Approximation Errors in Computer Arithmetic (Chapters 3 and 4)

Outline:

- Positional notation binary representation of numbers
 - Computer representation of integers
 - Floating point representation
 IEEE standard for floating point representation
- Truncation errors in floating point representation
 - Chopping and rounding
 - Absolute error and relative error
 - Machine precision
 - Significant digits
- Approximating a function Taylor series

1 Computer Representation of numbers

1.1 Number Systems (Positional notation)

A base is the number used as the reference for constructing the system. Base-10: $0, 1, 2, \ldots, 9$, — decimal Base-2: 0, 1, - binary Base-8: $0, 1, 2, \ldots, 7$, — octal Base-16: $0, 1, 2, \ldots, 9, A, B, C, D, E, F$, — hexadecimal Base-10:

For example: $3773 = 3 \times 10^3 + 7 \times 10^2 + 7 \times 10 + 3$.

Right-most digit: represents a number from 0 to 9; second from right: represents a multiple of 10;

. . . .

Figure 1: Positional notation of a base-10 number

Positional notation: different position represents different magnitude. Base-2: sequence of 0 and 1

Primary logic units of digital computers are ON/OFF components. Bit: each binary digit is referred to as a bit.

For example: $(1011)_2 = 1 \times 2^3 + 1 \times 2^1 + 1 = (11)_{10}$

Figure 2: Positional notation of a base-2 number

1.2 Binary representation of integers

Signed magnitude method

The sign bit is used to represent positive as well as negative numbers:

sign bit = $0 \rightarrow$ positive number sign bit = $1 \rightarrow$ negative number

Examples: 8-bit representation

Figure 3: 8-bit representation of an integer with a sign bit

Figure 4: Signed magnitude representation of $(24)_{10}$ and -24_{10}

Maximum number in 8-bit representation: $(01111111)_2 = \sum_{i=0}^{6} 1 \times 2^i = 127.$

Minimum number in 8-bit representation: $(11111111)_2 = -\sum_{i=0}^{6} 1 \times 2^i = -127.$

The range of representable numbers in 8-bit signed representation is from -127 to 127.

In general, with n bits (including one sign bit), the range of representable numbers is $-(2^{n-1}-1)$ to $2^{n-1}-1$.

2's complement representation

A computer stores 2's complement of a number.

How to find 2's complement of a number:

- i) The 2's complement of a positive integer is the same: $(24)_{10} = (00011000)_2$
- ii) The 2's complement of a negative integer: Negative 2's complement numbers are represented as the binary number that when added to a positive number of the same magnitude equals zero.
 - toggle the bits of the positive integer: $(00011000)_2 \rightarrow (11100111)_2$ - add 1 $(11100111 + 1)_2 = (11101000)_2$

Figure 5: 2's complement representation of -24

 $(128)_{10} = (1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)_{2}$ Toggle bits: Add 1: +) $1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)_{2}$

Figure 6: 2's complement representation of -128

With 8-bits, representable range: from -128 to 127.

In 2's complement representation, $(1000000)_2 = -128$. The representation 10000000 is not used in signed notation.

With 8 bits, the signed magnitude method can represent all numbers from -127 to 127, while the 2's complement method can represent all numbers from -128 to 127.

2's complement is preferred because of the way arithmetic operations are performed in the computer¹. In addition, the range of representable numbers is -128 to 127.

1.3 Binary representation of floating point numbers

Consider a decimal floating point number:

$$(37.71)_{10} = 3 \times 10^1 + 7 \times 10^0 + 7 \times 10^{-1} + 1 \times 10^{-2}$$

n-th digit right to "." represents $0\sim9\times10^{-n}$

Similarly, a binary floating point number:

$$(10.11)_2 = 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

n-th digit right to "." represents $0\sim 1\times 2^{-n}$

¹Interested student can visit http://en.wikipedia.org/wiki/Two's_complement for further explanation.

Figure 7: Positional notations of floating point numbers

Normalized representation:

Decimal:

$$37.71 = 3.771 \times 10^{1}$$
$$0.3771 = 3.771 \times 10^{-1}$$

Idea: move the decimal point to the left or right until there is only one non-zero digit to the left of the point (.) and then compensate for it in the exponent. Binary:

$$(10.11)_2 = (1.011)_2 \times 2^1$$

 $(\times 2^1) \leftrightarrow$ move decimal point one position right $(\times 2^{-1}) \leftrightarrow$ move decimal point one position left In general, a real number x can be written as

$$x = (-1)^s \cdot m \cdot b^e$$

where

s is the sign bit (s = 0 represents positive numbers, and s = 1 negative numbers), m is the mantissa (the normalized value) (m = 1.f for $x \neq 0$ binary), b is the base (b = 2 for binary),

and e is the exponent.

In computers, we store s, m and e. An example of 8-bit representation of floating point numbers is shown in Fig. 8.

Figure 8: 8-bit floating point normalized representation

Example: $(2.75)_{10} = (10.11)_2 = (1.011)_2 \times 2^1$ The MSB bit of m is always 1, except when x = 0. (Why?) Therefore, m can be

Figure 9: 8-bit floating point normalized representation of 2.75

rewritten as

$$m = (1.f)_2$$

Since only the last three bits carry information, we may exclude the MSB of m and use the last four bits to represent f. Then

$$x = (-1)^{s} \cdot m \cdot b^{e} = (-1)^{s} \cdot (1.f)_{2} \cdot b^{e}$$

For example, $(2.75)_{10} = (1.011)_2 \times 2^1$ can be represented in floating point format as Fig. 10.

In the improved floating point representation, we store s, f and e in computers.

Figure 10: Improved 8-bit floating point normalized representation of 2.75

Special case, x = 0.

IEEE standard for floating point representation²

Figure 11: IEEE 32-bit floating point format

In IEEE 32-bit floating point format,

- s(1 bit): sign bit;
- c(8 bits): exponent e with offset, e = c 127, and c = e + 127; The exponent is not stored directly. The reason for the offset is to make the aligning of the radix point easier during arithmetic operation. The range of c is from 0 to 255.

Special case: c = 0 when x = 0, and c = 255 when x is infinity or not a number (Inf/Nan).

The valid range of e is from -126 to 127 ($x \neq 0$, Inf, and Nan).

• $f(23 \text{ bits}): m = (1.f)_2, (x \neq 0, \text{ Inf, and Nan}), 0 \le f < 1.$

Example: $2.75 = (10.11)_2 = (1.011)_2 \times 2^1$, where s = 0, $m = (1.011)_2$, e = 1, and $c = e + 127 = 128 = (1000000)_2$.

²More details about the IEEE Standard can be found from http://steve.hollasch.net/cgindex/coding/ieeefloat.html and http://grouper.ieee.org/groups/754/.

Figure 12: IEEE 32-bit floating point representation of 2.75

1.4 Floating point errors

Using a finite number of bits, for example, as in the IEEE format, only a finite number of real values can be represented exactly. That is, only certain numbers between a minimum and a maximum can be represented.

With the IEEE 32-bit format

• The upper bound U on the representable value of x: When s = 0, and both c and f are at their maximum values, i.e., c = 254 (or e = 127), and $f = (11 \dots 1)_2$ (or $m = (1.11 \dots 1)_2$), $U = m \cdot b^e = (2 - 2^{-23}) \times 2^{127} \approx 3.4028 \times 10^{38}$

• The lower bound L on the positive representable value of x: When s = 0, and both $c \ (c \neq 0)$ and f are at their minimum values, i.e., c = 1(e = c - 127 = -126), and $f = (00 \dots 0)_2$ (when $m = (1.00 \dots 0)_2$). Then $L = m \cdot b^e = 1 \times 2^{-126} = 1.1755 \times 10^{-38}$

Figure 13: Range of exactly representable numbers

- Only the numbers between −U and −L, 0 and between L and U can be represented: −U ≤ x ≤ −L, x = 0, or L ≤ x ≤ U. During a calculation,
 - when |x| > U, the result is in an overflow;
 - when |x| < L, the result is in an underflow;
 - if x falls between two exactly representable numbers, its floating point representation has to be approximated, leading to truncation errors.
 - When |x| increases, truncation error increases in general.

2 Truncation errors in floating point representation

When a real value x is stored using its floating point representation fl(x), truncation error occurs. This is because of the need to represent an infinite number of real values using a finite number of bits.

Example: the floating point representation of $(0.1)_{10}$

 $(0.1)_{10} = (0.\ 0001\ 1001\ 1001\ 1001\ 1001\ 1001\ 1001\ \dots)_2$

2.1 **Truncation errors**

Assume: we have t number of bits to represent m (or equivalently t - 1 bits for f). In IEEE 32-bit format, t - 1 = 23, or t = 24.

With a finite number of bits, there are two ways to approximate a number that cannot be represented exactly in floating point format.

Consider real value x which cannot be represented exactly and falls between two floating point representations $fl(x_1)$ and $fl(x_2)$.

Chopping:

$$fl(x) = fl(x_1)$$

— Ignore all bits beyond the (t - 1)th one in f (or tth one in m). Rounding:

$$fl(x) = \begin{cases} fl(x_1), \text{ if } x - fl(x_1) \leq fl(x_2) - x \\ fl(x_2), \text{ otherwise.} \end{cases}$$

— Select the closest representable floating point number.

Example: x	> 0,				
	I	I	I	I	
	fl(x1)	x fl(x2)	fl(x1) x	fl(x2)	
Chopping	fl(x)=fl(x1)		fl(x)=fl(x1)		
Rounding	fl(x)=fl(x2)		fl(x)=fl(x1)		

	Figure 15:	Example of	using	chopping	and rounding
--	------------	------------	-------	----------	--------------

As x increases, $fl(x_2) - fl(x_1)$ increases, then the truncation error increases.

Absolute error:

Absolute error $\triangleq |x - fl(x)|$

is the difference between the actual value and its floating point representation. **Relative error:**

Relative error
$$\triangleq \frac{|x - fl(x)|}{|x|}$$

is the error with respect to the value of the number to be represented.

2.2 Bound on the errors (b = 2)

Consider chopping, x > 0.

The real value x can be represented exactly with an infinite number of bits as

$$x = 1. \underbrace{XX \dots XX}_{t-1 \text{bits}} \underbrace{XX \dots XX}_{\infty \text{bits}} \times b^{\epsilon}$$

The floating point representation fl(x) is

$$fl(x) = 1. \underbrace{XX \dots XX}_{t-1 \text{ bits}} \times b^e$$

The absolute error is maximum when

$$x = 1.\underbrace{XX \dots XX}_{t-1 \text{ bits}} \underbrace{11 \dots 11}_{\infty \text{ bits}} \times b^e$$

Then, the absolute error is bounded by

$$|x - fl(x)| < \sum_{i=t}^{\infty} b^{-i} \times b^e < b^{-t+1} \times b^e$$

and the relative error is bounded by

$$\frac{x - fl(x)|}{|x|} < \frac{b^{1-t} \times b^e}{|x|}$$

Because $|x| > 1.00 \cdots 00 \times b^e = b^e$,

$$\frac{|x - fl(x)|}{|x|} < \frac{b^{1-t} \times b^e}{b^e} = b^{1-t}$$

For binary representation, b = 2,

$$\frac{|x - fl(x)|}{|x|} < 2^{1-t}$$

which is the bound on relative errors for chopping. For chopping,

$$|x - fl(x)| \le [fl(x_2) - fl(x_1)]$$

For rounding: the maximum truncation error occurs when x is in the middle of the interval between $fl(x_1)$ and $fl(x_2)$. Then

$$|x - fl(x)| \le \frac{1}{2}[fl(x_2) - fl(x_1)]$$

The bound on absolute errors for rounding is

$$|x - fl(x)| \le \frac{2^{-t+1} \cdot 2^e}{2} = 2^{-t} \cdot 2^e$$

The bound on relative errors for rounding is

$$\frac{|x - fl(x)|}{|x|} \le \frac{2^{-t+1}}{2} = 2^{-t}$$

Machine precision: Define machine precision, ϵ_{mach} , as the maximum relative error. Then

$$\epsilon_{mach} = \begin{cases} 2^{1-t}, & \text{for chopping} \\ \frac{2^{1-t}}{2} = 2^{-t}, & \text{for rounding} \end{cases}$$

For IEEE standard, t - 1 = 23 or t = 24, $\epsilon_{mach} = 2^{-24} \approx 10^{-7}$ for rounding. The machine precision ϵ_{mach} is also defined as the smallest number ϵ such that $fl(1 + \epsilon) > 1$, i.e., if $\epsilon < \epsilon_{mach}$, then $fl(1 + \epsilon) = fl(1)$.

(Prove that the two definitions are equivalent.)

Note: Difference between the machine precision, ϵ_{mach} , and the lower bound on the representable floating point numbers, L:

- ϵ_{mach} is determined by the number of bits in m
- L is determined by the number of bits in the exponent e.

2.3 Effects of truncation and machine precision

Example 1: Evaluate $y = (1+\delta) - (1-\delta)$, where $L < \delta < \epsilon_{mach}$. With rounding,

$$y = fl(1+\delta) - fl(1-\delta)$$

= 1-1=0.

The correct answer should be 2δ .

When $\delta = 1.0 \times 2^{-25}$,

$$1 + \delta = 1.0 \times 2^{0} + 1.0 \times 2^{-25}$$

= $(1. \underbrace{00 \cdots 0}_{24 \ 0's} 1)_{2} \times 2^{0}$
 $fl(1 + \delta) = 1$

Example 2: Consider the infinite summation $y = \sum_{n=1}^{\infty} \frac{1}{n}$. In theory, the sum diverges as $n \to \infty$. But, using floating point operations (with finite number of bits), we get a finite output.

As *n* increases, the addition due to another $\frac{1}{n}$ does not change the output! That is,

$$y = \sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{k-1} \frac{1}{n} + \sum_{n=k}^{\infty} \frac{1}{n} = \sum_{n=1}^{k-1} \frac{1}{n}$$
$$\frac{1}{k-1} \ge \epsilon_{mach} \text{ and } \frac{1}{k} < \epsilon_{mach}$$

Example 3: Consider the evaluation of e^{-x} , x > 0, using

$$e^{-x} = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

This may result in erroneous output due to cancellation. Alternative expressions are needed for evaluation with negative exponents.

2.4 Significant figures (digits)

The significant digits of a number are those that can be used with confidence. For example:

> $0.00453 = 4.53 \times 10^{-3}$ 3 significant digits $0.004530 = 4.530 \times 10^{-3}$ 4 significant digits

Example: $\pi = 3.1415926 \cdots$ With 2 significant digits, $\pi \approx 3.1$ With 3 significant digits, $\pi \approx 3.14$ With 4 significant digits, $\pi \approx 3.142$ The number of significant digits is the number of certain digits plus one estimated digit.

3 Approximating a function using a polynomial

3.1 McLaurin series

Assume that f(x) is a continuous function of x, then

$$f(x) = \sum_{i=0}^{\infty} a_i x^i = \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^i$$

is known as the McLaurin Series, where a_i 's are the coefficients in the polynomial expansion given by

$$a_i = \frac{f^{(i)}(x)}{i!}|_{x=0}$$

and $f^{(i)}(x)$ is the *i*-th derivative of f(x).

The McLaurin series is used to predict the value $f(x_1)$ (for any $x = x_1$) using the function's value f(0) at the "reference point" (x = 0). The series is approximated by summing up to a suitably high value of i, which can lead to approximation or truncation errors.

Problem: When function f(x) varies significantly over the interval from x = 0 to $x = x_1$, the approximation may not work well.

A better solution is to move the reference point closer to x_1 , at which the function's polynomial expansion is needed. Then, $f(x_1)$ can be represented in terms of $f(x_r)$, $f^{(1)}(x_r)$, etc.

Figure 18: Taylor series

3.2 Taylor series

Assume that f(x) is a continuous function of x, then

$$f(x) = \sum_{i=0}^{\infty} a_i (x - x_r)^i$$

where
$$a_i = \frac{f^{(i)}(x)}{i!}|_{x=x_r}$$
. Define $h = x - x_r$. Then,
 $f(x) = \sum_{i=0}^{\infty} a_i h^i = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_r)}{i!} h^i$

which is known as the Taylor Series.

If x_r is sufficiently close to x, we can approximate f(x) with a small number of coefficients since $(x - x_r)^i \to 0$ as i increases.

Question: What is the error when approximating function f(x) at x by $f(x) = \sum_{i=0}^{n} a_i h^i$, where n is a finite number (the order of the Taylor series)?

Taylor theorem:

A function f(x) can be represented exactly as

$$f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(x_r)}{i!} h^i + R_n$$

where R_n is the remainder (error) term, and can be calculated as

$$R_n = \frac{f^{(n+1)}(\alpha)}{(n+1)!}h^{n+1}$$

and α is an unknown value between x_r and x.

• Although α is unknown, Taylor's theorem tells us that the error R_n is proportional to h^{n+1} , which is denoted by

$$R_n = O(h^{n+1})$$

which reads " R_n is order h to the power of n + 1".

- With *n*-th order Taylor series approximation, the error is proportional to step size h to the power n + 1. Or equivalently, the truncation error goes to zero no slower than h^{n+1} does.
- With h ≪ 1, an algorithm or numerical method with O(h²) is better than one with O(h). If you half the step size h, the error is quartered in the former but is only halved in the latter.

Question: How to find R_n ?

$$R_{n} = \sum_{i=0}^{\infty} a_{i}h^{i} - \sum_{i=0}^{n} a_{i}h^{i}$$
$$= \sum_{i=n+1}^{\infty} a_{i}h^{i} = \sum_{i=n+1}^{\infty} \frac{f^{(i)}(x_{r})}{i!}h^{i}$$

For small $h \ (h \ll 1)$,

$$R_n \approx \frac{f^{(n+1)}(x_r)}{(n+1)!} h^{n+1}$$

The above expression can be used to evaluate the dominant error terms in the n-th order approximation.

For different values of n (the order of the Taylor series), a different trajectory is fitted (or approximated) to the function. For example:

- n = 0 (zero order approximation) \rightarrow straight line with zero slope
- n = 1 (first order approximation) \rightarrow straight line with some slope
- n = 2 (second order approximation) \rightarrow quadratic function

Example 1: Expand $f(x) = e^x$ as a McLaurin series. Solution:

$$a_{0} = f(0) = e^{0} = 1,$$

$$a_{1} = \frac{f'(x)}{1!}|_{x=0} = \frac{e^{0}}{1} = 1$$

$$a_{i} = \frac{f^{(i)}(x)}{i!}|_{x=0} = \frac{e^{0}}{i!} = \frac{1}{i!}$$

Figure 19: Taylor series

Then $f(x) = e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$.

Example 2: Find the McLaurin series up to order 4, Taylor series (around x = 1) up to order 4 of function $f(x) = x^3 - 2x^2 + 0.25x + 0.75$. Solution:

$$\begin{aligned} f(x) &= x^3 - 2x^2 + 0.25x + 0.75 \quad f(0) = 0.75 \quad f(1) = 0 \\ f'(x) &= 3x^2 - 4x + 0.25 \qquad f'(0) = 0.25 \quad f'(1) = -0.75 \\ f''(x) &= 6x - 4 \qquad f''(0) = -4 \quad f''(1) = 2 \\ f^{(3)}(x) &= 6 \qquad f^{(3)}(0) = 6 \quad f^{(3)}(1) = 6 \\ f^{(4)}(x) &= 0 \qquad f^{(4)}(0) = 0 \quad f^{(4)}(1) = 0 \end{aligned}$$

The McLaurin series of $f(x) = x^3 - 2x^2 + 0.25x + 0.75$ can be written as

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^i = \sum_{i=0}^{3} \frac{f^{(i)}(0)}{i!} x^i$$

Then the third order McLaurin series expansion is

$$f_{M3}(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \frac{1}{3!}f^{(3)}(0)x^3$$

= 0.75 + 0.25x - 2x² + x³

which is the same as the original polynomial function.

The lower order McLaurin series expansion may be written as

$$f_{M2}(x) = f(0) + \frac{1}{2}f''(0)x^2$$

= 0.75 + 0.25x - 2x²
$$f_{M1}(x) = 0.75 + 0.25x$$

$$f_{M0}(x) = 0.75$$

The Taylor series can be written as

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_r)}{i!} (x - x_r)^i = \sum_{i=0}^{3} \frac{f^{(i)}(1)}{i!} (x - 1)^i$$

Then the third order Taylor series of f(x) is

$$f_{T3}(x) = f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 + \frac{1}{3!}f^{(3)}(1)(x-1)^3$$

= 0.75 + 0.25x - 2x² + x³

which is the same as the original function.

The lower order Taylor series expansion may be written as

$$f_{T2}(x) = f(1) + \frac{1}{2}f''(1)(x-1)^2$$

= -0.75(x-1) + (x-1)^2
= 1.75 - 2.75x + x^2
$$f_{T1}(x) = f(1) + f'(x-1)$$

= -0.75(x-1) = 0.75 - 0.75x
$$f_{T0}(x) = f(1) = 0$$

Figure 20: Example 1

Figure 21: Example 2