodes 2 through 5 (and hence the average distortion over all these

nodes) is at bestdS(C) = 2−2C . One can easily verify thatd
∗
M (C) < dS(C) for all C > 0. In other words, for all

C > 0 there exists a balanced two description code for which the average distortion over all sink nodes is strictly

less than the average distortion achievable by any separate source and network coding scheme.

The inefficiency of separate source and network coding lies in that even though nodes4, 5 have twice the incoming

capacity compared to nodes2, 3, their reconstruction error (d4 = d5) is bounded by the reconstruction error of the

weaker nodes (d2 = d3). Unlike lossless coding, lossy codes can play a tradeoff between the reconstruction errors

at different nodes, generating a much larger set of achievable distortion 4-tuples(d2, d3, d4, d5). These tradeoffs

are essential in practice. For instance, in networked multimedia applications over the Internet, where the network

consists of a set of heterogenous nodes, the experience of a user with broadband connection should not be bounded

by that of a user with a lesser bandwidth.

Extending the above example, we showed that given a rainbow network flow of MDC descriptions, optimal MDC

design can be posed and solved as a convex optimization problem [13]. If reciprocally the RNF problem can be

solved satisfactorily, then a practical JNSC approach will be to optimize the MDC design and the MDC routing in

turn, with one of the two fixed at a time. The potential advantages of jointly optimizing the design and the routing

of MDC provide another motivate for studying the RNF problem.

The main contributions of this paper are listed and presented as follows. In Section II we formulate the rainbow

network flow problem. Then we present complexity results of the problem in Section III. After proving the RNF

problem to be MAX-SNP-hard, we turn our attention to some practically important cases for which polynomial-

time algorithms exist. Section IV develops an algorithm to solve the optimal RNF problem with respect to a

single sink. Section V derives a dynamic programming algorithm that can solve the optimal RNF problem for an
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arbitrary distribution of MDC descriptions if the network has a tree topology. This algorithm is then generalized in

Section VI to the multicast rainbow network flow problem in trees, where nodes are allowed to multicast a received

description. Section VII presents a family of algorithms for the case of so-called full source spectrum, where all

servers can supply all descriptions of an MDC-coded source. Section VIII concludes the paper with suggestions of

future research problems.

II. PROBLEM FORMULATION AND NOTATIONS

The problem ofRainbow Network Flow(RNF) of MDC is posed in the following setting:

• a fixed network topology represented by directed graphG = 〈V, E〉, in which each edgee ∈ E has a capacity

C(e) ≥ 0;

• an MDC code consisting of a set ofN descriptions of ratesR1, R2, · · · , RN ;

• a set of server nodesS ⊂ V .

• each server nodesi ∈ S has a set of descriptionsκ1, κ2, . . . , κNi , called the spectrumΨS(si).

• a set of sink nodesT ⊂ V .

For convenience we say that descriptionn has colorn. A colored network flow consists ofN sets (some may

be empty) of directed flow paths,P1, . . . , PN . A flow path p ∈ Pn, Pn being a non-empty set, carries a copy of

descriptionn from a server nodes ∈ S such thatn ∈ ΨS(s) to a sink nodet ∈ T . Let ℘E(e) be the set of flow

paths that pass through edgee ∈ E, and℘T (t) be the set of flow paths that end at the sink nodet ∈ T . Denote by

κ(p) the color of pathp, i.e., κ(p) = n if p ∈ Pn. Define the spectrum of an edgee ∈ E to be the color set

ΨE(e) ≡
⋃

p∈℘E(e)

{κ(p)}; (3)

likewise, define the spectrum of a sinkv ∈ T to be the color set

ΨT (t) ≡
⋃

p∈℘T (t)

{κ(p)}. (4)

Let F(Ψ) be the reconstruction fidelity achieved by decoding a subsetΨ ⊆ {1, 2, · · · , N} of the N MDC

descriptions. The objective of RNF is to find a colored network flow to maximize a weighted fidelity measure

over all the sink nodes, while satisfying all the edge capacities, or stated as the following constrained optimization

problem:

max
P1,...,PN

∑

t∈T

w(t)F (ΨT (t)) (5)
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subject to
∑

p∈ΨE(e)

Rκ(p) ≤ C(e), ∀e ∈ E. (6)

with w(t) being a weighting function to prioritize different sinks in optimizing MDC network flows (by user fees,

urgency, and etc.)

An important nuance of the inequality (6) is that it allows for duplication (i.e., multicast) of a description by relay

nodes. In other words, two or more flow paths of colori that pass through an edgee ∈ E consume a bandwidth of

only Ri. This corresponds to network routers that can duplicate a received data stream and send the copies through

multiple links. If the network nodes cannot duplicate any incoming description, then the edge capacity constraint

of (6) should be changed to
∑

p∈℘E(e)

Rκ(p) ≤ C(e), ∀e ∈ E (7)

We refer to the variant of (6) as the multicast rainbow network flow problem, symbolized by RNF∗ in the sequel,

to distinguish it from the second variant where relay nodes are pure switches. Duplicating MDC descriptions is

a simple and yet powerful operation of lossy network coding that can greatly improve the utilization of network

capacities, as demonstrated in the examples of Figs. 1, 2, and analyzed in [13]. For this reason RNF∗ is rate-distortion

more efficient than RNF.

The meanings of the above definitions and notations may be better conveyed by visualizing an example. Fig. 2

depicts the optimal routing of an MDC of two descriptions (descriptions 1 and 2 are labeled by solid and dashed

icons and arrows, respectively) in a network of six nodes. The server nodes are node 2 that has both descriptions

and node 4 that has only description 1. Nodes 1, 3, 5 are sinks, and nodes 0 and 1 are relays (routers). All edges

have a capacity of 1 except for the edge(0, 5) of capacity 2. The diagram on the left presents an optimal solution of

RNF∗, whereas the diagram on the right shows an optimal solution of RNF. Comparing the left and right diagrams

we see the difference between RNF∗ and RNF. In the case of RNF∗, the relay node 0 duplicates description 1 and

sends a copy to each of sink nodes 3 and 5. But because node 0 cannot duplicate any received description in RNF,

sink nodes 3 and 5 cannot both get all the two descriptions as in RNF∗. In this example RNF wastes the capacity

of edge(0, 3), achieving lower fidelity at sink node 3.

To be familiarized with the notations, please refer to Table II for the notation instantiation in the optimal RNF∗

solution depicted in Fig. 2.

Also, we define theUndirected Rainbow Network Flow Problem(URNF) the same as the RNF problem except

that the edges and paths in the definition are undirected.
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Fig. 2. Optimal routing of an MDC of two descriptions, marked by solid and dashed icons and edges, for RNF∗ (left) and RNF (right). All
edges have capacity 1 except for edge(0, 5) of capacity 2.

Notation instantiation in optimal RNF ∗ solution for the above example

Problem Input:
N = 2 (two MDC descriptions)
R1 = R2 = 1
C(e) = 1 for all e ∈ E other thanC(0, 5) = 2
S = {2, 4}, ΨS(1) = {2, 4}, ΨS(2) = {2}
T = {1, 3, 5}

RNF ∗ Output:
Optimal sets of colored flow paths:
P1 = {4 → 1, 4 → 1 → 0 → 3, 4 → 1 → 0 → 5}
P2 = {2 → 0 → 5, 2 → 3}

℘E(4, 1) = {4 → 1, 4 → 1 → 0 → 3, 4 → 1 → 0 → 5}
℘E(1, 0) = {4 → 1 → 0 → 5, 4 → 1 → 0 → 3}
℘E(0, 3) = {4 → 1 → 0 → 3}
℘E(2, 0) = {2 → 0 → 5}
℘E(2, 3) = {2 → 3}
℘E(0, 5) = {4 → 1 → 0 → 5, 2 → 0 → 5}

℘T (1) = {4 → 1}
℘T (3) = {4 → 1 → 0 → 3, 2 → 3}
℘T (5) = {4 → 1 → 0 → 5, 2 → 0 → 5}

ΨE(4, 1) = ΨE(1, 0) = ΨE(0, 3) = {1}
ΨE(2, 3) = ΨE(2, 0) = {2}
ΨE(0, 5) = {1, 2}

ΨT (1) = {1}
ΨT (3) = ΨT (5) = {1, 2}

TABLE I

NOTATION INSTANTIATION IN THE OPTIMAL RNF∗ SOLUTION DEPICTED INFIG. 2.
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The RNF problem definition is for general fidelity functionF (Ψ), in which F (Ψ) accounts for not only the

correlations between MDC descriptions such as those of multiple description quantizers, but also the sequential

decoding dependency between descriptions such as those in layered multi-resolution source coding.

On surface the RNF problem might appear similar to the multicommodity network flow problem, by viewing

different MDC descriptions as different commodities to be transported in a network. However, the two problems

are very different due to the unique fidelity (distortion) metric of MDC. In RNF a sink does not demand any

particular commodity or commodities, rather it desires to have as manydistinctdescriptions as possible (i.e., which

commodities do not matter so long they are unique). For the same reason the RNF problem also differs from

conventional network flow of a single commodity. Maximizing the total flow volume into the sinks, which is the

objective of the latter problem, is not optimal since the conventional maximum flow may carry duplicates of an

MDC description to a sink, occupying edge capacities for no coding gains.

III. C OMPLEXITY RESULTS OFRNF PROBLEMS

This section presents the main complexity results for RNF with the corresponding proofs placed in the appendices.

We start with the complexity of the RNF problem without duplication. First, we prove that the RNF problem is NP-

hard by showing that even a special case of RNF problem is NP-hard. The special case, which is called Cardinality

Rainbow Network Flow (CRNF), is whenF (Ψ) = |Ψ| andw(t) = 1 for all t ∈ T in (5).

Theorem 1:Cardinality rainbow network flow problem is NP-hard, even for directed acyclic planar graphs.

The proof of this theorem is in Appendix A.

It is easy to see that the reduction used in Appendix A also works when the graph is undirected. Therefore, we

have

Theorem 2:Undirected cardinality rainbow network flow problem is NP-hard even for undirected planar graphs.

The CRNF problem, although being only a special case of RNF, is important in practice. The popular technique of

uneven error protection (UEP) of scalable source code stream using Reed-Solomon code makes all MDC descriptions

(packets) to have the same size and same importance. Consequently, the fidelity functionF (Ψ) only depends on the

cardinality ofΨ not the particular composition ofΨ. Maximizing reconstruction fidelity is equivalent to maximizing

the number of distinct descriptions received by all sinks. Appendix A proves that CRNF problem is NP-hard if the

network has multiple sinks and multiple servers. However, if the optimization is with respect to a single sink, the
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CRNF problem can be reduced to one of classic maximum network flow and hence is polynomially solvable. The

algorithm for CRNF of a single sink will be given in the next section.

For general MDC the reconstruction fidelityF (Ψ) does depend on the composition ofΨ to account for different

coding gains made by different combinations of MDC descriptions, and also for arbitrary dependencies in decoding

these descriptions. The increased combinatorial complexity as opposed to the set cardinality suggests that the

general RNF problem ought to be “harder” than the CRNF problem. Indeed, we can prove that the RNF problem

remains NP-hard even the network has only one sink node. In fact, we will prove a stronger complexity result that

the single-sink RNF problem is Max-SNP-hard. Namely, there is a constantε > 0, such that no polynomial-time

algorithm can approximate RNF problem with ratio better than1 + ε, unless P=NP.

Theorem 3:The rainbow network flow problem is Max-SNP-hard even if there is only one sink node, all MDC

descriptions have equal rate, and the network topology is a tree.

The proof of the theorem is given in Appendix B.

The reduction used in Appendix B also applies to undirected graphs. Thus, we conclude

Theorem 4:Undirected rainbow network flow problem is Max-SNP-hard even if there is only one sink node, all

MDC descriptions have equal rate, and the network topology is a tree.

It turns out that the reductions in the proofs of the above four theorems also work when the nodes can duplicate

MDC descriptions. Consequently, we have the following theorem:

Theorem 5:Theorem 1 and 2 hold for CRNF∗. Theorem 3 and 4 hold for RNF∗.

The proof of Theorem 5 is given in Appendix C.

Although RNF problem is NP-hard in general, there are practically important cases for which polynomial-time

algorithms exist. We will examine some of these cases in the next four sections.

IV. OPTIMAL RNF FOR SINGLE SINK

The rainbow network flow problem can be greatly simplified if the flow of MDC descriptions from diversity

servers is optimized with respect to a given sink. This is particularly so for RNF∗ since the optimal solution for a

single sink does not require duplication of any MDC description.

First, let us reexamine the CRNF problem for a single sink, although optimal CRNF was proven in the previous

section to be NP-hard for multiple sinks. By the definition of CRNF, all MDC descriptions have the same importance
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Fig. 3. Expanded graph with added edges fromui to the servers that have colori.

and the same rateR, which is treated as the unit rate of1 for convenience. To the only sinkt ∈ T , the optimal

MDC network flow that achieves the maximum fidelity at the sinkt will necessarily haveK flow paths ofK

distinct colors (K ≤ N ), or there is at most one path with respect to each color. These observations allow us to

reduce the single-sink CRNF problem to one of conventional maximum network flow, which we call maximum

monochrome network flow to distinguish it from maximum-fidelity rainbow network flow.

For each colori, we add a new vertexui to the graphG, and add an edge(ui, s) for eachs ∈ S such that

i ∈ ΨS(s). The capacity of edge(ui, s) is set to1. Then we add a “super server node”so, and edges(so, ui)

with capacity1 for each i. Fig. 3 depicts the resulting expanded graph. We assume that the capacities of all

edges in the network are integers. The above construction is valid for arbitrary network topology, and it equates

the optimal solution for the single-sink CRNF problem to the maximum monochrome flow fromso to t in the

expanded graph. The latter problem can be solved easily by Goldberg and Tarjan’s maximum flow algorithm in

O(|E||V | log(|V |2/|E|) time [3]. 1

The resulting maximum monochrome flow of volumeK corresponds toK pathsp1, . . . , pK from so to t. And

each edgee of the graph appears in at mostC(e) of theK flow paths. Since theK edges(so, ui), i = 1, . . . , K, are

the only outgoing edges ofso, and each of them has capacity1, the resultingK flow paths must each go through

a differentui. Referring to Fig. 3, if a pathpi from so to t first reaches nodeuki , then it must immediately enter

a nodes ∈ S. Denote byp′i the remainder subpath ofpi from the nodes to t. Clearly, the subpathp′i is a path

from the servers to the sinkt of color ki for the original CRNF problem. Therefore, the set of paths{p′i}i=1,...,K ,

1It is possible to solve it faster inO(|E||V |+ |V |2+ε) time by a more complicated algorithm [7].
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constitutes a solution for the original single-sink CRNF problem. The procedure described above is summarized by

the pseudo-codeSingleSinkbelow.

Algorithm SingleSink
Input G = 〈V, E〉; server setS with spectrumΨS(s), s ∈ S; sink t ∈ V ;
Output K pathsp′i, 1 ≤ i ≤ K ≤ N , each with a different color.
1. For each colori,

add a new vertexui to V ;
for eachs ∈ S such thati ∈ ΨS(s)

add an edge(ui, s) with C(ui, s) = 1 to E.
2. Add a new vertexso to V .
3. For each colori,

add an edge(so, ui) with capacityC(so, ui) = 1 to E.
4. Compute the maximum flow fromso to t in the new graph, resulting in

p1, . . . , pK , the K different paths fromso to t that compose the flow.
5. For i from 1 to K,

remove the first two edges inpi to get a new pathp′i.
6. Outputp′1, . . . , p

′
K .

Theorem 6:The flow computed by Algorithm SingleSink is an optimal solution of CRNF.

Proof: Clearly, the paths computed by the algorithm form a feasible solution of CRNF. We only need to show

that the solution is optimal. This can be proved by contradiction.

Suppose that we have another solution ofK ′ > K paths with different colorsi1, . . . , iK′ . Let theK ′ paths be

q′1, . . . , q
′
K′ . Let q′i have colorki and q′i connect from a server nodesi ∈ S such thatki ∈ ΨS(si) to the sinkt.

Then there is an edge(uki , si) in the expanded graph. As a result,qi = (so, uki) · (uki , si) · q′i is a path fromso to

t in the expanded graph. The collection of these paths{qi}i=1,...,K′ forms a monochrome network flow fromso

to t whose total flow volume isK ′ > K. This is contradictory to the optimality of step 4.

For CRNF on an undirected graph with single sink, the above algorithm works as well with virtually no

modification. The only concern is that the constructed graph (Fig. 3) now has all the newly added edges directed, and

all the edges in the original network undirected. However, in the traditional network flow problem, each undirected

edge can be converted to two opposite directed edges with the same capacity. The optimal solution of the resulting

directed graph will be the same as the optimal solution of the original graph with undirected edges. As a result,

Algorithm SingleSink is also an efficient algorithm for CRNF on undirected graphs with single sinks. We have the

following theorem.

Theorem 7:Algorithm SingleSink computes an optimal solution of the single-sink undirected CRNF problem.

Algorithm SingleSink can be modified to provide practical solution to general RNF problems with single sink

as well. For unbalanced MDC whereRi 6= Rj , i 6= j, we can change all edge capacitiesC(s, ui) and C(ui, v),
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wherev ∈ Si, from 1 to Ri, 1 ≤ i ≤ N (referring to Fig. 3). Then Algorithm SingleSink can maximize the total

number of bits flowing into sinkt from all server nodes. The topology of the expanded graph in Fig. 3 ensures that

no parts can be duplicated from the same MDC description. Whether the algorithm achieves the maximum fidelity

possible allowed by the network capacity, like in the case of CRNF, depends on the design of MDC codes and the

functionality of the network.

Consider the MDC codes for which the fidelityF (Ψ) achieved by decoding the setΨ of descriptions is monotone

in the total rate of all descriptions inΨ, namely,

F (Ψ1) ≥ F (Ψ2) if
∑

κ∈Ψ1

Rκ ≥
∑

κ∈Ψ2

Rκ. (8)

Many MDC codes satisfy the rate monotonicity, including those generated by the priority encoding transmission

(PET) technique and many codes of multiple description quantization. Suppose that the network allows a description

to be split into multiple paths in transmission. Then the solution found by Algorithm SingleSink is optimal provided

that a description is either received in its entirety, or not at all. The optimality cannot be guaranteed if fractional

description is received because the fidelity functionF is defined on a set of complete descriptions.

A sure way of receiving a description in full is not to allow the description to be split and sent via different paths

from s to t. Unfortunately, adding this constraint converts the underlying optimization problem to be the known

NP-hard problem of unsplittable maximum network flow [8].

The above discussions lead to a new, practically important, and challenging MDC flow problem: maximizing the

fidelity at the sink(s) with splitable flow of MDC descriptions under the constraint that all of the received MDC

descriptions are complete. This constraint is more forgiving than that of the unsplittable network flow problem in

that a description can be split during transmission as long as it arrives at a sink in whole. The relaxation is desirable

because the network edge capacities can be better utilized if a large description can be sent in parts and assembled

at a sink. This also agrees with the actual mechanism of packet switched networks, where a large description can

be broken into multiple data packets that may be routed differently. The issue of splittable flow will be addressed

again in Section VII.

V. OPTIMAL RNF FOR TREE TOPOLOGY

If the network topology is a tree and the numberN of MDC descriptions is a constant independent of the network

size (typically true in the practice of MDC coding), then the optimal RNF problem can be solved in polynomial

time. The tree topology is common in local area networks (LAN) and in sensor networks [5].
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First clarify what we mean by a tree topology when the graph is directed. LetG = 〈V, E〉 be a directed graph.

We convert it to an undirected graphG′ = 〈V, E′〉 as follows:(u, v) ∈ E′ if and only if (u, v) ∈ E or (v, u) ∈ E.

If the new graphG′ is a tree, we say thatG has a tree topology. Fig. 4(a) shows an example of a directed graph

with a tree topology.

We develop an RNF algorithm first for unrooted binary trees, and then extend it to arbitrary unrooted trees. We

can makeG a binary tree rooted at an arbitrary leaf nodev ∈ V by inserting a dummy vertexv∗ and a dummy

edge(v, v∗) into G. Fig. 4 illustrates the tree construction on the directed graphG. Consequently, each vertex

u ∈ V is either an internal node having two child nodes, or a leaf node of no descendants. The subtree rooted at

a nodeu ∈ V can also be naturally defined. Note that the dummy vertex is purely for the clarity of the algorithm,

and it has no effect on the optimal solution for the original tree. As a result, this dummy vertex can be added at

an arbitrary leaf.

In this section we assume that the relay nodes of the network cannot duplicate any received color. In the next

section we will modify the optimal RNF algorithm for networks of tree topology in which the relay nodes can

duplicate colors.

For each internal nodeu, let u′ be the parent node ofu. If there arexj paths of colorj passing throughu andu′

in the optimal flow, then thosexj paths have to go throughu andu′ in the same direction. This is because passing

a color back and forth through an edge would consume the edge capacity without increasing the number of distinct

colors to arrive at the sinks. Therefore, we can assign a unique signed flow volumefj to the edge connectingu′

andu: fj = xj ≥ 0 if the paths flow fromu′ to u, andfj = −xj ≤ 0 otherwise. This way we can unambiguously

say that there arefj paths flowing intou from its parentu′.

We take a dynamic programming (DP) approach to solving the problem. Letfi be integers. LetDP (u, f1, f2, . . . , fk)

be the maximum total fidelity of the sinks in the subtree rooted atu, given thatfj paths of colorj flow into u

from its parent. Letv, w be the two children ofu. The dynamic programming algorithm relies on a recurrence

relation to computeDP (u, f1, f2, . . . , fN ) from DP (v, f ′1, f
′
2, . . . , f

′
N ) andDP (w, f ′′1 , f ′′2 , . . . , f ′′N ). To derive the

recurrence we need to differentiate the following four cases, depending on the position and function of a network

nodeu: whetheru is a sink, a server, a relay (router), or some combination of the above.

Case 1. u is a leaf node but not a sink.

In a practical network the nodeu is a pure server (u ∈ S) since it is pointless to place a router at a terminal

node. We ban any description to flow intou, or fi ≤ 0, 1 ≤ i ≤ N . If the server nodeu has descriptioni we



14

dummy vertex

v1

v2

v6

v5

v7

v8

v3 v4

(a)

(b)

dummy edge

v9

v6

v1 v2 v4v3

v8

v7

v5

Fig. 4. (a) An example of a flow network that has a tree topology. (b) By adding a dummy vertex and a dummy edge, the tree topology can
be regarded as rooted.

allow fi < 0 so thatu can send out the description; otherwise,fi = 0. At the same time,fi < 0 must satisfy the

capacity constraint at the directed edge(u, u′). To summarize,f1, f2, . . . , fN must satisfy the following conditions

1) fi ≤ 0 if i ∈ ΨS(u),

2) fi = 0 if i /∈ ΨS(u),

3)
∑

j:fj<0−fjRj ≤ C(u, u′).

Let F1 be the set of vectors(f1, f2, . . . , fN ) that satisfy the above conditions. Any feasible(f1, f2, . . . , fN )

must be inF1. Becauseu is not a sink, the contribution ofu to the total fidelity is0. Therefore,

DP (u, f1, f2, . . . , fN ) =
{

0, if (f1, f2, . . . , fN ) ∈ F1

−∞, if (f1, f2, . . . , fN ) /∈ F1
(9)

Case 2. u is both a leaf node and a sink.

In this case, the nodeu can be a server, a sink, or both (e.g., in peer-to-peer networks). The flow volumes
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f1, . . . fN in a feasible solution must satisfy the following constraints:

1) fi ≤ 0 if i ∈ ΨS(u), u ∈ S,

2) 0 ≤ fi ≤ 1 if u /∈ S or if u ∈ S but i /∈ ΨS(u).

3)
∑

j:fj<0−fjRj ≤ C(u, u′),

4)
∑

j:fj>0 fjRj ≤ C(u′, u).

The first constraint is for whenu ∈ S has descriptioni and does not need to receive it from its parent; the second

constraint is to preventu from receiving multiple copies of the same description, which simply wastes bandwidth

without any coding gain; and the third and fourth conditions are to respect the edge capacity.

Let F2 be the set of vectors(f1, f2, . . . , fN ) that satisfy the above conditions. For eachfi > 0, u receives

descriptioni. Therefore,

DP (u, f1, f2, . . . , fN ) =
{

F ({i | fi > 0 or u ∈ Si}), if (f1, f2, . . . , fN ) ∈ F2

−∞, if (f1, f2, . . . , fN ) /∈ F2
(10)

Case 3. u is an internal node and not a sink.

Here, the nodeu can be a server, a router, or both. The capacity of the edges(u′, u) and(u, u′) require the flow

volumesf1, . . . fN to satisfy the following constraints:

1) fi ≤ 0 if i ∈ ΨS(u), u ∈ S,

2)
∑

j:fj<0−fjRj ≤ C(u, u′),

3)
∑

j:fj>0 fjRj ≤ C(u′, u).

Let F3 be the set of vectors(f1, f2, . . . , fN ) that meet these conditions.

Let v andw be the two child nodes ofu. Let f ′i andf ′′i be the number ofi-colored paths passing fromu to v

andw, respectively. Ifu is not a server of colori, then thefi paths of colori flowing into u will be splitted into

v andw. That is,fi = f ′i + f ′′i . However, ifu is a server of colori, thenf ′i andf ′′i can be flexible.

Therefore, for any(f1, . . . , fN ) /∈ F3, DP (u, f1, . . . , fN ) = −∞. And for any(f1, . . . , fN ) ∈ F3, we have

DP (u, f1, . . . , fN ) = max(DP (v, f ′1, f
′
2, . . . , f

′
N ) + DP (w, f ′′1 , f ′′2 , . . . , f ′′N )) (11)

for all f ′1, f
′
2, . . . , f

′
N andf ′′1 , f ′′2 , . . . , f ′′N satisfying that

f ′i + f ′′i = fi or i ∈ ΨS(u) (12)

Case 4. u is an internal node and a sink.
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This is the most general case whereu is not only a sink, it may also be a server, a router, or all of the above.

Like in Case 3, the flow volumesf1, . . . , fN have to be bounded by the capacities of edges(u′, u) and (u, u′).

Thus, any feasible solution requires(f1, . . . , fN ) ∈ F3.

The difference between Case 4 and Case 3 is thatu can now reconstruct the set of MDC descriptions at its

disposal, and hence contribute to the total fidelity. Ifu acts also as a relay, it cannot duplicate any received colori,

thusfi = f ′i + f ′′i + 1, with the exception thatu ∈ S and i ∈ ΨS(u). Therefore, the recurrence of (11) is changed

to

DP (u, f1, . . . , fN ) = max(DP (v, f ′1, f
′
2, . . . , f

′
N ) + DP (w, f ′′1 , f ′′2 , . . . , f ′′N )

+F ({i | fi = f ′i + f ′′i + 1 or u ∈ Si})) (13)

for all f ′1, f
′
2, . . . , f

′
N andf ′′1 , f ′′2 , . . . , f ′′N satisfying that

fi − 1 ≤ f ′i + f ′′i ≤ fi or i ∈ ΨS(u). (14)

Now we present a dynamic programming algorithm that computes the optimal RNF solutionDP (vo, 0, . . . , 0),

with vo being the root of tree networkG. In post-order traversal of the tree nodes from the leaves to the root,

the algorithm recursively solves the RNF problem for the subtrees rooted at the traversed nodes. At each step

the current nodeu is classified into one of the above four cases. The corresponding recurrence relation is used to

compute the optimal RNF solutionDP (u, f1, f2, . . . , fN ) for the subtreeGu rooted atu from the optimal solutions

DP (v, f ′1, f
′
2, . . . , f

′
N ) and DP (w, f ′′1 , f ′′2 , . . . , f ′′N ) for the left and right subtrees ofGu. The pseudocode of the

algorithm is given below. In line 2 of the pseudocode, the range of the flow volumefi is |fi| < |T | because each

sink requires at most one copy of descriptioni. HearT is the set of sinks.
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Algorithm Tree-RNF

1. Traverse the tree using post-order, for each encoun-
tered nodeu

2. for all f1, . . . , fN s.t.−|T | ≤ fi ≤ |T |
3. if u is a leaf but not a sink
4. use (9) to computeDP (u, f1, . . . , fN ).
5. else ifu is a leaf and a sink
6. use (10) to computeDP (u, f1, . . . , fN ).
7. else ifu is an internal node but not a sink
8. if (f1, . . . , fN ) /∈ F3

9. DP (u, f1, . . . , fN ) = −∞
10. else use (11) to computeDP (u, f1, . . . , fN ).
11. else ifu is an internal node and a sink
12. if (f1, . . . , fN ) /∈ F3

13. DP (u, f1, . . . , fN ) = −∞
14. else use (13) to computeDP (u, f1, . . . , fN ).
15. OutputDP (root, 0, . . . , 0) as maximum total fidelity.
16. Use backtracking to compute the optimal flow.

Theorem 8:Algorithm Tree-RNF finds an optimal solution of RNF problem for networks of tree topology. Its

time complexity isO(|V | × 4N × |T |2N ).

Proof: The correctness of the algorithm follows from the above derivations for the all four possible cases.

We only need to analyze the time complexity. The for loop at line 2 is repeatedO((2|T |)N ) times. Inside the for

loop, the most time consuming step is line 14.

In (13), if u ∈ S and i ∈ ΨS(u), then there is no constraint onf ′i and f ′′i . Thus the maximizations overf ′i

andf ′′i , maxf ′
i
DP (v, f ′1, f

′
2, . . . , f

′
N ) andmaxf ′′

i
DP (v, f ′′1 , f ′′2 , . . . , f ′′N ), can be performed independently instead

of in combinations off ′i andf ′′i . The most expensive case is whenu /∈ S. Therefore we only need to analyze the

time complexity on this case. There are at most|T |N choices off ′1, . . . , f
′
N . Oncef1, . . . , fN andf ′1, . . . , f

′
N are

fixed, there are at most2N choices off ′′1 , . . . , f ′′N by the condition of (14). So the complexity of evaluating (13)

is O(|T |N × 2N ).

The loop in line 2 iteratesO((2|T |)N ) times, hence the cost of steps 2 through 14 isO(|T |2N4N ) per tree node,

resulting in the total complexity ofO(|V |4N |T |2N ), which is polynomial ifN is a constant.

Clearly, the same algorithm can also compute optimal multiple-sink CRNF for tree network topology by letting

F (X ) = |X |. However, on a second reflection, a more efficient variant of the algorithm can be made possible by

exploiting the property of the cost function for CRNF.

Theorem 9:If F (X ) = |X |, then the time complexity of Algorithm Tree-RNF can be reduced toO(|V |×|T |2N ).

Proof: We only need to change the procedure at step 14. Because our goal is to maximize the total number
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Fig. 5. A general tree can be reduced to a binary tree.

of distinct descriptions, it is suboptimal to have a path of colori passing through a sinku but no path of colori

ending atu. So, we change the constraint in (14) to the following:

fi − 1 = f ′i + f ′′i if u /∈ S or if u ∈ S but i /∈ ΨS(u). (15)

It is easy to verify that this reduces the time complexity by a factor of2N .

For trees with degree greater than 3, we can convert it to a binary tree. Each degreed node is split intod − 2

nodes, the edges connecting these nodes have unlimited capacity. An example is given in Fig. 5. A solution on the

new binary tree can be converted to a solution on the original tree easily.

The above algorithms can be easily modified to work for undirected trees as well.

VI. M ULTICAST RAINBOW NETWORK FLOW IN TREES

As defined in (6), in multicast rainbow network problem (RNF∗), the relay nodes are allowed to duplicate

received colors and multicast them via selected links. RNF∗ uses edge capacities far more efficiently, but it also

makes optimal routing of MDC descriptions in a general graph computationally very hard. However, if the network

has a tree topology, the dynamic programming principle of Algorithm Tree-RNF clearly holds for RNF∗ as well. If

the algorithm is modified according to the edge capacity constraint (6), it can compute optimal RNF∗ in polynomial

time. In fact, it turns out that the tree topology makes optimal routing easier for RNF∗ than for RNF.
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The first modification is that all thefi, f ′i andf ′′i are restricted to be−1, 0, or 1. This is because in an optimal

solution of RNF∗, there can be only one copy of the same description to pass through an edge.

The second modification is in Case 3. Ifu does not have descriptioni, the algorithm considers two possibilities:

(a) color i does not reachu, thenfi = f ′i = f ′′i = 0; (b) color i reachesu, thenfi = 1 or f ′i = −1 or f ′′i = −1.

Therefore, (12) is modified to

fi = f ′i = f ′′i = 0 or fi = 1 or f ′i = −1 or f ′′i = −1 or i ∈ ΨS(u), u ∈ S. (16)

Likewise, the third modification is needed for Case 4. Ifu receives descriptioni, then one offi = 1 or f ′i = −1

or f ′′i = −1 is true. As a result, the computation in (13) is changed to

DP (u, f1, . . . , fN ) = max(DP (v, f ′1, f
′
2, . . . , f

′
N ) + DP (w, f ′′1 , f ′′2 , . . . , f ′′N )

+F ({i | fi = 1 or f ′i = −1 or f ′′i = −1 or i ∈ ΨS(u), u ∈ S}) (17)

for all f ′1, f
′
2, . . . , f

′
N andf ′′1 , f ′′2 , . . . , f ′′N satisfying that

fi = f ′i = f ′′i = 0 or fi = 1 or f ′i = −1 or f ′′i = −1 or i ∈ ΨS(u), u ∈ S. (18)

These three modifications make Algorithm Tree-RNF to meet the edge capacity constraint (6) for RNF∗. Then

the algorithm can be used to compute an optimal solution of RNF∗ for tree topology.

The time complexity of the modified algorithm is dominated by the cost of the maximization task of (17). If

nodes can multicast a description, then only one offi = 1, f ′i = −1, f ′′i = −1 can hold in an optimal solution.

With this property, when a nodeu is not a server of descriptioni, the number of feasible choices of(fi, f
′
i , f

′′
i )

restricted by (18) is only 13, as shown in Fig. 6.

As a result, a careful implementation of Algorithm Tree-RNF runs inO(|V | × 13N ) time, whereN is the

number of different MDC descriptions, which is a constant. Comparing this with Theorem 8, we see that the flow

optimization actually has a significantly lower complexity for RNF∗ than for RNF, if the network has a tree topology.

This is a particularly interesting observation in an algorithmic perspective. Here is a case that coding capability of

nodes makes optimal routing an easier computation task than without, if duplicating and multicasting a data packet

by a node is viewed as a special form of network coding.

VII. O PTIMAL RNF FOR FULL SOURCESPECTRUM

In formulating the RNF problem, we allow arbitrary color distributions at the server nodes. In general a server

node does not supply all the descriptions of an MDC. This formulation models the situations in sensor networks and
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Fig. 6. The thirteen possible values of(fi, f
′
i , f

′′
i ) satisfying (18) and corresponding flow patterns.

distributed source coding where a server node (encoder) can only produce a subset of MDC descriptions. However,

for computer network applications, in particular networked multimedia communications, it is straightforward and

commonplace to code a signal in MDC and place all descriptions on the servers ahead of time. We call this scenario

full source spectrum, i.e.,ΨS(si) = {1, 2, . . . , N} for every server nodesi ∈ S. As we will see in this section,

full source spectrum offers a way to trade the content redundancy and storage space for the tractability of many

optimal RNF solutions.

In what follows we assumew(t) = 1. Consider the CRNF problem for full source spectrum. By a modification

of the original network graphG, the CRNF problem can converted to and solved as one of monochrome maximum

network flow. Specifically, we add a super server nodeso to network graphG, and direct an edge of infinite

capacity fromso to each server nodesi ∈ S. Also, we add a super sink nodeto to G, and direct an edge of

capacityC(ti, to) = N from each sink nodeti ∈ T to to. The resulting expanded graph is depicted in Fig. 7.

The next step is to compute a maximum monochrome flow fromso to to using an existing maximum network

flow algorithm (e.g., the one in [3]). By the construction of the expanded graph, any path in the computed maximum

flow from so to to has to travel from a server nodes ∈ S to a sink nodet ∈ T . Therefore, to each sink node
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Fig. 7. The process of adding a super nodeso and a super sinkto.

ti ∈ T , 1 ≤ i ≤ |T |, there will be a setßi of flow paths from some server node(s). An optimal solution of the

CRNF problem can be derived from these|T | sets of paths. For every sinkti ∈ T , we assign each pathp ∈ ßi a

distinct colork, 1 ≤ k ≤ |ßi|. Whatever server nodes ∈ S that emits this path of colork has the color since the

spectrumΨS(s) is full.

The paths colored as such,
∑

1≤i≤|T | |ßi| of them in total, constitute an optimal solution of the original CRNF

problem, because
∑

1≤i≤|T | |ßi| is the maximum flow volume allowed by the network from all servers to all sinks

even without concerning distinct coloring of all incoming paths to any individual sink.

Note that the optimality of the above CRNF solution holds only if the relay nodes in the network cannot duplicate

any received color. In practice, there are cases where duplicating an MDC description is not possible or desirable.

This is particularly true in today’s Internet where multicast backbone is not yet widespread. In this case the system

cannot rely on multicast functionality provided by lower layer routers (see [2] for a detailed discussion). Also, a

router may not have sufficient buffer space to hold an entire MDC description. Other reasons for not duplicating an

MDC description in multicasting may be for data security or/and digital right protection. For instances, one does

not want any router to know what clients are receiving an identical data stream, or the same content is differently

encrypted or watermarked so that different copies are not interchangeable.

Finally, it should be noted that the solution for RNF provides a lower bound in performance for RNF∗.

In the previous sections, when the source spectrum is not full, we witnessed the hardness of optimal RNF problem

even for single sink and even when the fidelity function is monotone in the total rate. Remarkably, aided by the full

source spectrum the optimization problem becomes far more amenable. Let us make a minor modification to the

expanded graph in Fig. 7 by changing the edge capacityC(ti, t) from N to Rmax, whereRmax =
∑

1≤i≤N Ri.
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As in the case of CRNF, we can solve the equivalent problem of maximum monochrome flow fromso to to, and

determine the maximum possible flow volumeKi into each sinkti ∈ T , 1 ≤ i ≤ |T |, even allowing the delivery

path of any MDC description to be split. Since every server node has full spectrum, we have the complete freedom

with the coloring of the flow paths. Upon maximizing the total monochrome flow into all sinks, we now come to

the following flow optimization problem in color:

max
Ψ∈K∗

F (Ψ) (19)

subject to
∑

κ∈Ψ

Rκ ≤ Ki,

independently for allti ∈ T , whereK∗ is the power set of all colors.

For full source spectrum, the reduced optimal RNF problem of (20) is polynomially solvable if the MDC in

question is a scalable (layered) code. Indeed, upon having the maximum monochrome flow fromso to to, for each

sink t ∈ T , we let the monochrome flow volumeL into sink t be the beginning consecutive portion of the scalable

code, i.e., find the largestK such that
∑

1≤i≤K Ri ≤ L. This simple scheme is optimal since a scalable code (a

special form of MDC) is only successively decodable, i.e., a sink node cannot decode descriptioni unless it has

all of descriptionsi − 1, i − 2, . . . , 1. Furthermore, if the scalable code is continuously scalable (the code stream

can be truncated anywhere), such as the well-known SPHIT and JPEG 2000 image codes [12], [14], then all bits

in the flow volumeL into any sinkt ∈ T can be utilized by the above algorithm.

In contrast, if the source spectrum is not full, the dependency of the fidelity functionF (Ψ) on a particular order

of received descriptions becomes a liability. It makes optimal RNF for scalable MDC computationally extremely

hard.

If the fidelity functionF (Ψ) is additive, namely

F (Ψ) =
∑

κ∈Ψ

F ({κ}), (20)

then the optimization problem of (20) is a knapsack problem that can be solved inO(N2Ki) time for each sinkti

of incoming flow volume ofKi. In this case, the optimal RNF problem can be solved inO(N2K) time, whereK

is the volume of the maximum monochrome flow fromso to to.

Recall from the previous section that optimal RNF problem is not computationally tractable even when the fidelity

functionF (Ψ) is monotone in the total rate of all the descriptions inΨ (the condition of (8)). However, the situation



23

changes for full source spectrum. From (20) the optimal RNF problem for full source spectrum can be stated as

max
Ψ∈K∗

∑

κ∈Ψ

Rκ (21)

subject to
∑

κ∈Ψ

Rκ ≤ Ki,

independently for eachti ∈ T . Again, this is a knapsack problem, in fact, a special case where the value of the

item (description) to be packed is proportional to its size (rate). As in the instance of scalable code, the optimal

RNF problem can be solved inO(N2K) time. The problem is greatly simplified by the fact that a sink can fetch

any description from any server node thanks to full source spectrum. In fact, full source spectrum allows an MDC

description to be transmitted in different parts via different paths from one or more servers to a sink.

VIII. C ONCLUSIONS ANDFUTURE WORK

We pose the rainbow network flow problem of routing MDC descriptions to maximize a collective fidelity metric

over all sinks, constrained by the edge capacities. This problem is proven to be Max-SNP hard for general network

topology and an arbitrary distribution of MDC descriptions, and hence it is unlikely to have a polynomial-time

approximation scheme that approaches the optimal solution arbitrarily close. But this negative result does not

preclude polynomial-time solutions of the optimal RNF problem in many practically important cases. Algorithms

of computing optimal RNF for single sink, full source spectrum, and tree network topology are presented, and their

complexities are analyzed.

Interesting and challenging problems for future research on RNF are many. In a constructive perspective, the

most important topic is perhaps how to jointly optimize the design and routing of MDC for a network. Information

theoretically, an intriguing problem is to find the achievable region for the paradigm of lossy joint source-network

coding for multiple servers and multiple sinks.

Given the NP-hardness of optimal RNF for general networks, good heuristic practical solutions are in order. This

paper showed that optimal RNF problem can be efficiently solved with respect to a single sink in general graphs.

Then can we find a good RNF solution for multiple sinks by a clever use of this algorithm for single sink?

We also showed how full source spectrum can make some variants of RNF problem computationally more

amenable. Then a related problem is how to strategically place MDC descriptions at the servers if there are storage

capacity limits at the servers. Even more challengingly, how should a given number of servers (with or without

storage capacities) be placed among a set of possible sites in the network in a rate-distortion optimal way?

Appendix A. Proof of Theorem 1
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Fig. 8. Two new vertices,t′i andui, are added for eachti. ui has all but colori. Edge(ui, ti) has capacityk− 1. All the other edges have
capacity 1.

We will show that the CRNF problem can be reduced to from the known NP-hard problem, maximum edge

disjoint paths [9], [6], which is stated below.

Maximum edge disjoint paths problem. Given a graphG = 〈V, E〉 andk pairs of vertices(s1, t1), . . . , (sk, tk),

find k edge disjoint paths, each connecting a different vertex pairsi, ti.

Proof: Let G = 〈V, E〉 be an instance of maximum edge disjoint paths withk pairs of nodes(si, ti). We

construct an instance for CRNF as follows.

There arek different colors. For eachti, construct two new verticest′i and ui. Add a direct edge(ti, t′i) with

capacity 1 and a direct edge(ui, t
′
i) with capacityk − 1 (See Fig. 8). The sink setT = {t′1, . . . , t′k}. Assign all

the edges inE with capacity 1. For each colori, the corresponding server vertex setSi = {si}∪ {uj | j 6= i}. We

get an instance of CRNF problem.

If the original maximum edge disjoint path instance has a solution, supposepi connects fromsi to ti. Then we can

construct a solution of CRNF with total incomek2 as follows. For each colori, Pi = {(uj , t
′
j) | j 6= i}∪{pi ·(ti, t′i)}.

Conversely, suppose the CRNF problem has a solution with total incomek2. Then there arek paths withk

different colors ending at eacht′i. Because the only two incoming edges fort′i are (ti, t′i) with capacity 1 and

(ui, t
′
i) with capacityk − 1, for eachi there must be a path of colori that starts atsi and passesti. Such paths

for different i must be edge-disjoint because all the edges inE have capacity only 1. Hence we get a solution for

the maximum edge disjoint path problem.

Therefore, maximum edge disjoint path is reduced to CRNF. Because the former is NP-hard, so is the latter.

Finally, we claim that CRNF problem remains NP-hard even if the network graph is a directed acyclic planar

graph. This follows from the fact that the maximum directed edge disjoint paths problem is NP-complete even if
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Fig. 9. The topology of the constructed rainbow network flow in the proof of Theorem 3.

the underlying graph is acyclic planar [15].

Appendix B. Proof of Theorem 3

Our proof is based on the fact that the Max-2-SAT problem is Max-SNP-hard [11], which is defined below.

Max-2-SAT problem Let x1, x2, . . . , xn be n boolean variables. Letyi be 2-CNF (conjunctive normal form) of

the boolean variables. Find a truth assignment of the variables that satisfies the maximum possible number of the

clauses.

Proof: We construct an L-reduction [11] from Max-2-SAT to the RNF problem. LetI be an instance of the

Max-2-SAT problem withn variables,x1, x2, . . . , xn andm clausesyi, i = 1, 2, . . . , m.

Our constructed instance of the RNF problem has2n descriptions, each corresponds to eitherxi or x̄i. It also has

2n server nodes. The server nodes are grouped inton pairs,ri andsi, i = 1, 2, . . . , n. Eachri has the description

corresponding toxi, and eachsi has the description corresponding tox̄i.

Then all the nodes are connected as in Fig. 9. There is only one sink nodet. Each description has a fixed unit

rate. And the capacity of each edge is also one in that unit. This graph ensures that only one of the two descriptions

xi and x̄i can reach the sinkt.

Therefore, if there are exactlyn descriptions arrivingt, we can accordingly get an assignment to the variables

xi, i = 1, 2, . . . , n, as follows

xi = true ⇔ description xi arrives t.

The reconstruction fidelity achieved by then descriptions is then defined by the number of clauses satisfied by this

assignment.

If there are fewer thann descriptions arrivingt, we define the reconstruction fidelity to be 0.
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Thus, we have constructed an instance,J , of the RNF problem. As discussed above, a solution of the constructed

J with reconstruction fidelityM can be used to construct a solution ofI with M satisfied clauses; and vice versa.

Therefore, the reduction we have shown is an L-reduction.

Because Max-2-SAT is Max-SNP-hard, the RNF problem is also Max-SNP-hard.

Appendix C. Proof of Theorem 5

Proof: In the proof in Appendix A, eacht′i needs and only needs to receive a different colori from ti.

Therefore, there will be only one copy of each color transporting in the original graph. (See Fig. 8) The extra

ability of duplicating a color does not change the solution. Therefore, the reduction works for CRNF∗ as well.

Similarly, it is obvious that the extra ability of duplicating a color does not change the solution in the proof in

Appendix B. Therefore, the reduction in Appendix B works for RNF∗ as well.
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