Approximation Errors in Computer Arithmetic (Chapters 3 and 4)

Outline:

- Positional notation - binary representation of numbers
- Computer representation of integers
- Floating point representation

IEEE standard for floating point representation

- Truncation errors in floating point representation
- Chopping and rounding
- Absolute error and relative error
- Machine precision
- Significant digits
- Approximating a function - Taylor series

1 Computer Representation of numbers

1.1 Number Systems (Positional notation)

A base is the number used as the reference for constructing the system.
Base-10: 0, 1, 2, . . , 9, - decimal
Base-2: 0,1, - binary
Base-8: $0,1,2, \ldots, 7$, - octal
Base-16: $0,1,2, \ldots, 9, A, B, C, D, E, F,-$ hexadecimal

Base-10:

For example: $3773=3 \times 10^{3}+7 \times 10^{2}+7 \times 10+3$.
Right-most digit: represents a number from 0 to 9 ; second from right: represents a multiple of 10 ;

Figure 1: Positional notation of a base-10 number

Positional notation: different position represents different magnitude.
Base-2: sequence of 0 and 1
Primary logic units of digital computers are ON/OFF components.
Bit: each binary digit is referred to as a bit.
For example: $(1011)_{2}=1 \times 2^{3}+1 \times 2^{1}+1=(11)_{10}$

Figure 2: Positional notation of a base-2 number

1.2 Binary representation of integers

Signed magnitude method

The sign bit is used to represent positive as well as negative numbers:

$$
\begin{array}{lll}
\text { sign bit }=0 & \rightarrow & \text { positive number } \\
\text { sign bit }=1 & \rightarrow & \text { negative number }
\end{array}
$$

Examples: 8-bit representation

Figure 3: 8-bit representation of an integer with a sign bit

$$
\begin{aligned}
& (00011000)_{2}=\left(2^{4}+2^{3}\right)=(24)_{10} \\
& (10011000)_{2}=-\left(2^{4}+2^{3}\right)=(-24)_{10}
\end{aligned}
$$

24:

-24 :

	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	0	0	1	1	0	0	0

Figure 4: Signed magnitude representation of $(24)_{10}$ and -24_{10}
Maximum number in 8-bit representation: $(01111111)_{2}=\sum_{i=0}^{6} 1 \times 2^{i}=127$.

Minimum number in 8-bit representation: $(11111111)_{2}=-\sum_{i=0}^{6} 1 \times 2^{i}=-127$.
The range of representable numbers in 8-bit signed representation is from -127 to 127 .
In general, with n bits (including one sign bit), the range of representable numbers is $-\left(2^{n-1}-1\right)$ to $2^{n-1}-1$.

2's complement representation

A computer stores 2's complement of a number.

How to find 2's complement of a number:
i) The 2's complement of a positive integer is the same:

$$
(24)_{10}=(00011000)_{2}
$$

ii) The 2's complement of a negative integer: Negative 2's complement numbers are represented as the binary number that when added to a positive number of the same magnitude equals zero.

- toggle the bits of the positive integer: $\quad(00011000)_{2} \rightarrow(11100111)_{2}$
- add 1
$(11100111+1)_{2}=(11101000)_{2}$

Figure 5: 2's complement representation of -24

Figure 6: 2's complement representation of -128

With 8-bits, representable range: from - 128 to 127 .
In 2's complement representation, $(10000000)_{2}=-128$. The representation 10000000 is not used in signed notation.
With 8 bits, the signed magnitude method can represent all numbers from -127 to 127 , while the 2 's complement method can represent all numbers from - 128 to 127 .
2's complement is preferred because of the way arithmetic operations are performed in the computer ${ }^{1}$. In addition, the range of representable numbers is -128 to 127 .

1.3 Binary representation of floating point numbers

Consider a decimal floating point number:

$$
(37.71)_{10}=3 \times 10^{1}+7 \times 10^{0}+7 \times 10^{-1}+1 \times 10^{-2}
$$

n-th digit right to "." represents $0 \sim 9 \times 10^{-n}$
Similarly, a binary floating point number:

$$
(10.11)_{2}=1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}
$$

n-th digit right to "." represents $0 \sim 1 \times 2^{-n}$

[^0]

Figure 7: Positional notations of floating point numbers

Normalized representation:

Decimal:

$$
\begin{aligned}
37.71 & =3.771 \times 10^{1} \\
0.3771 & =3.771 \times 10^{-1}
\end{aligned}
$$

Idea: move the decimal point to the left or right until there is only one non-zero digit to the left of the point (.) and then compensate for it in the exponent. Binary:

$$
(10.11)_{2}=(1.011)_{2} \times 2^{1}
$$

$\left(\times 2^{1}\right) \leftrightarrow$ move decimal point one position right $\left(\times 2^{-1}\right) \leftrightarrow$ move decimal point one position left

In general, a real number x can be written as

$$
x=(-1)^{s} \cdot m \cdot b^{e}
$$

where
s is the sign bit ($s=0$ represents positive numbers, and $s=1$ negative numbers), m is the mantissa (the normalized value) ($m=1 . f$ for $x \neq 0$ binary),
b is the base ($b=2$ for binary),
and e is the exponent.
In computers, we store s, m and e. An example of 8-bit representation of floating point numbers is shown in Fig. 8.

Figure 8: 8-bit floating point normalized representation
Example: $(2.75)_{10}=(10.11)_{2}=(1.011)_{2} \times 2^{1}$
The MSB bit of m is always 1, except when $x=0$. (Why?) Therefore, m can be

Figure 9: 8-bit floating point normalized representation of 2.75
rewritten as

$$
m=(1 . f)_{2}
$$

Since only the last three bits carry information, we may exclude the MSB of m and use the last four bits to represent f. Then

$$
x=(-1)^{s} \cdot m \cdot b^{e}=(-1)^{s} \cdot(1 . f)_{2} \cdot b^{e}
$$

For example, $(2.75)_{10}=(1.011)_{2} \times 2^{1}$ can be represented in floating point format as Fig. 10.
In the improved floating point representation, we store s, f and e in computers.

Figure 10: Improved 8-bit floating point normalized representation of 2.75
Special case, $x=0$.

IEEE standard for floating point representation ${ }^{2}$

Figure 11: IEEE 32-bit floating point format
In IEEE 32-bit floating point format,

- $s(1$ bit): sign bit;
- $c(8$ bits $)$: exponent e with offset, $e=c-127$, and $c=e+127$;

The exponent is not stored directly. The reason for the offset is to make the aligning of the radix point easier during arithmetic operation.
The range of c is from 0 to 255 .
Special case: $c=0$ when $x=0$, and $c=255$ when x is infinity or not a number (Inf/Nan).
The valid range of e is from -126 to $127(x \neq 0$, Inf, and Nan).

- $f(23$ bits $): m=(1 . f)_{2},(x \neq 0$, Inf, and Nan $), 0 \leq f<1$.

Example: $2.75=(10.11)_{2}=(1.011)_{2} \times 2^{1}$, where $s=0, m=(1.011)_{2}, e=1$, and $c=e+127=128=(10000000)_{2}$.

[^1]

Figure 12: IEEE 32-bit floating point representation of 2.75

1.4 Floating point errors

Using a finite number of bits, for example, as in the IEEE format, only a finite number of real values can be represented exactly. That is, only certain numbers between a minimum and a maximum can be represented.

With the IEEE 32-bit format

- The upper bound U on the representable value of x :

When $s=0$, and both c and f are at their maximum values, i.e., $c=254$ (or $e=127)$, and $f=(11 \ldots 1)_{2}\left(\right.$ or $\left.m=(1.11 \ldots 1)_{2}\right)$,

$$
U=m \cdot b^{e}=\left(2-2^{-23}\right) \times 2^{127} \approx 3.4028 \times 10^{38}
$$

- The lower bound L on the positive representable value of x :

When $s=0$, and both $c(c \neq 0)$ and f are at their minimum values, i.e., $c=1$ $(e=c-127=-126)$, and $f=(00 \ldots 0)_{2}\left(\right.$ when $\left.m=(1.00 \ldots 0)_{2}\right)$. Then

$$
L=m \cdot b^{e}=1 \times 2^{-126}=1.1755 \times 10^{-38}
$$

Figure 13: Range of exactly representable numbers

- Only the numbers between $-U$ and $-L, 0$ and between L and U can be represented: $-U \leq x \leq-L, x=0$, or $L \leq x \leq U$. During a calculation,
- when $|x|>U$, the result is in an overflow;
- when $|x|<L$, the result is in an underflow;
- if x falls between two exactly representable numbers, its floating point representation has to be approximated, leading to truncation errors.
- When $|x|$ increases, truncation error increases in general.

2 Truncation errors in floating point representation

When a real value x is stored using its floating point representation $f l(x)$, truncation error occurs. This is because of the need to represent an infinite number of real values using a finite number of bits.
Example: the floating point representation of $(0.1)_{10}$

$$
(0.1)_{10}=(0.0001100110011001100110011001 \ldots)_{2}
$$

2.1 Truncation errors

Assume: we have t number of bits to represent m (or equivalently $t-1$ bits for f). In IEEE 32-bit format, $t-1=23$, or $t=24$.

Figure 14: Truncation error
With a finite number of bits, there are two ways to approximate a number that cannot be represented exactly in floating point format.
Consider real value x which cannot be represented exactly and falls between two floating point representations $f l\left(x_{1}\right)$ and $f l\left(x_{2}\right)$.

Chopping:

$$
f l(x)=f l\left(x_{1}\right)
$$

- Ignore all bits beyond the $(t-1)$ th one in f (or t th one in m).

Rounding:

$$
f l(x)=\left\{\begin{array}{l}
f l\left(x_{1}\right), \text { if } x-f l\left(x_{1}\right) \leq f l\left(x_{2}\right)-x \\
f l\left(x_{2}\right), \text { otherwise. }
\end{array}\right.
$$

- Select the closest representable floating point number.

Example: $x>0$,

\prime	\quad	
$f l(x))$	x	$f(x 2)$

1	1	
$f l(x l)$	x	$f l(x 2)$

Chopping $\quad f(x)=f l(x 1)$

$$
\begin{aligned}
& f(x)=f l(x l) \\
& f l(x)=f l(x)
\end{aligned}
$$

Rounding $\quad f l(x)=f(x)$
Figure 15: Example of using chopping and rounding
As x increases, $f l\left(x_{2}\right)-f l\left(x_{1}\right)$ increases, then the truncation error increases.
Absolute error:
Absolute error $\triangleq|x-f l(x)|$
is the difference between the actual value and its floating point representation.

Relative error:

$$
\text { Relative error } \triangleq \frac{|x-f l(x)|}{|x|}
$$

is the error with respect to the value of the number to be represented.
2.2 Bound on the errors $(b=2)$

Consider chopping, $x>0$.
The real value x can be represented exactly with an infinite number of bits as

$$
x=1 \cdot \underbrace{X X \ldots X X}_{t-1 \text { bits }} \underbrace{X X \ldots X X}_{\infty \text { bits }} \times b^{e}
$$

The floating point representation $f l(x)$ is

$$
f l(x)=1 \cdot \underbrace{X X \ldots X X}_{t-1 \text { bits }} \times b^{e}
$$

The absolute error is maximum when

$$
x=1 \cdot \underbrace{X X \ldots X X}_{t-1 \text { bits }} \underbrace{11 \ldots 11}_{\infty \text { bits }} \times b^{e}
$$

Then, the absolute error is bounded by

$$
|x-f l(x)|<\sum_{i=t}^{\infty} b^{-i} \times b^{e}<b^{-t+1} \times b^{e}
$$

and the relative error is bounded by

$$
\frac{|x-f l(x)|}{|x|}<\frac{b^{1-t} \times b^{e}}{|x|}
$$

Because $|x|>1.00 \cdots 00 \times b^{e}=b^{e}$,

$$
\frac{|x-f l(x)|}{|x|}<\frac{b^{1-t} \times b^{e}}{b^{e}}=b^{1-t}
$$

For binary representation, $b=2$,

$$
\frac{|x-f l(x)|}{|x|}<2^{1-t}
$$

which is the bound on relative errors for chopping.
For chopping,

$$
|x-f l(x)| \leq\left[f l\left(x_{2}\right)-f l\left(x_{1}\right)\right]
$$

For rounding: the maximum truncation error occurs when x is in the middle of the interval between $f l\left(x_{1}\right)$ and $f l\left(x_{2}\right)$. Then

$$
|x-f l(x)| \leq \frac{1}{2}\left[f l\left(x_{2}\right)-f l\left(x_{1}\right)\right]
$$

Chopping

1	x
$f l(x 1)$	$f l(x 2)$

Figure 16: Illustration of error bounds
The bound on absolute errors for rounding is

$$
|x-f l(x)| \leq \frac{2^{-t+1} \cdot 2^{e}}{2}=2^{-t} \cdot 2^{e}
$$

The bound on relative errors for rounding is

$$
\frac{|x-f l(x)|}{|x|} \leq \frac{2^{-t+1}}{2}=2^{-t}
$$

Machine precision: Define machine precision, $\epsilon_{\text {mach }}$, as the maximum relative error. Then

$$
\epsilon_{\text {mach }}= \begin{cases}2^{1-t}, & \text { for chopping } \\ \frac{2^{1-t}}{2}=2^{-t}, & \text { for rounding }\end{cases}
$$

For IEEE standard, $t-1=23$ or $t=24, \epsilon_{\text {mach }}=2^{-24} \approx 10^{-7}$ for rounding. The machine precision $\epsilon_{\text {mach }}$ is also defined as the smallest number ϵ such that $f l(1+\epsilon)>1$, i.e., if $\epsilon<\epsilon_{\text {mach }}$, then $f l(1+\epsilon)=f l(1)$.
(Prove that the two definitions are equivalent.)

Note: Difference between the machine precision, $\epsilon_{\text {mach }}$, and the lower bound on the representable floating point numbers, L :

- $\epsilon_{\text {mach }}$ is determined by the number of bits in m
- L is determined by the number of bits in the exponent e.

2.3 Effects of truncation and machine precision

Example 1: Evaluate $y=(1+\delta)-(1-\delta)$, where $L<\delta<\epsilon_{\text {mach }}$. With rounding,

$$
\begin{aligned}
y & =f l(1+\delta)-f l(1-\delta) \\
& =1-1=0
\end{aligned}
$$

The correct answer should be 2δ.

When $\delta=1.0 \times 2^{-25}$,

$$
\begin{aligned}
1+\delta= & 1.0 \times 2^{0}+1.0 \times 2^{-25} \\
= & (1 . \underbrace{00 \cdots 0}_{240^{\prime} s} 1)_{2} \times 2^{0} \\
& f l(1+\delta)=1
\end{aligned}
$$

Example 2: Consider the infinite summation $y=\sum_{n=1}^{\infty} \frac{1}{n}$. In theory, the sum diverges as $n \rightarrow \infty$. But, using floating point operations (with finite number of bits), we get a finite output.
As n increases, the addition due to another $\frac{1}{n}$ does not change the output! That is,

$$
\begin{aligned}
& y= \sum_{n=1}^{\infty} \frac{1}{n}=\sum_{n=1}^{k-1} \frac{1}{n}+\sum_{n=k}^{\infty} \frac{1}{n}=\sum_{n=1}^{k-1} \frac{1}{n} \\
& \frac{1}{k-1} \geq \epsilon_{\text {mach }} \text { and } \frac{1}{k}<\epsilon_{\text {mach }}
\end{aligned}
$$

Example 3: Consider the evaluation of $e^{-x}, x>0$, using

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots
$$

This may result in erroneous output due to cancellation. Alternative expressions are needed for evaluation with negative exponents.

2.4 Significant figures (digits)

Figure 17: Significant figures
The significant digits of a number are those that can be used with confidence. For example:

$$
\begin{aligned}
0.00453 & =4.53 \times 10^{-3} 3 \text { significant digits } \\
0.004530 & =4.530 \times 10^{-3} 4 \text { significant digits }
\end{aligned}
$$

Example: $\pi=3.1415926 \cdots$
With 2 significant digits, $\pi \approx 3.1$
With 3 significant digits, $\pi \approx 3.14$
With 4 significant digits, $\pi \approx 3.142$

The number of significant digits is the number of certain digits plus one estimated digit.

3 Approximating a function using a polynomial

3.1 McLaurin series

Assume that $f(x)$ is a continuous function of x, then

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}=\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}
$$

is known as the McLaurin Series, where a_{i} 's are the coefficients in the polynomial expansion given by

$$
a_{i}=\left.\frac{f^{(i)}(x)}{i!}\right|_{x=0}
$$

and $f^{(i)}(x)$ is the i-th derivative of $f(x)$.

The McLaurin series is used to predict the value $f\left(x_{1}\right)$ (for any $x=x_{1}$) using the function's value $f(0)$ at the "reference point" $(x=0)$. The series is approximated by summing up to a suitably high value of i, which can lead to approximation or truncation errors.

Problem: When function $f(x)$ varies significantly over the interval from $x=0$ to $x=x_{1}$, the approximation may not work well.

A better solution is to move the reference point closer to x_{1}, at which the function's polynomial expansion is needed. Then, $f\left(x_{1}\right)$ can be represented in terms of $f\left(x_{r}\right), f^{(1)}\left(x_{r}\right)$, etc.

Figure 18: Taylor series

3.2 Taylor series

Assume that $f(x)$ is a continuous function of x, then

$$
f(x)=\sum_{i=0}^{\infty} a_{i}\left(x-x_{r}\right)^{i}
$$

where $a_{i}=\left.\frac{f^{(i)}(x)}{i!}\right|_{x=x_{r}}$. Define $h=x-x_{r}$. Then,

$$
f(x)=\sum_{i=0}^{\infty} a_{i} h^{i}=\sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{r}\right)}{i!} h^{i}
$$

which is known as the Taylor Series.

If x_{r} is sufficiently close to x, we can approximate $f(x)$ with a small number of coefficients since $\left(x-x_{r}\right)^{i} \rightarrow 0$ as i increases.

Question: What is the error when approximating function $f(x)$ at x by $f(x)=$ $\sum_{i=0}^{n} a_{i} h^{i}$, where n is a finite number (the order of the Taylor series)?

Taylor theorem:

A function $f(x)$ can be represented exactly as

$$
f(x)=\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{r}\right)}{i!} h^{i}+R_{n}
$$

where R_{n} is the remainder (error) term, and can be calculated as

$$
R_{n}=\frac{f^{(n+1)}(\alpha)}{(n+1)!} h^{n+1}
$$

and α is an unknown value between x_{r} and x.

- Although α is unknown, Taylor's theorem tells us that the error R_{n} is proportional to h^{n+1}, which is denoted by

$$
R_{n}=O\left(h^{n+1}\right)
$$

which reads " R_{n} is order h to the power of $n+1$ ".

- With n-th order Taylor series approximation, the error is proportional to step size h to the power $n+1$. Or equivalently, the truncation error goes to zero no slower than h^{n+1} does.
- With $h \ll 1$, an algorithm or numerical method with $O\left(h^{2}\right)$ is better than one with $O(h)$. If you half the step size h, the error is quartered in the former but is only halved in the latter.

Question: How to find R_{n} ?

$$
\begin{aligned}
R_{n} & =\sum_{i=0}^{\infty} a_{i} h^{i}-\sum_{i=0}^{n} a_{i} h^{i} \\
& =\sum_{i=n+1}^{\infty} a_{i} h^{i}=\sum_{i=n+1}^{\infty} \frac{f^{(i)}\left(x_{r}\right)}{i!} h^{i}
\end{aligned}
$$

For small $h(h \ll 1)$,

$$
R_{n} \approx \frac{f^{(n+1)}\left(x_{r}\right)}{(n+1)!} h^{n+1}
$$

The above expression can be used to evaluate the dominant error terms in the n-th order approximation.

For different values of n (the order of the Taylor series), a different trajectory is fitted (or approximated) to the function. For example:

- $n=0$ (zero order approximation) \rightarrow straight line with zero slope
- $n=1$ (first order approximation) \rightarrow straight line with some slope
- $n=2$ (second order approximation) \rightarrow quadratic function

Example 1: Expand $f(x)=e^{x}$ as a McLaurin series.
Solution:

$$
\begin{aligned}
& a_{0}=f(0)=e^{0}=1, \\
& a_{1}=\left.\frac{f^{\prime}(x)}{1!}\right|_{x=0}=\frac{e^{0}}{1}=1 \\
& a_{i}=\left.\frac{f^{(i)}(x)}{i!}\right|_{x=0}=\frac{e^{0}}{i!}=\frac{1}{i!}
\end{aligned}
$$

Figure 19: Taylor series

Then $f(x)=e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$.
Example 2: Find the McLaurin series up to order 4, Taylor series (around $x=1$) up to order 4 of function $f(x)=x^{3}-2 x^{2}+0.25 x+0.75$.
Solution:

$$
\begin{array}{lll}
f(x)=x^{3}-2 x^{2}+0.25 x+0.75 & f(0)=0.75 & f(1)=0 \\
f^{\prime}(x)=3 x^{2}-4 x+0.25 & f^{\prime}(0)=0.25 & f^{\prime}(1)=-0.75 \\
f^{\prime \prime}(x)=6 x-4 & f^{\prime \prime}(0)=-4 & f^{\prime \prime}(1)=2 \\
f^{(3)}(x)=6 & f^{(3)}(0)=6 & f^{(3)}(1)=6 \\
f^{(4)}(x)=0 & f^{(4)}(0)=0 & f^{(4)}(1)=0
\end{array}
$$

The McLaurin series of $f(x)=x^{3}-2 x^{2}+0.25 x+0.75$ can be written as

$$
f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^{i}=\sum_{i=0}^{3} \frac{f^{(i)}(0)}{i!} x^{i}
$$

Then the third order McLaurin series expansion is

$$
\begin{aligned}
f_{M 3}(x) & =f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+\frac{1}{3!} f^{(3)}(0) x^{3} \\
& =0.75+0.25 x-2 x^{2}+x^{3}
\end{aligned}
$$

which is the same as the original polynomial function.

The lower order McLaurin series expansion may be written as

$$
\begin{aligned}
f_{M 2}(x) & =f(0)+\frac{1}{2} f^{\prime \prime}(0) x^{2} \\
& =0.75+0.25 x-2 x^{2} \\
f_{M 1}(x) & =0.75+0.25 x \\
f_{M 0}(x) & =0.75
\end{aligned}
$$

The Taylor series can be written as

$$
f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{r}\right)}{i!}\left(x-x_{r}\right)^{i}=\sum_{i=0}^{3} \frac{f^{(i)}(1)}{i!}(x-1)^{i}
$$

Then the third order Taylor series of $f(x)$ is

$$
\begin{aligned}
f_{T 3}(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{1}{2} f^{\prime \prime}(1)(x-1)^{2}+\frac{1}{3!} f^{(3)}(1)(x-1)^{3} \\
& =0.75+0.25 x-2 x^{2}+x^{3}
\end{aligned}
$$

which is the same as the original function.

The lower order Taylor series expansion may be written as

$$
\begin{aligned}
f_{T 2}(x) & =f(1)+\frac{1}{2} f^{\prime \prime}(1)(x-1)^{2} \\
& =-0.75(x-1)+(x-1)^{2} \\
& =1.75-2.75 x+x^{2} \\
f_{T 1}(x) & =f(1)+f^{\prime}(x-1) \\
& =-0.75(x-1)=0.75-0.75 x \\
f_{T 0}(x) & =f(1)=0
\end{aligned}
$$

Figure 20: Example 1

Figure 21: Example 2

[^0]: ${ }^{1}$ Interested student can visit http://en.wikipedia.org/wiki/Two's_complement for further explanation.

[^1]: ${ }^{2}$ More details about the IEEE Standard can be found from http://steve.hollasch.net/cgindex/coding/ieeefloat.html and http://grouper.ieee.org/groups/754/.

