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Abstract

This paper is an enquiry into the interaction between multiple description coding (MDC) and network routing. We
are mainly concerned with rate-distortion optimized network flow of an MD source from multiple servers to multiple
sinks. Maximizing a collective metric of the MD source reconstructed at all sinks, constrained by edge capacities, is
a very different problem from conventional maximum network flow. The objective function involves not only the flow
volume but also the diversity of the flow contents (distinct MDC descriptions), hence the term of rainbow network
flow (RNF). The RNF problem is also closely related to lossy network coding. For general network topology, general
fidelity function, and an arbitrary distribution of MDC descriptions on the servers, we prove that the RNF problem is
Max-SNP-hard, i.e., there is no polynomial-time algorithm to even approximate the optimal solution with arbitrarily
good approximation ratio, unless P=NP. However, the problem becomes tractable in many practical scenarios, such
as when MDC is balanced with descriptions of the same length and importance, when all source nodes have the
complete set of MDC descriptions, and when the network topology is a tree or has only one sink. Polynomial-time

RNF algorithms are developed for these cases.

Keywords: Multiple description coding, network routing, network coding, optimization, complexity.

I. INTRODUCTION

Packet switched lossy networks, such as the Internet, peer-to-peer, ad hoc, and diversity wireless networks,
inevitably experience packet losses and delays problems. Packet retransmission is undesirable either due to latency
constraints in real-time applications or due to bandwidth economy or both. In contrast, transmission policies on a
best-effort basis offer simpler, faster, and less expensive solutions, in which no acknowledge from the receiver is
needed, nor is there guarantee that the data packets will arrive in order, or at all. This simple send-only machinery
shifts the burden of reliability from the network protocols toward the design of network-aware codes. The need for
more sophisticated codes to compensate for less network provisions has led to a proliferation of research literature
on multiple description coding (MDC) for packet-switched networks and erasure channels [4].

MDC is an effective technique to maintain the quality of service at times of network congestions and server
breakdowns by offering a client multiple accesses to a given content. Different descriptions of an MDC-coded

source can be transmitted to the client via different paths and from different servers in the network. In this paper
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Council of Canada.
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we consider a network of a fixed topology, modeled by a g@ph (V| E). The nodes in the sét correspond to

servers, clients, and possibly relays in the network. The edges in thé sagiresent directed links between these
nodes. Each edge has a capacity, reflecting the capacity of the underlying channel.

Suppose that a source is coded by an MDC into a seNof 2 descriptionsX = {z1,zs, - -,xn}. Let
X = {1, k2, -, Thn, t C X be the subset of descriptions at serkeiSubsetst;, and X; residing at servers
k andj are in general not disjoinfy;, N X; # 0, for a desired degree of redundancy in case of server or link failures.
Any client in the network can decode the MDC-coded source upon receiving a stliseX of descriptions with
fidelity F'(X). The quality of service (QoS) for all the network clients depends on the network gfapiV, E),
the edge capacities, the distribution of the descriptions at the servers, and most of all on the network flow of the
MDC descriptions.

An interesting and important problem arises naturally when considering how to best route MDC descriptions in
a network. Given the topology and edge capacities of a network and given the distribution of MDC descriptions
on a set of servers, what are the optimal network flows of the different descriptions in terms of maximizing the
reconstruction quality at one or a group of sinks (clients)? The optimal network flow of MDC descriptions in
rate-distortion sense behaves very differently from maximum flow of commodities in network problems treated in
classic operation research literature. Computationally, the former is far more complex than the latter because the
reconstruction fidelity achieved by a decoder is not additive of the fidelities offered by the individual descriptions
received. Our objective is to maximize not the total volume of commodities (descriptions) that can flow into the
sink(s), but rather the total fidelity achievable over all possfidts of descriptionthat can flow into the sink(s),
constrained by edge capacities. In the case of balanced MDC of equally important packets of the same size, the
coding gain realized by a sink becomes the numbedistinct packets received by it. For a given sink receiving
two or more copies of the same MDC packet makes no additional coding gain. For this unique property of MDC,
we call the problem of optimizing the routing of MDC code streams the rainbow network flow (RNF) problem. The
terminology carried an intuitive connotation: distinctively color the MDC descriptions and optimize the network
flows to achieve the rainbow effect of getting as wide a spectrum of colors as possible at the sinks.

The RNF problem is also an integral aspect of joint network-source coding (JNSC), a study recently initiated
by the authors [13]. The inquiry of INSC is about how to code a (usually real valued) source, communicate and
reconstruct the coded source in a network to a maximal collective fidelity over a given set of sinks, while the flows

of the code streams meet the edge capacities of the network. INSC can be considered as a lossy version of the



Fig. 1. An example of flow of a two description code.

(lossless) network coding problem [1], since the reconstruction dose not need to be perfect. An interesting and
profound observation made in our study of JNSC is that MDC, if coupled with optimized network routing, can
improve the overall rate-distortion performance. Remarkably, this isdwe®m when all the communication links
of the network are error freein spite of a prevailing folklore that the redundancy of MDC can only be justified
in the presence of channel errors (indeed, the research of MDC seemed solely motivated by the desire for robust
networked communications against packet erasure errors). Our point can be illustrated by the following example.
In Fig. 1, a server (hode 1) feeds a coded source into a network of four sink nodes (hodes 2-5). The goal is to
have the best reconstruction of the source at each of these four nodes. All link capacitiéidseper source
symbol. MDC encodes the source into two descriptions (shown by solid and dashed boxes in the figure), each of
rate C. Descriptions 1 and 2 are sent to nodes 2 and 3 respectively. Node 2 duplicates description 1 and sends to
nodes 4 and 5 each a copy, while node 3 duplicates description 2 and sends a copy to nodes 4 and 5. The RNF
consists six directed path$: — 2,1 -2 —-4,1—-2—5,1—3,1—3 — 4,1 — 3 — 5. To distinguish
these paths by color (description), we form two sets of colored p#ths: {1 —2,1 -2 —4,1— 2 — 5} and
P,={1-31-3-41—-3-5}
To see how the nodes in the network benefit from MDC, I&t(C), D5(C), D12(C) be the distortion in
reconstructing the source given description 1 or 2 or both. Lets minimize the average distortion at all nodes 2
through 5 in Fig. 1 (assuming all sink nodes with equal weight)

2D12(C) + D1(C) + D2 (C)
4

d= 1)

For an iid Gaussian source of unit variance, the achievable distortions of two description coding are completely
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derived by Ozarow [10]. The symmetry in indices 1 and 2 ensures that (1) is minimized when the two descriptions

are balanced, that id),(C) = D»(C) = D. Ozarow’s result, when specialized to balanced MDC states that the
following set of distortions are achievable:

D, = Dy=D>272%¢ 2
2—4C

(D+ VD2 -2 10)2—D— VD2 -2 10)

The minimum valueij(C) of the average distortion (1) under the constraints of (2) can be computed via a

Dy,

convex optimization procedure, because the region (2) is convex. On the other hand, by separating source from
network coding, the reconstruction distortion at nodes 2 through 5 (and hence the average distortion over all these
nodes) is at bests(C) = 272¢. One can easily verify that,,(C) < ds(C) for all C > 0. In other words, for all

C > 0 there exists a balanced two description code for which the average distortion over all sink nodes is strictly
less than the average distortion achievable by any separate source and network coding scheme.

The inefficiency of separate source and network coding lies in that even thoughdy6desre twice the incoming
capacity compared to nod@s3, their reconstruction errorl{ = ds) is bounded by the reconstruction error of the
weaker nodesd;, = d3). Unlike lossless coding, lossy codes can play a tradeoff between the reconstruction errors
at different nodes, generating a much larger set of achievable distortion 4-fdples, d4, ds). These tradeoffs
are essential in practice. For instance, in networked multimedia applications over the Internet, where the network
consists of a set of heterogenous nodes, the experience of a user with broadband connection should not be bounded
by that of a user with a lesser bandwidth.

Extending the above example, we showed that given a rainbow network flow of MDC descriptions, optimal MDC
design can be posed and solved as a convex optimization problem [13]. If reciprocally the RNF problem can be
solved satisfactorily, then a practical INSC approach will be to optimize the MDC design and the MDC routing in
turn, with one of the two fixed at a time. The potential advantages of jointly optimizing the design and the routing
of MDC provide another motivate for studying the RNF problem.

The main contributions of this paper are listed and presented as follows. In Section Il we formulate the rainbow
network flow problem. Then we present complexity results of the problem in Section Ill. After proving the RNF
problem to be MAX-SNP-hard, we turn our attention to some practically important cases for which polynomial-
time algorithms exist. Section IV develops an algorithm to solve the optimal RNF problem with respect to a

single sink. Section V derives a dynamic programming algorithm that can solve the optimal RNF problem for an
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arbitrary distribution of MDC descriptions if the network has a tree topology. This algorithm is then generalized in

Section VI to the multicast rainbow network flow problem in trees, where nodes are allowed to multicast a received
description. Section VIl presents a family of algorithms for the case of so-called full source spectrum, where all
servers can supply all descriptions of an MDC-coded source. Section VIII concludes the paper with suggestions of
future research problems.
[I. PROBLEM FORMULATION AND NOTATIONS
The problem ofRainbow Network FIowWRNF) of MDC is posed in the following setting:
« a fixed network topology represented by directed grépk (V, E'), in which each edge € E has a capacity
C(e) > 0;

« an MDC code consisting of a set &f descriptions of rate$,, Rs, - - -, Rn;

« a set of server nodeS C V.

» each server node; € S has a set of descriptions,, ks, . .., ky,, called the spectrun¥s(s;).

« a set of sink node§’ C V.
For convenience we say that descriptiorhas colorn. A colored network flow consists aV sets (some may
be empty) of directed flow paths, ..., Py. A flow pathp € P,, P, being a non-empty set, carries a copy of
descriptionn from a server node € S such thatn € Ug(s) to a sink nodel € T'. Let pg(e) be the set of flow
paths that pass through edge E, andpr(t) be the set of flow paths that end at the sink nodeT'. Denote by
x(p) the color of pathp, i.e., k(p) = n if p € P,. Define the spectrum of an edgec E to be the color set

Uple)= |J {s)} ®)

pEpPE(e)

likewise, define the spectrum of a simke T to be the color set

()= |J (s} (4)

pEpT(t)

Let F(¥) be the reconstruction fidelity achieved by decoding a sulset {1,2,---,N} of the N MDC
descriptions. The objective of RNF is to find a colored network flow to maximize a weighted fidelity measure
over all the sink nodes, while satisfying all the edge capacities, or stated as the following constrained optimization
problem:

max w(t)F(Ur(t)) (5)



subject to

> Rup <Cle), VeeE. (6)
pEVE(e)

with w(t) being a weighting function to prioritize different sinks in optimizing MDC network flows (by user fees,
urgency, and etc.)

An important nuance of the inequality (6) is that it allows for duplication (i.e., multicast) of a description by relay
nodes. In other words, two or more flow paths of caldhat pass through an edgec E consume a bandwidth of
only R;. This corresponds to network routers that can duplicate a received data stream and send the copies through
multiple links. If the network nodes cannot duplicate any incoming description, then the edge capacity constraint

of (6) should be changed to

> Rup <Cle), VecE ©)
PEPE(e)
We refer to the variant of (6) as the multicast rainbow network flow problem, symbolized by RNRe sequel,

to distinguish it from the second variant where relay nodes are pure switches. Duplicating MDC descriptions is
a simple and yet powerful operation of lossy network coding that can greatly improve the utilization of network
capacities, as demonstrated in the examples of Figs. 1, 2, and analyzed in [13]. For this reasdrRigFedistortion

more efficient than RNF.

The meanings of the above definitions and notations may be better conveyed by visualizing an example. Fig. 2
depicts the optimal routing of an MDC of two descriptions (descriptions 1 and 2 are labeled by solid and dashed
icons and arrows, respectively) in a network of six nodes. The server nodes are node 2 that has both descriptions
and node 4 that has only description 1. Nodes 1, 3, 5 are sinks, and nodes 0 and 1 are relays (routers). All edges
have a capacity of 1 except for the ed@e5) of capacity 2. The diagram on the left presents an optimal solution of
RNF*, whereas the diagram on the right shows an optimal solution of RNF. Comparing the left and right diagrams
we see the difference between RN&nd RNF. In the case of RNFthe relay node 0 duplicates description 1 and
sends a copy to each of sink nodes 3 and 5. But because node 0 cannot duplicate any received description in RNF,
sink nodes 3 and 5 cannot both get all the two descriptions as in* RINEhis example RNF wastes the capacity
of edge(0, 3), achieving lower fidelity at sink node 3.

To be familiarized with the notations, please refer to Table Il for the notation instantiation in the optimal RNF
solution depicted in Fig. 2.

Also, we define thaJndirected Rainbow Network Flow ProblefdRNF) the same as the RNF problem except

that the edges and paths in the definition are undirected.
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Fig. 2. Optimal routing of an MDC of two descriptions, marked by solid and dashed icons and edges, fo(l&iyFand RNF (right). All
edges have capacity 1 except for edge5) of capacity 2.

Notation instantiation in optimal RNF * solution for the above example

Problem Input:

N =2 (two MDC descriptions)
Ri=Ry=1

C(e) =1 for all e € E other thanC'(0,5) = 2
S =1{2,4}, Ws(1) = {2,4}, ¥s(2) = {2}
T=1{1,3,5}

RNF* Output:

Optimal sets of colored flow paths:
Pr={4-1,4—-1-0—-34—1—-0—5}
P,={2—-0—5,2—3}

pop(4,1)={4—-1,4—-1—-0—-3,4—>1—-0—5}
pp(1,00={4—-1—-0—-54—1—0— 3}
or(0,3) = {4 — 1 -0 — 3}

9p(2,0) ={2—0— 5}

or(2,3) = {2 — 3)
op(0,5)={4—-1—-0—5,2—-0—5}

pr(l) = {4 -1}
pr(3)={4—>1-0-—3,2—3}
pr(5)={4—-1—-0—5,2—0—5}

Up(2,3) = Vg(2,0) = {2}
vE(0,5) ={1,2}
Wr(l) = {1}
Yr(3) =¥r(5) = {1,2}
TABLE |

NOTATION INSTANTIATION IN THE OPTIMAL RNF* SOLUTION DEPICTED INFIG. 2.
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The RNF problem definition is for general fidelity functidi(¥), in which F(¥) accounts for not only the

correlations between MDC descriptions such as those of multiple description quantizers, but also the sequential
decoding dependency between descriptions such as those in layered multi-resolution source coding.

On surface the RNF problem might appear similar to the multicommodity network flow problem, by viewing
different MDC descriptions as different commodities to be transported in a network. However, the two problems
are very different due to the unique fidelity (distortion) metric of MDC. In RNF a sink does not demand any
particular commodity or commodities, rather it desires to have as mlistipct descriptions as possible (i.e., which
commodities do not matter so long they are unique). For the same reason the RNF problem also differs from
conventional network flow of a single commodity. Maximizing the total flow volume into the sinks, which is the
objective of the latter problem, is not optimal since the conventional maximum flow may carry duplicates of an

MDC description to a sink, occupying edge capacities for no coding gains.
1. COMPLEXITY RESULTS OFRNF PROBLEMS

This section presents the main complexity results for RNF with the corresponding proofs placed in the appendices.
We start with the complexity of the RNF problem without duplication. First, we prove that the RNF problem is NP-
hard by showing that even a special case of RNF problem is NP-hard. The special case, which is called Cardinality

Rainbow Network Flow (CRNF), is wheR'(¥) = |¥| andw(t) = 1 for all ¢ € T in (5).

Theorem 1:Cardinality rainbow network flow problem is NP-hard, even for directed acyclic planar graphs.

The proof of this theorem is in Appendix A.

It is easy to see that the reduction used in Appendix A also works when the graph is undirected. Therefore, we

have

Theorem 2:Undirected cardinality rainbow network flow problem is NP-hard even for undirected planar graphs.

The CRNF problem, although being only a special case of RNF, is important in practice. The popular technique of
uneven error protection (UEP) of scalable source code stream using Reed-Solomon code makes all MDC descriptions
(packets) to have the same size and same importance. Consequently, the fidelity fAi&@joonly depends on the
cardinality of ¥ not the particular composition @f. Maximizing reconstruction fidelity is equivalent to maximizing
the number of distinct descriptions received by all sinks. Appendix A proves that CRNF problem is NP-hard if the

network has multiple sinks and multiple servers. However, if the optimization is with respect to a single sink, the
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CRNF problem can be reduced to one of classic maximum network flow and hence is polynomially solvable. The

algorithm for CRNF of a single sink will be given in the next section.

For general MDC the reconstruction fidelify(¥) does depend on the composition®bfto account for different
coding gains made by different combinations of MDC descriptions, and also for arbitrary dependencies in decoding
these descriptions. The increased combinatorial complexity as opposed to the set cardinality suggests that the
general RNF problem ought to be “harder” than the CRNF problem. Indeed, we can prove that the RNF problem
remains NP-hard even the network has only one sink node. In fact, we will prove a stronger complexity result that
the single-sink RNF problem is Max-SNP-hard. Namely, there is a constan®, such that no polynomial-time

algorithm can approximate RNF problem with ratio better thane, unless P=NP.

Theorem 3:The rainbow network flow problem is Max-SNP-hard even if there is only one sink node, all MDC

descriptions have equal rate, and the network topology is a tree.

The proof of the theorem is given in Appendix B.

The reduction used in Appendix B also applies to undirected graphs. Thus, we conclude

Theorem 4:Undirected rainbow network flow problem is Max-SNP-hard even if there is only one sink node, all

MDC descriptions have equal rate, and the network topology is a tree.

It turns out that the reductions in the proofs of the above four theorems also work when the nodes can duplicate
MDC descriptions. Consequently, we have the following theorem:

Theorem 5:Theorem 1 and 2 hold for CRNFTheorem 3 and 4 hold for RNF

The proof of Theorem 5 is given in Appendix C.

Although RNF problem is NP-hard in general, there are practically important cases for which polynomial-time

algorithms exist. We will examine some of these cases in the next four sections.
IV. OPTIMAL RNF FOR SINGLE SINK

The rainbow network flow problem can be greatly simplified if the flow of MDC descriptions from diversity
servers is optimized with respect to a given sink. This is particularly so for*Riitiee the optimal solution for a
single sink does not require duplication of any MDC description.

First, let us reexamine the CRNF problem for a single sink, although optimal CRNF was proven in the previous

section to be NP-hard for multiple sinks. By the definition of CRNF, all MDC descriptions have the same importance
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original network

Ny J

Fig. 3. Expanded graph with added edges froymto the servers that have colar

and the same rat&, which is treated as the unit rate dffor convenience. To the only sinke T, the optimal
MDC network flow that achieves the maximum fidelity at the sinwill necessarily haveX flow paths of K
distinct colors i < N), or there is at most one path with respect to each color. These observations allow us to
reduce the single-sink CRNF problem to one of conventional maximum network flow, which we call maximum
monochrome network flow to distinguish it from maximum-fidelity rainbow network flow.

For each colori, we add a new vertex; to the graphG, and add an edgéu;, s) for eachs € S such that
1 € Ug(s). The capacity of edgéu,, s) is set tol. Then we add a “super server node;), and edgess,, u;)
with capacity 1 for eachi. Fig. 3 depicts the resulting expanded graph. We assume that the capacities of all
edges in the network are integers. The above construction is valid for arbitrary network topology, and it equates
the optimal solution for the single-sink CRNF problem to the maximum monochrome flow 4rota ¢ in the
expanded graph. The latter problem can be solved easily by Goldberg and Tarjan’s maximum flow algorithm in
O(E||V|log(|V?/|E|) time [3]. *

The resulting maximum monochrome flow of volurie corresponds td< pathspy,...,px from s, to t. And
each edge of the graph appears in at maste) of the K flow paths. Since th& edges(s,,u;),i =1,..., K, are
the only outgoing edges of,, and each of them has capacitythe resultingK" flow paths must each go through
a differentu;. Referring to Fig. 3, if a patlp; from s, to ¢ first reaches nodey,, then it must immediately enter
a nodes € S. Denote byp) the remainder subpath @f from the nodes to ¢. Clearly, the subpath/ is a path

from the serves to the sink¢ of color k; for the original CRNF problem. Therefore, the set of pathis;i—1,... k.,

it is possible to solve it faster i®(| E|[V| + |V|?1¢) time by a more complicated algorithm [7].
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constitutes a solution for the original single-sink CRNF problem. The procedure described above is summarized by

the pseudo-cod8ingleSinkbelow.

Algorithm SingleSink
Input G = (V, E); server setS with spectrum¥s(s), s € S; sinkt € V;
Output K pathsp}, 1 <i < K < N, each with a different color.
1. For each colod,
add a new vertex;; to V;
for eachs € S such thati € Ug(s)
add an edgéu;, s) with C(u;,s) =1to E.
. Add a new vertex, to V.
For each colot,
add an edgés,, u;) with capacityC(s,,u;) =1 to E.
4. Compute the maximum flow from, to ¢ in the new graph, resulting in
p1,---,PK, the K different paths froms, to ¢ that compose the flow.
5. Fors from 1 to K,
remove the first two edges in to get a new pattp,.

Outputp], ..., pk.

w N

o

Theorem 6:The flow computed by Algorithm SingleSink is an optimal solution of CRNF.
Proof. Clearly, the paths computed by the algorithm form a feasible solution of CRNF. We only need to show
that the solution is optimal. This can be proved by contradiction.
Suppose that we have another solution/of > K paths with different colorg,, ... ik . Let the K’ paths be
qi,---, 4% Let ¢ have colork; andg; connect from a server nodg € S such thatk; € Ug(s;) to the sinks.
Then there is an edg@u,, s;) in the expanded graph. As a resut,= (s, uk; ) - (uk;, ;) - ¢, is a path froms, to

t in the expanded graph. The collection of these pdi$;—; ..k forms a monochrome network flow from,

to ¢ whose total flow volume id’ > K. This is contradictory to the optimality of step 4. [ ]

For CRNF on an undirected graph with single sink, the above algorithm works as well with virtually no
modification. The only concern is that the constructed graph (Fig. 3) now has all the newly added edges directed, and
all the edges in the original network undirected. However, in the traditional network flow problem, each undirected
edge can be converted to two opposite directed edges with the same capacity. The optimal solution of the resulting
directed graph will be the same as the optimal solution of the original graph with undirected edges. As a result,

Algorithm SingleSink is also an efficient algorithm for CRNF on undirected graphs with single sinks. We have the

following theorem.
Theorem 7:Algorithm SingleSink computes an optimal solution of the single-sink undirected CRNF problem.

Algorithm SingleSink can be modified to provide practical solution to general RNF problems with single sink

as well. For unbalanced MDC whei®; # R;, ¢ # j, we can change all edge capacit@és, u;) and C(u;,v),
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wherev € S;, from1to R;, 1 <i < N (referring to Fig. 3). Then Algorithm SingleSink can maximize the total

number of bits flowing into sink from all server nodes. The topology of the expanded graph in Fig. 3 ensures that
no parts can be duplicated from the same MDC description. Whether the algorithm achieves the maximum fidelity
possible allowed by the network capacity, like in the case of CRNF, depends on the design of MDC codes and the
functionality of the network.

Consider the MDC codes for which the fidelify{ ') achieved by decoding the sétof descriptions is monotone

in the total rate of all descriptions iy, namely,

F(¥y) > F(¥y) if Z R, > Z R.. 8)

KREW, KEW,

Many MDC codes satisfy the rate monotonicity, including those generated by the priority encoding transmission
(PET) technique and many codes of multiple description quantization. Suppose that the network allows a description
to be split into multiple paths in transmission. Then the solution found by Algorithm SingleSink is optimal provided
that a description is either received in its entirety, or not at all. The optimality cannot be guaranteed if fractional
description is received because the fidelity functiors defined on a set of complete descriptions.

A sure way of receiving a description in full is not to allow the description to be split and sent via different paths
from s to ¢. Unfortunately, adding this constraint converts the underlying optimization problem to be the known
NP-hard problem of unsplittable maximum network flow [8].

The above discussions lead to a new, practically important, and challenging MDC flow problem: maximizing the
fidelity at the sink(s) with splitable flow of MDC descriptions under the constraint that all of the received MDC
descriptions are complete. This constraint is more forgiving than that of the unsplittable network flow problem in
that a description can be split during transmission as long as it arrives at a sink in whole. The relaxation is desirable
because the network edge capacities can be better utilized if a large description can be sent in parts and assembled
at a sink. This also agrees with the actual mechanism of packet switched networks, where a large description can
be broken into multiple data packets that may be routed differently. The issue of splittable flow will be addressed

again in Section VII.
V. OPTIMAL RNFFORTREETOPOLOGY

If the network topology is a tree and the numBérf MDC descriptions is a constant independent of the network
size (typically true in the practice of MDC coding), then the optimal RNF problem can be solved in polynomial

time. The tree topology is common in local area networks (LAN) and in sensor networks [5].
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First clarify what we mean by a tree topology when the graph is directedGLet(V, E') be a directed graph.

We convert it to an undirected gragll = (V, E’) as follows: (u,v) € E’ if and only if (u,v) € E or (v,u) € E.
If the new graphG’ is a tree, we say tha¥ has a tree topology. Fig. 4(a) shows an example of a directed graph
with a tree topology.

We develop an RNF algorithm first for unrooted binary trees, and then extend it to arbitrary unrooted trees. We
can makeG a binary tree rooted at an arbitrary leaf node V' by inserting a dummy vertex* and a dummy
edge (v,v*) into G. Fig. 4 illustrates the tree construction on the directed gr@plConsequently, each vertex
u € V is either an internal node having two child nodes, or a leaf node of no descendants. The subtree rooted at
a nodeu € V' can also be naturally defined. Note that the dummy vertex is purely for the clarity of the algorithm,
and it has no effect on the optimal solution for the original tree. As a result, this dummy vertex can be added at
an arbitrary leaf.

In this section we assume that the relay nodes of the network cannot duplicate any received color. In the next
section we will modify the optimal RNF algorithm for networks of tree topology in which the relay nodes can
duplicate colors.

For each internal node, let w’ be the parent node eof. If there arer; paths of colorj passing throughl andw’
in the optimal flow, then those; paths have to go throughand’ in the same direction. This is because passing
a color back and forth through an edge would consume the edge capacity without increasing the number of distinct
colors to arrive at the sinks. Therefore, we can assign a unique signed flow vglutoehe edge connecting’
andu: f; = z; > 0 if the paths flow fromu’ to u, and f; = —z; < 0 otherwise. This way we can unambiguously
say that there ar¢; paths flowing intou from its parent.’.

We take a dynamic programming (DP) approach to solving the probleny; betintegers. LeD P (u, f1, f2,- - -, fx)
be the maximum total fidelity of the sinks in the subtree rooted,agiven thatf; paths of colorj flow into «
from its parent. Letv, w be the two children ofu. The dynamic programming algorithm relies on a recurrence
relation to computeD P(u, fi1, f2,..., fn) from DP(v, f1, f5,..., fi) andDP(w, f{, f5,..., fx). To derive the
recurrence we need to differentiate the following four cases, depending on the position and function of a network
nodew: whetheru is a sink, a server, a relay (router), or some combination of the above.

Case 1 u is a leaf node but not a sink.

In a practical network the node is a pure servery € S) since it is pointless to place a router at a terminal

node. We ban any description to flow intg or f; < 0, 1 < i < N. If the server node: has description we



14

v6 v7
v

v8

v2

v3 v4
@
v5
dummy edge
v7
VO dummy vertex

V6 V8

vl v2 v3  v4

(b)

Fig. 4. (a) An example of a flow network that has a tree topology. (b) By adding a dummy vertex and a dummy edge, the tree topology can
be regarded as rooted.

allow f; < 0 so thatu can send out the description; otherwige= 0. At the same timef; < 0 must satisfy the
capacity constraint at the directed edgev’). To summarizef,, f,..., fxv must satisfy the following conditions

1) f; <0if i€ Ug(u),

2) fi=01ifi¢ Ug(u),

3) X jip<0 —fiRj < Clu, ).

Let F; be the set of vector§fi, fo,..., fn) that satisfy the above conditions. Any feasi§lf, fo,..., fn)
must be inF;. Becauseu is not a sink, the contribution af to the total fidelity is0. Therefore,

DP(u, f1, f2,. .., fn) = { (}O;f’ (1{1&;12:f2,’f]\:)f§)];1-7:1 ©

Case 2 u is both a leaf node and a sink.

In this case, the node can be a server, a sink, or both (e.g., in peer-to-peer networks). The flow volumes
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f1,... fn in a feasible solution must satisfy the following constraints:

1) fi<0ifiePg(u),ues,

2) 0< fi<lifu¢g SorifueSbuti¢ Tg(u).

3) Xjip<0 — iR < Clu, ),

4) X g0 fiRs < Cul ).
The first constraint is for when € S has descriptiori and does not need to receive it from its parent; the second
constraint is to prevent from receiving multiple copies of the same description, which simply wastes bandwidth
without any coding gain; and the third and fourth conditions are to respect the edge capacity.

Let 7, be the set of vector§fi, fo,..., fn) that satisfy the above conditions. For eath> 0, u receives

descriptioni. Therefore,

Case 3 u is an internal node and not a sink.

Here, the node: can be a server, a router, or both. The capacity of the eides) and (u,w’) require the flow
volumesfy, ... fy to satisfy the following constraints:

1) fi<0ificUg(u), ucs,

2) > iip<0 —JiR < Clu,u),

3) Xjips0 filty < C(W,u).
Let F3 be the set of vectorsfy, fs,. .., fv) that meet these conditions.

Let v andw be the two child nodes af. Let f/ and f/’ be the number of-colored paths passing fromto v
andw, respectively. Ifu is not a server of colot, then thef; paths of color; flowing into « will be splitted into
v andw. Thatis, f; = f/ + f!’. However, ifu is a server of colog, then f/ and f/’ can be flexible.

Therefore, for any(f1,..., fn) ¢ Fs, DP(u, f1,..., fn) = —oo. And for any (f1,..., fn) € F3, we have

DP(u, fi,..., fn) = max(DP(v, f{, f3, ..., fy) + DP(w, f{', f3,. ... [N)) (11)
forall fi, f5,..., fn and f{', f5, ..., fx satisfying that
fi+fl=Ff or i€¥s(u) (12)

Case 4 u is an internal node and a sink.
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This is the most general case wheras not only a sink, it may also be a server, a router, or all of the above.

Like in Case 3, the flow volumeg, ..., fx have to be bounded by the capacities of edgésu) and (u,v’).
Thus, any feasible solution requir€éi, ..., fn) € Fs.

The difference between Case 4 and Case 3 is thaan now reconstruct the set of MDC descriptions at its
disposal, and hence contribute to the total fidelity, licts also as a relay, it cannot duplicate any received éplor

thus f; = f/ + f/’ 4+ 1, with the exception that € S andi € ¥s(u). Therefore, the recurrence of (11) is changed

to
DP(u, f1,...,fn) =max(DP(v, f1, fas-- -, fn) + DP@w, f{, fo oo )
+F{ilfi=fl+f'+1oruesS})) (13)
forall f1, f5,..., fy and fi', f5. ..., fx satisfying that
fi=1<fi+f<fi or i€ VUs(u). (14)

Now we present a dynamic programming algorithm that computes the optimal RNF saluién,, 0, .. ., 0),
with v, being the root of tree networks. In post-order traversal of the tree nodes from the leaves to the root,
the algorithm recursively solves the RNF problem for the subtrees rooted at the traversed nodes. At each step
the current node: is classified into one of the above four cases. The corresponding recurrence relation is used to
compute the optimal RNF solutioB P(u, f1, fa, ..., fn) for the subtree?,, rooted atu from the optimal solutions
DP(v, f1, f5,..., fn) and DP(w, f{, f3, ..., fn) for the left and right subtrees a,. The pseudocode of the
algorithm is given below. In line 2 of the pseudocode, the range of the flow volfyree|f;| < |T'| because each

sink requires at most one copy of descriptiorHearT" is the set of sinks.
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Algorithm Tree-RNF
. Traverse the tree using post-order, for each encoun

tered nodeu
forall fi,...,fxv st.—|T| < f; <|T|

1

2

3 if w is a leaf but not a sink

4, use (9) to comput®P(u, f1,..., fn).
5. else ifu is a leaf and a sink
6

7

8

use (10) to comput® P(u, f1,..., fn).
else ifu is an internal node but not a sink

if (fla"'7fN)¢f3

9. DP(u, f1,...,fn) = —00

10. else use (11) to compufeP(u, f1,..., fn).
11. else ifu is an internal node and a sink

12. if(fl,...,fN)¢JT3

13. DP(u,fh...,fN):—oo

14, else use (13) to compufeP(u, f1,..., fn)-

15. OutputDP(root,0,...,0) as maximum total fidelity.
16. Use backtracking to compute the optimal flow.

Theorem 8:Algorithm Tree-RNF finds an optimal solution of RNF problem for networks of tree topology. Its

time complexity isO(|V| x 4V x |T|*V).

Proof: The correctness of the algorithm follows from the above derivations for the all four possible cases.
We only need to analyze the time complexity. The for loop at line 2 is repeat€2l7'|)"V) times. Inside the for
loop, the most time consuming step is line 14.
In (13), if w € S andi € ¥g(u), then there is no constraint of] and f/ . Thus the maximizations ovef/
and f’, max s DP(v, fi, f3, ..., fy) andmax ;o DP(v, f{', f3, ..., fx), can be performed independently instead

of in combinations off/ and f/. The most expensive case is wher¢ S. Therefore we only need to analyze the

time complexity on this case. There are at m@3t¥ choices off{,..., fa. Oncefi,..., fx and fi,..., fy are
fixed, there are at mog" choices off{, ..., f& by the condition of (14). So the complexity of evaluating (13)
is O(|T|N x 2MV).

The loop in line 2 iterate®((2|T'|)") times, hence the cost of steps 2 through 187"V 4Y) per tree node,
resulting in the total complexity of(|V|4Y|T|*V), which is polynomial if N is a constant. ]

Clearly, the same algorithm can also compute optimal multiple-sink CRNF for tree network topology by letting

F(X) = |X|. However, on a second reflection, a more efficient variant of the algorithm can be made possible by

exploiting the property of the cost function for CRNF.

Theorem 9:If F(X) = |X|, then the time complexity of Algorithm Tree-RNF can be reduce@td’| x |T|?V).

Proof: We only need to change the procedure at step 14. Because our goal is to maximize the total number
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Fig. 5. A general tree can be reduced to a binary tree.

of distinct descriptions, it is suboptimal to have a path of célpassing through a sink but no path of color

ending atu. So, we change the constraint in (14) to the following:
fi—1=fl+flifug¢SorifucsbutidTg(u). (15)

It is easy to verify that this reduces the time complexity by a facta2’of [ ]

For trees with degree greater than 3, we can convert it to a binary tree. Each dagrde is split intod — 2
nodes, the edges connecting these nodes have unlimited capacity. An example is given in Fig. 5. A solution on the
new binary tree can be converted to a solution on the original tree easily.

The above algorithms can be easily modified to work for undirected trees as well.
VI. MULTICAST RAINBOW NETWORK FLOW IN TREES

As defined in (6), in multicast rainbow network problem (R\)Fthe relay nodes are allowed to duplicate
received colors and multicast them via selected links. RN§es edge capacities far more efficiently, but it also
makes optimal routing of MDC descriptions in a general graph computationally very hard. However, if the network
has a tree topology, the dynamic programming principle of Algorithm Tree-RNF clearly holds for Bi\Nwell. If
the algorithm is modified according to the edge capacity constraint (6), it can compute optintairRpiFynomial

time. In fact, it turns out that the tree topology makes optimal routing easier for RNt for RNF.



19
The first modification is that all th¢;, f/ and f/ are restricted to be-1, 0, or 1. This is because in an optimal

solution of RNF, there can be only one copy of the same description to pass through an edge.
The second modification is in Case 3.lfdoes not have description the algorithm considers two possibilities:
(a) colori does not reach, then f; = f/ = f!’ = 0; (b) colori reachesu, thenf; =1 or f/ = -1 or f// = —1.

Therefore, (12) is modified to
fi=fi=fl=0orfi=1lor fl=-1lor f'=-1orie ¥g(u),u€es. (16)

Likewise, the third modification is needed for Case 4u lfeceives description, then one off; =1 or f/ = —1

or fI’ = —1 is true. As a result, the computation in (13) is changed to
DP(u, fi,..., fn) =max(DP(v, fi, f4, .-  fn) + DP(w, f1, f5, ..., [N)
+F{i|fi=1lor fl=—1or f/'=—1orie ¥g(u),u € S}) 7)
forall fi, f5,..., fnvand f{, f5, ..., fx satisfying that
fi=fl=f'=0or fi=1lor fl=-1lor f/=-1orie ¥g(u),ues. (18)

These three modifications make Algorithm Tree-RNF to meet the edge capacity constraint (6) far TR
the algorithm can be used to compute an optimal solution of ‘RidFtree topology.

The time complexity of the modified algorithm is dominated by the cost of the maximization task of (17). If
nodes can multicast a description, then only onef;0& 1, f/ = —1, f// = —1 can hold in an optimal solution.

With this property, when a node is not a server of descriptiof) the number of feasible choices 0f;, f/, /')
restricted by (18) is only 13, as shown in Fig. 6.

As a result, a careful implementation of Algorithm Tree-RNF runsOi{V| x 13V) time, whereN is the
number of different MDC descriptions, which is a constant. Comparing this with Theorem 8, we see that the flow
optimization actually has a significantly lower complexity for RNtRan for RNF, if the network has a tree topology.

This is a particularly interesting observation in an algorithmic perspective. Here is a case that coding capability of
nodes makes optimal routing an easier computation task than without, if duplicating and multicasting a data packet

by a node is viewed as a special form of network coding.
VIl. OPTIMAL RNFFORFULL SOURCE SPECTRUM

In formulating the RNF problem, we allow arbitrary color distributions at the server nodes. In general a server

node does not supply all the descriptions of an MDC. This formulation models the situations in sensor networks and
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Fig. 6. The thirteen possible values @f;, f/, f/’) satisfying (18) and corresponding flow patterns.

distributed source coding where a server node (encoder) can only produce a subset of MDC descriptions. However,
for computer network applications, in particular networked multimedia communications, it is straightforward and
commonplace to code a signal in MDC and place all descriptions on the servers ahead of time. We call this scenario
full source spectrum, i.e¥gs(s;) = {1,2,..., N} for every server node; € S. As we will see in this section,
full source spectrum offers a way to trade the content redundancy and storage space for the tractability of many
optimal RNF solutions.

In what follows we assume(t) = 1. Consider the CRNF problem for full source spectrum. By a modification
of the original network grapliz, the CRNF problem can converted to and solved as one of monochrome maximum
network flow. Specifically, we add a super server nagdeto network graphG, and direct an edge of infinite
capacity froms, to each server node; € S. Also, we add a super sink nodg to GG, and direct an edge of
capacityC(t;,t,) = N from each sink node; € T to t,. The resulting expanded graph is depicted in Fig. 7.

The next step is to compute a maximum monochrome flow fsgnto ¢, using an existing maximum network
flow algorithm (e.g., the one in [3]). By the construction of the expanded graph, any path in the computed maximum

flow from s, to ¢, has to travel from a server nodec S to a sink nodet € T. Therefore, to each sink node
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Fig. 7. The process of adding a super nadeand a super sink,.

t; € T, 1 <i < |TJ, there will be a seB; of flow paths from some server node(s). An optimal solution of the
CRNF problem can be derived from thel§g| sets of paths. For every sirtk € T, we assign each pathe 8; a
distinct colork, 1 < k < |B;|. Whatever server node € S that emits this path of colot has the color since the
spectrum¥s(s) is full.

The paths colored as such,, ., r [8;| of them in total, constitute an optimal solution of the original CRNF
problem, becaus®_, _, | [8i] is the maximum flow volume allowed by the network from all servers to all sinks
even without concerning distinct coloring of all incoming paths to any individual sink.

Note that the optimality of the above CRNF solution holds only if the relay nodes in the network cannot duplicate
any received color. In practice, there are cases where duplicating an MDC description is not possible or desirable.
This is particularly true in today’s Internet where multicast backbone is not yet widespread. In this case the system
cannot rely on multicast functionality provided by lower layer routers (see [2] for a detailed discussion). Also, a
router may not have sufficient buffer space to hold an entire MDC description. Other reasons for not duplicating an
MDC description in multicasting may be for data security or/and digital right protection. For instances, one does
not want any router to know what clients are receiving an identical data stream, or the same content is differently
encrypted or watermarked so that different copies are not interchangeable.

Finally, it should be noted that the solution for RNF provides a lower bound in performance for. RNF

In the previous sections, when the source spectrum is not full, we witnessed the hardness of optimal RNF problem
even for single sink and even when the fidelity function is monotone in the total rate. Remarkably, aided by the full
source spectrum the optimization problem becomes far more amenable. Let us make a minor modification to the

expanded graph in Fig. 7 by changing the edge capdcity, ) from N t0 R0, WhereRyop = 30 oy I
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As in the case of CRNF, we can solve the equivalent problem of maximum monochrome flow frim,,, and

determine the maximum possible flow volurig into each sink; € T, 1 < i < |T

, even allowing the delivery
path of any MDC description to be split. Since every server node has full spectrum, we have the complete freedom
with the coloring of the flow paths. Upon maximizing the total monochrome flow into all sinks, we now come to

the following flow optimization problem in color:

Inax F(¥) (19)

subject toz R, < K;,
KREW

independently for alt; € T', whereC* is the power set of all colors.

For full source spectrum, the reduced optimal RNF problem of (20) is polynomially solvable if the MDC in
guestion is a scalable (layered) code. Indeed, upon having the maximum monochrome flawy footy, for each
sinkt € T, we let the monochrome flow volumk into sink¢ be the beginning consecutive portion of the scalable
code, i.e., find the largedt” such thatZlSiSK R; < L. This simple scheme is optimal since a scalable code (a
special form of MDC) is only successively decodable, i.e., a sink node cannot decode descripilesns it has
all of descriptionsi — 1,7 — 2,..., 1. Furthermore, if the scalable code is continuously scalable (the code stream
can be truncated anywhere), such as the well-known SPHIT and JPEG 2000 image codes [12], [14], then all bits
in the flow volumeL into any sinkt € T' can be utilized by the above algorithm.

In contrast, if the source spectrum is not full, the dependency of the fidelity fungt@n on a particular order
of received descriptions becomes a liability. It makes optimal RNF for scalable MDC computationally extremely
hard.

If the fidelity function F/(¥) is additive, namely

F(¥) =Y F({x}), (20)

KEW

then the optimization problem of (20) is a knapsack problem that can be sol@NRK;) time for each sink;
of incoming flow volume ofK;. In this case, the optimal RNF problem can be solve®{#V2K) time, whereK
is the volume of the maximum monochrome flow framto ¢,,.
Recall from the previous section that optimal RNF problem is not computationally tractable even when the fidelity

function F'(¥) is monotone in the total rate of all the descriptiondlirfthe condition of (8)). However, the situation



23
changes for full source spectrum. From (20) the optimal RNF problem for full source spectrum can be stated as

max R, (21)

subject toz R, < K;,

KEW

independently for each;, € T'. Again, this is a knapsack problem, in fact, a special case where the value of the
item (description) to be packed is proportional to its size (rate). As in the instance of scalable code, the optimal
RNF problem can be solved iR(N?K) time. The problem is greatly simplified by the fact that a sink can fetch
any description from any server node thanks to full source spectrum. In fact, full source spectrum allows an MDC
description to be transmitted in different parts via different paths from one or more servers to a sink.

VIIl. CONCLUSIONS ANDFUTURE WORK

We pose the rainbow network flow problem of routing MDC descriptions to maximize a collective fidelity metric
over all sinks, constrained by the edge capacities. This problem is proven to be Max-SNP hard for general network
topology and an arbitrary distribution of MDC descriptions, and hence it is unlikely to have a polynomial-time
approximation scheme that approaches the optimal solution arbitrarily close. But this negative result does not
preclude polynomial-time solutions of the optimal RNF problem in many practically important cases. Algorithms
of computing optimal RNF for single sink, full source spectrum, and tree network topology are presented, and their
complexities are analyzed.

Interesting and challenging problems for future research on RNF are many. In a constructive perspective, the
most important topic is perhaps how to jointly optimize the design and routing of MDC for a network. Information
theoretically, an intriguing problem is to find the achievable region for the paradigm of lossy joint source-network
coding for multiple servers and multiple sinks.

Given the NP-hardness of optimal RNF for general networks, good heuristic practical solutions are in order. This
paper showed that optimal RNF problem can be efficiently solved with respect to a single sink in general graphs.
Then can we find a good RNF solution for multiple sinks by a clever use of this algorithm for single sink?

We also showed how full source spectrum can make some variants of RNF problem computationally more
amenable. Then a related problem is how to strategically place MDC descriptions at the servers if there are storage
capacity limits at the servers. Even more challengingly, how should a given number of servers (with or without

storage capacities) be placed among a set of possible sites in the network in a rate-distortion optimal way?

Appendix A. Proof of Theorem 1
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Fig. 8. Two new verticest, andu;, are added for each. u; has all but color. Edge(u;, t;) has capacity — 1. All the other edges have
capacity 1.

We will show that the CRNF problem can be reduced to from the known NP-hard problem, maximum edge
disjoint paths [9], [6], which is stated below.
Maximum edge disjoint paths problem Given a graphz = (V, E) andk pairs of verticeSs1,t1),. .., (S, tx),
find k£ edge disjoint paths, each connecting a different vertex gair.

Proof: Let G = (V, E) be an instance of maximum edge disjoint paths witpairs of nodeqs;,t;). We

construct an instance for CRNF as follows.

There arek different colors. For each;, construct two new vertice§ andu,;. Add a direct edgdt;, t;) with
capacity 1 and a direct edde;, t;) with capacityk — 1 (See Fig. 8). The sink sé&t = {¢},... ¢} }. Assign all
the edges irE’ with capacity 1. For each colar the corresponding server vertex sgt= {s;} U{u; | j # i}. We
get an instance of CRNF problem.

If the original maximum edge disjoint path instance has a solution, supp@smnects frons; to ¢;. Then we can
construct a solution of CRNF with total incork€ as follows. For each colat P; = {(u;,t}) | j # i}U{p;-(ti, t})}-

Conversely, suppose the CRNF problem has a solution with total inggm&hen there are: paths withk
different colors ending at eactj. Because the only two incoming edges forare (¢;,t;) with capacity 1 and
(us, t;) with capacityk — 1, for eachi there must be a path of colérthat starts ak; and passes;. Such paths
for different: must be edge-disjoint because all the edgeg ihave capacity only 1. Hence we get a solution for
the maximum edge disjoint path problem.

Therefore, maximum edge disjoint path is reduced to CRNF. Because the former is NP-hard, so is the latter.

Finally, we claim that CRNF problem remains NP-hard even if the network graph is a directed acyclic planar

graph. This follows from the fact that the maximum directed edge disjoint paths problem is NP-complete even if
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Fig. 9. The topology of the constructed rainbow network flow in the proof of Theorem 3.

the underlying graph is acyclic planar [15].

Appendix B. Proof of Theorem 3

Our proof is based on the fact that the Max-2-SAT problem is Max-SNP-hard [11], which is defined below.
Max-2-SAT problem Let x4y, xs,...,2, ben boolean variables. Lej; be 2-CNF (conjunctive normal form) of
the boolean variables. Find a truth assignment of the variables that satisfies the maximum possible number of the
clauses.

Proof: We construct an L-reduction [11] from Max-2-SAT to the RNF problem. Ldie an instance of the

Max-2-SAT problem withn variables,xz, zo, ..., x, andm clausesy;, i = 1,2, ..., m.

Our constructed instance of the RNF problem Paslescriptions, each corresponds to eithgor ;. It also has
2n server nodes. The server nodes are groupedrirpairs,r; ands;, i = 1,2,...,n. Eachr; has the description
corresponding ta:;, and eacls; has the description correspondingan

Then all the nodes are connected as in Fig. 9. There is only one sinktn&@eh description has a fixed unit
rate. And the capacity of each edge is also one in that unit. This graph ensures that only one of the two descriptions
x; andz; can reach the sink

Therefore, if there are exactly descriptions arriving, we can accordingly get an assignment to the variables
x;, 1 =1,2,...,n, as follows

r; =true < description x; arrives t.

The reconstruction fidelity achieved by thedescriptions is then defined by the number of clauses satisfied by this
assignment.

If there are fewer tham descriptions arriving, we define the reconstruction fidelity to be 0.
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Thus, we have constructed an instange of the RNF problem. As discussed above, a solution of the constructed

J with reconstruction fidelityd/ can be used to construct a solutionZofvith M satisfied clauses; and vice versa.
Therefore, the reduction we have shown is an L-reduction.

Because Max-2-SAT is Max-SNP-hard, the RNF problem is also Max-SNP-hard. |

Appendix C. Proof of Theorem 5
Proof: In the proof in Appendix A, each, needs and only needs to receive a different coldrom ¢;.
Therefore, there will be only one copy of each color transporting in the original graph. (See Fig. 8) The extra
ability of duplicating a color does not change the solution. Therefore, the reduction works for*CiaNkell.
Similarly, it is obvious that the extra ability of duplicating a color does not change the solution in the proof in

Appendix B. Therefore, the reduction in Appendix B works for RN#s well.
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