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Abstract

We are interested in how to best communicate a real valued source to a number of
destinations (sinks) over a network with capacity constraints in a collective fidelity metric
over all the sinks, a problem which we call joint network-source coding. It is demonstrated
that multiple description codes in conjunction with proper diversity routing provide a
powerful solution to joint network-source coding. A systematic optimization approach is
proposed. It consists of optimizing the network routing given a multiple description code
and designing optimal multiple description code for the corresponding optimized routes.

1 Introduction

1.1 Joint Network-Source Coding: Problem Formulation

Joint network-source coding (JNSC) is the problem of communicating and reconstructing a
(usually real valued) source in a network to a maximal collective fidelity over a given set of sinks,
while the flows of the code streams satisfy the edge capacities of the network. JNSC can be
considered as a lossy version of the (lossless) network coding problem, since the reconstruction
is not necessarily perfect. The source is “observe” by a subset of nodes in the network, called
source nodes. Due to capacity constraints, source nodes have to communicate a coded version
of the source to their neighboring nodes. Just as in lossless networked coding, intermediate
nodes can in general transcode data received from other nodes, and communicate it to their
neighbors. Any node in the network, based on the information it receives about the source,
can reconstruct the source with some distortion.

Unlike its lossless counterpart, the interaction of lossy source-network codes with arbitrary
networks is largely unexplored. In fact, the term network coding refers, almost exclusively, to
lossless network communication. This is despite the fact that arguably the majority of applica-
tions, both in the Internet and in various wireless setups, involve lossy source communication,
in particular for multimedia applications. It should however be noted that some of the well
studied examples of multi-terminal source coding problems (e.g., multiple-description coding)
are simple examples of a general lossy networked coding problem.

In this paper the network model is similar to, now standard, models in network coding [1].
The JNSC problem is defined by the following elements:
(1) A directed graph G〈V,E〉.
(2) A source X in some alphabet Γ and a set of distortion measures ρn : Γn → R+. We assume
X admits a rate-distortion function DX(.), with ρ as the measure.
(3) A function R : E → R+ that assigns a capacity R(e) to each link e ∈ E. We normalize
bandwidth with the source bandwidth, therefore, R(e) is expressed in units of bits per source
symbol.
(4) Two sets S, T ⊆ V that denote the set of source and sink nodes respectively. The source



nodes observe, encode, and communicate X in the network. Source nodes are assumed to
be able to collaborate in encoding. This can model, for example, computer networks where
sources are encoded off-line and copies of the code are distributed to the source nodes.

Nodes can communicate with neighbor nodes at a rate bounded by the capacity of the
corresponding link. The goal is to communicate the source X from the source nodes in S,
and reconstruct X at the sink nodes in T . A distortion vector d = (dt, t ∈ T ) ∈ R|T | is said
to be achievable if X can be reconstructed with a maximum distortion of dt at a sink node t
by using a coding scheme that respects the capacity constraints on the links, i.e., the rate of
information per source sample communicated over e is less than R(e). As in [1], we need to
leave the details of the code unspecified, because it proves extremely hard to come up with the
most general class of possible codes. An intriguing problem is how to characterize the set of
all achievable distortion t-tuples DX(G,S, T, R) ⊂ R|T |. In this paper, on the other hand, we
are interested in a coding schemes that minimizes a weighted average distortion over all the
sink nodes, that is,

∑
t∈T ptdt for some weighting vector p = (pt; t ∈ T ).

1.2 Multiple-Description Coding: a Tool for JNSC

Multiple-description codes (MDC) have always been associated with robust networked com-
munications, because they are designed to exploit the path and server diversities of a network.
The present active research on MDC is driven by growing demands for real-time multimedia
communications over packet-switched lossy networks, like the Internet. With MDC, a source
signal is encoded into a number of code streams called descriptions, and transmitted from one
or more source nodes to one or more destinations in a network. An approximation to the
source can be reconstructed from any subset of these descriptions. If some of the descriptions
are lost, the source can still be approximated by those received. This is why there seems to be
a form of consensus in the literature in that multiple description codes should only be used in
applications involving packet loss, because only in this case the overhead in the communication
volume can be justified.

This paper shows, however, that MDC is beneficial for lossy communication even in net-
works where all communication links are error free with no packet loss. In this case, multiple
description coding, aided by optimized routing, can improve the overall rate-distortion perfor-
mance by exploiting various paths to different nodes in the network. This is best illustrated
through some examples.

1.2.1 Example 1

In Fig. 1, a source node (node 1) feeds a coded source into a network of four sink nodes (nodes
2-5). The goal is to have the best reconstruction of the source at each of these four nodes. All
link capacities are C bits per source symbol. MDC encodes the source into two descriptions
(shown by solid and dashed boxes in the figure), each of rate C. Descriptions 1 and 2 are sent
to nodes 2 and 3 respectively. Node 2 in turn sends a copy of description 1 to nodes 4 and 5,
while node 3 also sends a copy of description 2 to nodes 4 and 5. In the end, nodes 4 and 5
will each receive both descriptions, while nodes 2 and 3 will only receive one description.

To see how the nodes in the network benefit from MDC, let D1(C), D2(C), D12(C) be the
distortion in reconstructing the source given description 1 or 2 or both. Let d = (d2, d3, d4, d5)
be the vector of the average distortions in reconstructing the source at nodes 2 through 5.
Therefore, d = (D1(C), D2(C), D12(C), D12(C)).

Let’s define DM as the set of all achievable distortion 4-tuples d. Although MDC is in
general a special form of lossy networked coding, DM still contains a large and interesting
subset of all achievable distortion tuples. In this example, it includes for instance, the distortion
region achievable by separate source and networked coding. By results in [1], the maximum



Figure 1: An example of flow of a two description code.

rate with which common information can be communicated to nodes 2 through 5 is C bits
per source symbol. Therefore, the distortion rate achievable by separate source and network
coding is DS = {(δ2, δ2, δ4, δ5) : δi ≥ 2−2C , i = 2, 3, 4, 5}. We immediately have that DS ⊂ DM

by noting that D1(C) = D2(C) = D12(C) = 2−2C is part of DM . In fact this corresponds to
communicating two identical descriptions, each of which is an optimal (in the rate-distortion
sense) source code of rate C for X.

The inefficiency of separate source and network coding lies in that even though nodes 4, 5
have twice the incoming capacity compared to nodes 2, 3, their reconstruction error (d4 = d5)
is bounded by the reconstruction error of the weaker nodes (d2 = d3). Unlike lossless coding,
lossy codes can play a tradeoff between the reconstruction errors at different nodes, generating
a much larger set of achievable distortion tuples d than DS . These tradeoffs are essential
in practice. For instance, in networked multimedia applications over the Internet, where the
network consists of a set of heterogenous nodes, the experience of a user with broadband
connection should not be bounded by that of a user with a lesser bandwidth. Such tradeoffs
are perhaps best treated as an optimization problem by introducing appropriate Lagrangian
multipliers (or weighting functions). An objective function to minimize, therefore, can be
defined as

d(p,d) = pT · d (1)

where p = (p2, p3, p4, p5) is an appropriate weighting vector. An optimal solution will be given
by:

d
∗(p) = min

d∈DM

d(p,d)

Once the optimal distortion vector d∗ is found, one should, in principle, be able to find
a multiple description code that provides the marginal and joint distortions corresponding to
d
∗(p) (such an MDC exists).

As a concrete example, let’s optimize the average distortion at all nodes 2 through 5 in
Fig. 1 for p = (1/4, 1/4, 1/4, 1/4), in which case:

d =
2D12(C) + D1(C) + D2(C)

4
(2)

To be specific, lets assume that the source in question is an iid Gaussian with variance one for
which achiveable distortions in multiple description coding are completely derived by Ozarow
in [2]. The symmetry in indices 1 and 2 ensures that (2) is minimized when the two descriptions



are balanced, that is, D1(C) = D2(C) = D. Ozarow’s result, when specialized to balanced
MDC states that the following set of distortions are achievable:

D1 = D2 = D ≥ 2−2C (3)

D12 ≥ 2−4C

(D +
√

D2 − 2−4C)(2−D −
√

D2 − 2−4C)

The average distortion in (2) can therefore be minimized under the constraints of (3). This
is a particularly easy task because the region (3) is convex. Let this optimal average distortion
be d

∗
M (C). By separating source from network coding, the reconstruction distortion at nodes

2 through 5 (and hence the average distortion over all these nodes) is at best dS(C) = 2−2C .
It is easy to show that d

∗
M (C) < dS(C) for all C > 0. In other words, for all C > 0 there exists

a balanced two description code for which the average distortion over all sink nodes is strictly
less than the average distortion achievable by any separate source and network coding scheme.

1.2.2 Example 2

As a perhaps more involved example, consider the problem depicted in Fig. 2. A source at
node S is to be communicated to nodes 1 − 8. The goal again is to minimize the average
distortion over all these 8 sink nodes. All links have capacity C bits per source symbol. We
choose to use an MDC with 3 descriptions each of rate C. These descriptions are indicated by
three colors, Solid, Dashed and Diamond. Fig. 2 shows a routing strategy that delivers these
descriptions optimally to all the 8 nodes. The routing is optimal since each node receives a
number of distinct descriptions exactly equal to its incoming capacity.

Once the routing is optimized, one still needs to optimize the MDC. Unlike the case of
two descriptions, there is no closed form representation of the rate-distortion behavior of a
balanced 3-description code even in the case of a Gaussian source. Therefore, we resort to the
practical technique of Priority Encoding Transmission (PET) for producing whatever required
number of balanced descriptions. The class of PET codes are easily parameterizable.

In particular, as is shown in Section 3, for any progressively refinable source with distortion-
rate function D(R), an MDC of K descriptions each of rate r per packet can be constructed
using PET such that the distortion given any k ≤ K of the descriptions, the source can be
reconstructed with distortion at most D(r

∑k
l=1 l), where y = (yl; l = 1, 2, ...,K) is any positive

vector such that
∑K

l=1 yl = 1. There is a one-to-one correspondence between an MDC code and
any such vector y. Optimizing the MDC within the class of PET codes will result into a very
convenient convex optimization problem. For the example in Fig. 2, three, four and one nodes
receive 1,2,3 distinct descriptions respectively. For a PET code with vector y = (y1, y2, y3) the
average distortion at the sinks, assuming a Gaussian source of variance one, can be written as:

d = 8−1
(
3 · 2Cy1 + 4 · 2C(y1+2y2+3y3) + 2C(y1+2y2+3y3)

)

Minimizing the above over all y1, y2, y3 ≥ 0 such that y1 + y2 + y3 = 1 is a convex optimization
problem with linear constraints. For C = 1, the optimal solution is y1 = 0.82, y2 = 0.18, y3 = 0.

1.3 Design Issues

Above examples make a number of important observations and expose some design issues,
which are the subject of the rest of this paper.

• MDC routing can exploit path diversity in ways that a separate source and network
coding can not. For instance, in the example of Fig. 1, nodes 4 and 5 can benefit from
the data received both from nodes 2 and 3, while nodes 2 and 3 themselves can benefit



Figure 2: An example of optimal flow of a three description code. The left column of the figure
depicts the procedure of designing a 3-description MDC using Priority Encoding Transmission
technique as explained in Section 3.

from the data they relay, which was not possible if a common data was communicated
to both nodes 2 and 3 by the source node.

• To benefit from MDC in the network, routing needs to be optimized.

• Not only the routing, but also the MDC should be designed optimally. Our strategy will
be to optimize MDC generated through PET.

• Although in the above two examples, optimizing the routing of MDC descriptions and
optimizing the MDC code happen to be separable, the two optimizations in general,
should be carried out jointly. Due to complexity concerns, our strategy is to carry out
the optimizations separately.

• Unlike the two examples reported in this section, optimizing the MDC may result in
a different number of, potentially unbalanced, descriptions. In this paper, we confine
ourselves solely to the case of balanced MDC of the same rate. The total number of
descriptions and their rates however, are left as optimization parameters.

In the next section, we consider the problem of optimal diversity routing of MDC packets,
called Rainbow Network Flow (RNF) problem. MDC codes designed through PET is intro-
duced in Section 3 where we discuss JNSC through optimized diversity flow and optimal MDC
design. Section 4 examines the issues regarding the choice of description rates and the total
number of descriptions, and presents simulation results for a family of randomly generated
directed acyclic network graphs.

2 Rainbow Network Flow Problem

Rainbow Network Flow (RNF) introduced in [5, 6] is the problem of optimal routing of MDC
packets in a general network. RNF is different from usual commodity flow in that one should



take into account the information content (or color) of the descriptions. In particular, receiving
duplicate descriptions is not beneficial in reconstructing the source. Also, unlike commodity
flow, information packets can be duplicated at intermediate nodes. A node desires the rainbow
effect by having as many distinct descriptions (or colors) as possible.

A version of the RNF that is particularly relevant to our problem is defined with following
inputs:
(1) G〈V, E〉, a directed graph with a node set V and an edge set E.
(2) S = {s1, s2, ..., s|S|}, T = {t1, t2, t3, ..., t|T |} two subsets of V representing the set of source
and sink nodes respectively.
(3) A function R : E → R+ representing the capacity of each link in G.
(4) A set χ ⊂ N called the description set.
(5) An r ∈ R+ called the description rate.
(6) δ : {1, 2, ..., |χ|} → R+ , a non-increasing function specifying the choice of balanced MDC.
δ(k) is the reconstruction distortion when any subset of size k out of K = |χ| possible descrip-
tions are present at the decoder.
(7) p = (pt; t ∈ T ) a positive vector that weighs the importance of each sink node t ∈ T .

RNF problem in its most general form allows for each source node s to have any arbitrary
subset of the description set χ (rather than the entire set χ as the above formulation). A
special and important form of the RNF problem is when δ(M) = 1− |M|/|χ| for any M⊂ χ.
In this case, the distortion is simply given by the size of the subset of available descriptions.
Since δ(M) depends only on the cardinality of the set M, this particular RNF problem is
called cardinality RNF (CRNF).

The goal of RNF problem is to find routing (or flow) paths that take descriptions from
source nodes to sinks in a way that minimizes a weighted average distortion at the sink nodes.

A flow path from s ∈ S to t ∈ T is a sequence of edges w(s, t) = [(v0 = s, v1),(v1, v2),...,
(vm−1, vm = t)], such that (vi, vi+1) ∈ E for i = 0, 1, ..., m− 1.

A rainbow network flow, denoted by α(W, f), consists of a set W of flow paths in G,
and a so-called flow coloring function f : W → χ that assigns a description (or color) in
χ to each flow path. For the flows in Fig. 1, W = {[(1, 2), (2, 4)], [(1, 2), (2, 5)], [(1, 3), (3, 4)],
[(1, 3), (3, 5)]}, and the flow coloring function f assigns f([(1, 2), (2, 4)]) = 1, f([(1, 2), (2, 5)]) =
1, f([(1, 3), (3, 4)]) = 2, f([(1, 3), (3, 5)]) = 2.

Let ΦE(e,W ) and ΦV (v, W ) be the sets of all colored flow paths in W that contain the link
e or the node v, respectively. For example, ΦE(e = (1, 2),W ) = {[(1, 2), (2, 3)], [(1, 2), (2, 5)]}.

The spectrum of an edge e ∈ E, with respect to RNF α, is defined as:

ΨE(α, e) ≡
⋃

w∈ΦE(e,W )

f(w)

Likewise, the spectrum of a node v is defined as:

ΨV (α, v) ≡
⋃

w∈ΦV (v,W )

f(w)

In Fig. 1 for instance ΨE((1, 2)) = ΨE((2, 4)) = ΨE((2, 5)) = {1} and, ΨE((1, 3)) =
ΨE((3, 4)) = ΨE((3, 5)) = {2}. The spectrum of the nodes 4, 5 consists of both descriptions
(i.e., {1, 2}), while the spectrum of the nodes 2, 3 is {1}, {2} respectively.

A rainbow network flow α(W,f) is said to be admissible with capacity function R, if and
only if:

|ΨE(α, e)| < R(e) ∀e ∈ E (4)

The significance of this inequality is that it allows the duplication of a description by relay
nodes. Therefore, two flow paths of the same color can pass through a link e, and yet consume



a bandwidth of only r. The rainbow flow plotted in Fig. 1 is admissible because at most one
description with rate C is communicated over each link and the capacity of each link is C.
This is made possible by duplicating at nodes 2,3.

For a given α(W,f), |ΨV (α, v)| is the number of distinct descriptions (out of a total of
K = |χ| such descriptions) available to node v. If the node v is a sink node, the reconstruction
distortion at v will therefore be:

dt = δ(|ΨV (α, t)|) (5)

The weighted average distortion at all the sink nodes is then:

d(α) = |T |−1
∑

t∈T

ptδ(|ΨV (α, t)|) (6)

RNF problem is therefore, that of finding an admissible rainbow network flow α∗ that
minimizes (6).

Unfortunately, RNF problem was proved to be NP-hard in its full generality [5, 6]. For
general directed acyclic graphs (DAG), the problem has an amenable integer-convex program-
ming formulation, with a solution that can be found in polynomial time, as discussed later in
this paper.

3 Code Design

An optimal solution to the JSNC problem requires joint optimization of the MDC code and
rainbow network flow. This, however, is an extremely hard task, given that most versions of
the RNF problem are intractable. In quest for a practical solution, we will resort to iterative
and approximate numerical methods. We use a certain family of balanced multiple description
codes that are completely parameterizable. This allows us to formulate the code design for a
fixed rainbow network flow as a convex optimization problem.

3.1 MDC using PET

The PET technique can produce any number of balanced multiple descriptions out of a pro-
gressively encoded source stream. The idea is the following. To make K balanced descriptions
each of rate r bits per source symbol, for a large enough value of n, encode n samples of X
into a progressive bitstream (b0, b1, ..., bnrL), where we assume n · r is an integer for simplicity.
Take a K× (n · r) binary matrix and call it Y = [Yij , i = 1, 2, ..., K, j = 1, 2, ..., n · r]. Now take
y = (yi, i = 1, 2, ...,K), any vector of real numbers of length K such that

∑K
i=1 yi = 1. For

i = 1, 2, ..., K do the following: let Yl, Y
′
l for l = 1, 2, ..., K be sub-matrices of Y consisting of:

Yl = [Yij ; i = 1 : l, j = ð(l − 1) : ð(l)] and Y ′
l = [Y ′

ij ; i = l + 1 : K, j = ð(l − 1) : ð(l)]

where ð(l) ,
∑l

k=1 n · ryk. Therefore, matrix Yi contains i · n · r × yi bits while Y ′
i has

(K − i) ·n · r× yi bits. For i = 1, 2, ..., K, put the i ·n · r · yi bits of the progressive source code
stream , from bg(i) to bg(i)+i·n·r·yi

in Yi, where g(i) =
∑i

k=1 k ·n · ryk. In Y ′
i on the other hand,

put parity symbols of a (i · n · r · yi,K · n · r · yi) ideal erasure correction code corresponding
to the bits in Yi.

Now the descriptions consist of the K columns of the matrix Y , each of n ·r bits. The total
source bits used is n · r ∑K

k=1 kyk. It is easily verified that given any l ≤ K descriptions, the
first ξl =

∑l
k=1 k · n · r · yk bits of the source bitstream can be recovered. For large enough n

and assuming the source is progressively refinable, given any k distinct descriptions, the source
can therefore be reconstructed within distortion: DX(ξk/n) = DX

(
r
∑k

l=1 lyl

)
.

This is schematically depicted in bottom of Fig. 2 for a 3-description code (K=3). “Grey”
bits indicate source bits while “white” bits are parity symbols. The description “packets” are



the columns of this matrix. Vectors y therefore parameterize the space of all MDCs that can
be generated through PET. It is over this space that we will carry out our code optimization.

3.2 Optimizing Code for a Fixed Rainbow Flow

For any admissible flow α, define the rainbow flow vector (RFV), q(α) = (qt; t ∈ T ) such that:

qt = |ΨV (α, v)|
In other words, qt is the number of distinct descriptions available to a sink node t. Suppose a
solution α∗ is found to the RNF problem with respect to an MDC, and the rainbow flow α∗

produces an RFV q∗. Lets replace this MDC for which the original RNF was optimized with
the MDC designed through a PET technique. Let the latter MDC be specified by the vector
y. Then, the weighted average distortion in (6), now a function of q∗ and y, can be written
as:

d(y,q∗) = |T |−1
∑

t∈T

ptDX


r

q∗t∑

l=1

lyl


 (7)

An optimal MDC can be found as an answer to the following problem:

min
yÂ0,|y|1=1

∑

t∈T

ptDX


r

q∗t∑

l=1

lyl


 (8)

Since DX(·) is a convex function, this is a convex optimization problem with linear con-
straints and can be solved efficiently using standard tools.

3.3 An Optimized Solution to JSNC Problem

We can now devise a systematic procedure for finding an optimized solution to the Joint
Source Network Coding problem. We approach this by first solving the RNF problem. We are
particularly interested in finding the solution α∗ to CRNF, because the optimization of the
MDC flow is carried out regardless of the particular choice of the MDC and the statistics of the
underlying source. As stated in Section 3, the goal of CRNF is to find a flow that maximizes the
sum of distinct descriptions received by all the sink nodes. This approach is most reasonable
when the reconstruction at all the sink nodes is equally important (e.g., pt = 1,∀t ∈ T ). Given
an optimized RNF and the resulting RFV, the MDC is optimized by solving (8).

4 Numerical Simulations

The proposed JSNC approach is tested on a number of randomly generated directed acyclic
network graphs. The simulation results are examined in this section.

4.1 0-1 Linear Integer Programming for CRNF

For directed acyclic graphs (DAG), the CRNF can be posed as a 0-1 linear integer programming
problem. Let χ = {1, 2, ..., K} be the set of all descriptions. For each edge e = (v, v′) ∈ E,
define a binary variable xk

v,v′ that is 1 if k ∈ ΨE(α, e) and 0 otherwise. Furthermore, for
each node v, we use a binary variable yk

v to indicate whether k ∈ ΨV (α, v), that is, whether
description k is received by v. For v ∈ S that is a source of description k, yk

v = 1 automatically.
For v that is not a source of the color k, obviously

yk
v ≤

∑

v′∈ß(v)

xk
v,v′
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Figure 3: Distortion as a function of the number of descriptions. Description rate is r = 1, the
network has N = 50 nodes and Cmax = 3 and m = 3.

where ß(v) is the set of all nodes that have a link into v.
A relay node can duplicate descriptions it receives from other nodes, hence

∀j xk
i,j ≤ yk

i . (9)

The edge capacity constraint is:

∀e = (v, v′) ∈ E, r
∑

k

xk
v,v′ ≤ R(e) (10)

CRNF problem for DAG reduces to finding the binary variables xk
v,v′ that that maximizes

the sum of the number of distinct descriptions received by all the sink nodes, that is,
∑

t∈T yk
t .

For a fixed number of descriptions K and rate r, this is a linear binary program with linear
constraints which is solved numerically.
4.2 Network Simulation Setup

We produce a family of DAGs motivated by a simplistic model for the growth of peer-to-peer
networks. We start from a single node. At each step, a new node is added. Then m nodes
are chosen at random with replacement from the existing nodes, and a link is made from each
of the m chosen nodes to the new node. Once the network grows to N nodes, we assign a
capacity C(e) to each link e, where C(e) is a random integer between 1 and Cmax for some
choice of maximum capacity Cmax. For integer edge capacities, the optimum solution to the
CRNF problem will consist of all integer flows. We use an iid Gaussian source of variance one
in all cases.

We take the rate of the descriptions to be 1. It can also be shown that for a fixed source
and network, increasing the number of descriptions K will not increase the overall distortion
but the running time of the integer programming will increase exponentially in K. In this
consideration, we always start with the smallest possible K, and increase K until the overall
distortion does not decrease any more.

For a network of size N = 50, with nodes of in-degree m = 3 and Cmax = 3, the overall
distortion d is optimized by first solving the instance of CRNF problem and then optimizing the
MDC. The optimization is repeated for increasing number of descriptions K. The distortion
converges to its final value for K = 6 as shown in Fig. 3. The overall optimization took less
than 5 seconds.

To see the effect of enlarging the network, we have provided simulation results for fixed
K = 6, Cmax = 3 and m = 3 and different networks sizes. For the above family of random
networks, the increase in the network size will offer greater path diversity to the more recently



N d
∗

y1 y2 y3 y4 y5 y6

50 0.1104 0.0 0.7069 0.2067 0.083 0.0 0.0
100 0.0466 0.0 0.445 0.070 0.396 0.090 0.0
200 0.0302 0.0 0.204 0.556 0.094 0.117 0.030

Table 1: The optimal vector y for different network sizes. Cmax = 3, K = 6 and m = 3.

created nodes which are at the bottom of the network hierarchy. Therefore, as the network
size grows, the fraction of nodes that receive higher number of descriptions increases which
leads to a decrease in the overall average distortion.

5 Conclusion

We introduced the problem of joint network-source coding (JNSC) in which the goal is to
best communicate a real valued source to a number of destinations using the collaboration of
all nodes in the network. We found that multiple description coding is a powerful tool for
exploiting path diversity in a network. We provided a systematic approach for optimizing the
routing of descriptions as well as optimally designing the MDC. To our best knowledge, this is
the only known formulation and systematic approach to joint network-source coding problem.

Our ongoing research is on an iterative optimization approach in which, (1) optimize the
flow of descriptions for a given MDC and, (2) optimize in turn the MDC with respect to the
resulting flow, (3) continue the process iteratively until there is no further reduction in the
average distortion.

We are also applying our approach to a peer-to-peer networking scenario in which the
goal is to have a real-time presentation of a multimedia content in the network. In this case,
maximizing the description diversity has to be done locally at individual nodes, and the network
dynamics should also be taken into account.
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