
Approximation Errors in Computer Arithmetic
(Chapters 3 and 4)

Outline:

• Positional notation – binary representation of numbers

– Computer representation of integers
– Floating point representation

IEEE standard for floating point representation

• Truncation errors in floating point representation

– Chopping and rounding
– Absolute error and relative error
– Machine precision
– Significant digits

• Approximating a function — Taylor series

1

1 Computer Representation of numbers

1.1 Number Systems (Positional notation)

A base is the number used as the reference for constructing the system.
Base-10: 0, 1, 2, . . . , 9, — decimal
Base-2: 0,1, — binary
Base-8: 0, 1, 2, . . . , 7, — octal
Base-16: 0, 1, 2, . . . , 9, A, B, C, D, E, F , — hexadecimal
Base-10:
For example: 3773 = 3× 103 + 7× 102 + 7× 10 + 3.
Right-most digit: represents a number from 0 to 9;
second from right: represents a multiple of 10;
. . ..

 3 7 7 3 = 3 + 7x10 + 7x10 + 3x10
2 3

Figure 1: Positional notation of a base-10 number

2

Positional notation: different position represents different magnitude.
Base-2: sequence of 0 and 1
Primary logic units of digital computers are ON/OFF components.
Bit: each binary digit is referred to as a bit.
For example: (1011)2 = 1× 23 + 1× 21 + 1 = (11)10

(1 0 1 1) = 1 + 1x2 + 0x2 + 1x2 =(11)2
32

10

Figure 2: Positional notation of a base-2 number

1.2 Binary representation of integers

Signed magnitude method
The sign bit is used to represent positive as well as negative numbers:

sign bit = 0 → positive number
sign bit = 1 → negative number

Examples: 8-bit representation

3

26 25 24 23 22 21 20

sign bit number

Figure 3: 8-bit representation of an integer with a sign bit

(00011000)2 = (24 + 23) = (24)10

(10011000)2 = −(24 + 23) = (−24)10

26 25 24 23 22 21 20

0 0 0 0 0 01 124:

26 25 24 23 22 21 20

1 0 0 0 0 01 1−24:

Figure 4: Signed magnitude representation of (24)10 and −2410

Maximum number in 8-bit representation: (01111111)2 =
∑6

i=0 1× 2i = 127.
4

Minimum number in 8-bit representation: (11111111)2 = −∑6
i=0 1×2i = −127.

The range of representable numbers in 8-bit signed representation is from -127
to 127.
In general, with n bits (including one sign bit), the range of representable num-
bers is −(2n−1 − 1) to 2n−1 − 1.

2’s complement representation
A computer stores 2’s complement of a number.

How to find 2’s complement of a number:

i) The 2’s complement of a positive integer is the same:
(24)10 = (00011000)2

ii) The 2’s complement of a negative integer: Negative 2’s complement numbers
are represented as the binary number that when added to a positive number
of the same magnitude equals zero.

– toggle the bits of the positive integer: (00011000)2 → (11100111)2

– add 1 (11100111 + 1)2 = (11101000)2

5

1

10

Toggle bits:

+)

1 1 1 0 1 0 0 0

Add 1:

 (24) = (0 0 0 1 1 0 0 0)

1 1 1 0 0 1 1 1

2

Figure 5: 2’s complement representation of -24

(128) = (1 0 0 0 0 0 0 0)10

0 1 1 1 1 1 1 1Toggle bits:

+)

1 0 0 0 0 0 0 0

Add 1:

2

1

Figure 6: 2’s complement representation of -128

6

With 8-bits, representable range: from -128 to 127.
In 2’s complement representation, (10000000)2 = −128. The representation
10000000 is not used in signed notation.
With 8 bits, the signed magnitude method can represent all numbers from -127
to 127, while the 2’s complement method can represent all numbers from -128
to 127.
2’s complement is preferred because of the way arithmetic operations are per-
formed in the computer1. In addition, the range of representable numbers is -128
to 127.

1.3 Binary representation of floating point numbers

Consider a decimal floating point number:

(37.71)10 = 3× 101 + 7× 100 + 7× 10−1 + 1× 10−2

n-th digit right to “.” represents 0 ∼ 9× 10−n

Similarly, a binary floating point number:

(10.11)2 = 1× 21 + 0× 20 + 1× 2−1 + 1× 2−2

n-th digit right to “.” represents 0 ∼ 1× 2−n

1Interested student can visit http://en.wikipedia.org/wiki/Two’s complement for further explanation.

7

 3 7 . 7 3 = 3x10 + 7 + 7x10 + 3x10
1 −1 −2

1
 (1 0 . 1 1) = 1x2 + 0 + 1x2 + 1x2 2

−1 −2

Figure 7: Positional notations of floating point numbers

Normalized representation:
Decimal:

37.71 = 3.771× 101

0.3771 = 3.771× 10−1

Idea: move the decimal point to the left or right until there is only one non-zero
digit to the left of the point (.) and then compensate for it in the exponent.
Binary:

(10.11)2 = (1.011)2 × 21

(×21) ↔ move decimal point one position right
(×2−1) ↔ move decimal point one position left

8

In general, a real number x can be written as

x = (−1)s ·m · be

where
s is the sign bit (s = 0 represents positive numbers, and s = 1 negative numbers),
m is the mantissa (the normalized value) (m = 1.f for x 6= 0 binary),
b is the base (b = 2 for binary),
and e is the exponent.
In computers, we store s, m and e. An example of 8-bit representation of floating
point numbers is shown in Fig. 8.

1

e ms

sign of e

Figure 8: 8-bit floating point normalized representation

Example: (2.75)10 = (10.11)2 = (1.011)2 × 21

The MSB bit of m is always 1, except when x = 0. (Why?) Therefore, m can be

9

e ms

1101100 0

Figure 9: 8-bit floating point normalized representation of 2.75

rewritten as
m = (1.f)2

Since only the last three bits carry information, we may exclude the MSB of m
and use the last four bits to represent f . Then

x = (−1)s ·m · be = (−1)s · (1.f)2 · be

For example, (2.75)10 = (1.011)2× 21 can be represented in floating point format
as Fig. 10.
In the improved floating point representation, we store s, f and e in computers.

e fs

0110100 0

Figure 10: Improved 8-bit floating point normalized representation of 2.75

Special case, x = 0.

10

IEEE standard for floating point representation2

fcs
(8 bits) (23 bits)

Figure 11: IEEE 32-bit floating point format

In IEEE 32-bit floating point format,

• s(1 bit): sign bit;

• c(8 bits): exponent e with offset, e = c− 127, and c = e + 127;
The exponent is not stored directly. The reason for the offset is to make the
aligning of the radix point easier during arithmetic operation.
The range of c is from 0 to 255.
Special case: c = 0 when x = 0, and c = 255 when x is infinity or not a
number (Inf/Nan).
The valid range of e is from -126 to 127 (x 6= 0, Inf, and Nan).

• f (23 bits): m = (1.f)2, (x 6= 0, Inf, and Nan), 0 ≤ f < 1.

Example: 2.75 = (10.11)2 = (1.011)2 × 21, where s = 0, m = (1.011)2, e = 1,
and c = e + 127 = 128 = (10000000)2.

2More details about the IEEE Standard can be found from http://steve.hollasch.net/cgindex/coding/ieeefloat.html and http://grouper.ieee.org/groups/754/.

11

fcs
c=128 (e=1) f=0110...0

1 10 0 ... 0 0 0 1 0 ... 0

Figure 12: IEEE 32-bit floating point representation of 2.75

1.4 Floating point errors

Using a finite number of bits, for example, as in the IEEE format, only a finite
number of real values can be represented exactly. That is, only certain numbers
between a minimum and a maximum can be represented.
With the IEEE 32-bit format

• The upper bound U on the representable value of x:
When s = 0, and both c and f are at their maximum values, i.e., c = 254 (or
e = 127), and f = (11 . . . 1)2 (or m = (1.11 . . . 1)2),

U = m · be = (2− 2−23)× 2127 ≈ 3.4028× 1038

• The lower bound L on the positive representable value of x:
When s = 0, and both c (c 6= 0) and f are at their minimum values, i.e., c = 1
(e = c− 127 = −126), and f = (00 . . . 0)2 (when m = (1.00 . . . 0)2). Then

L = m · be = 1× 2−126 = 1.1755× 10−38

12

−L U0 L−U

Figure 13: Range of exactly representable numbers

• Only the numbers between −U and −L, 0 and between L and U can be
represented: −U ≤ x ≤ −L, x = 0, or L ≤ x ≤ U .
During a calculation,

– when |x| > U , the result is in an overflow;
– when |x| < L, the result is in an underflow;
– if x falls between two exactly representable numbers, its floating point

representation has to be approximated, leading to truncation errors.
– When |x| increases, truncation error increases in general.

13

2 Truncation errors in floating point representation

When a real value x is stored using its floating point representation fl(x), trun-
cation error occurs. This is because of the need to represent an infinite number
of real values using a finite number of bits.
Example: the floating point representation of (0.1)10

(0.1)10 = (0. 0001 1001 1001 1001 1001 1001 1001 . . .)2

2.1 Truncation errors

Assume: we have t number of bits to represent m (or equivalently t − 1 bits for
f). In IEEE 32-bit format, t− 1 = 23, or t = 24.

fl(x1) x fl(x2)

Figure 14: Truncation error

With a finite number of bits, there are two ways to approximate a number that
cannot be represented exactly in floating point format.
Consider real value x which cannot be represented exactly and falls between two
floating point representations fl(x1) and fl(x2).

14

Chopping:
fl(x) = fl(x1)

— Ignore all bits beyond the (t− 1)th one in f (or tth one in m).
Rounding:

fl(x) =

{
fl(x1), if x− fl(x1) ≤ fl(x2)− x
fl(x2), otherwise.

— Select the closest representable floating point number.

Example: x > 0,

fl(x1)

fl(x)=fl(x1)

fl(x)=fl(x2)

x fl(x2)

fl(x)=fl(x1)

fl(x)=fl(x1)

fl(x2)fl(x1) x

Chopping

Rounding

Figure 15: Example of using chopping and rounding

As x increases, fl(x2)− fl(x1) increases, then the truncation error increases.

Absolute error:
Absolute error , |x− fl(x)|

15

is the difference between the actual value and its floating point representation.
Relative error:

Relative error , |x− fl(x)|
|x|

is the error with respect to the value of the number to be represented.

2.2 Bound on the errors (b = 2)

Consider chopping, x > 0.
The real value x can be represented exactly with an infinite number of bits as

x = 1. XX . . . XX︸ ︷︷ ︸
t−1bits

XX . . .XX︸ ︷︷ ︸
∞bits

×be

The floating point representation fl(x) is

fl(x) = 1. XX . . . XX︸ ︷︷ ︸
t−1bits

×be

The absolute error is maximum when

x = 1. XX . . . XX︸ ︷︷ ︸
t−1bits

11 . . . 11︸ ︷︷ ︸
∞bits

×be

16

Then, the absolute error is bounded by

|x− fl(x)| <
∞∑
i=t

b−i × be < b−t+1 × be

and the relative error is bounded by
|x− fl(x)|

|x| <
b1−t × be

|x|
Because |x| > 1.00 · · · 00× be = be,

|x− fl(x)|
|x| <

b1−t × be

be
= b1−t

For binary representation, b = 2,
|x− fl(x)|

|x| < 21−t

which is the bound on relative errors for chopping.
For chopping,

|x− fl(x)| ≤ [fl(x2)− fl(x1)]

For rounding: the maximum truncation error occurs when x is in the middle of
the interval between fl(x1) and fl(x2). Then

|x− fl(x)| ≤ 1

2
[fl(x2)− fl(x1)]

17

fl(x1) fl(x2)

x

fl(x1) fl(x2)x

[fl(x2)−fl(x1)]/2

Rounding:

Chopping

Figure 16: Illustration of error bounds

The bound on absolute errors for rounding is

|x− fl(x)| ≤ 2−t+1 · 2e

2
= 2−t · 2e

The bound on relative errors for rounding is

|x− fl(x)|
|x| ≤ 2−t+1

2
= 2−t

Machine precision: Define machine precision, εmach, as the maximum relative
error. Then

εmach =

{
21−t, for chopping
21−t

2 = 2−t, for rounding

18

For IEEE standard, t− 1 = 23 or t = 24, εmach = 2−24 ≈ 10−7 for rounding.
The machine precision εmach is also defined as the smallest number ε such that
fl(1 + ε) > 1, i.e., if ε < εmach, then fl(1 + ε) = fl(1).

(Prove that the two definitions are equivalent.)

Note: Difference between the machine precision, εmach, and the lower bound on
the representable floating point numbers, L:

• εmach is determined by the number of bits in m

• L is determined by the number of bits in the exponent e.

2.3 Effects of truncation and machine precision

Example 1: Evaluate y = (1+δ)−(1−δ), where L < δ < εmach. With rounding,

y = fl(1 + δ)− fl(1− δ)

= 1− 1 = 0.

The correct answer should be 2δ.

19

When δ = 1.0× 2−25,

1 + δ = 1.0× 20 + 1.0× 2−25

= (1. 00 · · · 0︸ ︷︷ ︸
24 0′s

1)2 × 20

fl(1 + δ) = 1

Example 2: Consider the infinite summation y =
∑∞

n=1
1
n. In theory, the sum

diverges as n → ∞. But, using floating point operations (with finite number of
bits), we get a finite output.
As n increases, the addition due to another 1

n does not change the output! That
is,

y =

∞∑
n=1

1

n
=

k−1∑
n=1

1

n
+

∞∑

n=k

1

n
=

k−1∑
n=1

1

n

1

k − 1
≥ εmach and

1

k
< εmach

20

Example 3: Consider the evaluation of e−x, x > 0, using

e−x =

∞∑
n=0

(−x)n

n!
= 1− x +

x2

2!
− x3

3!
+ . . .

This may result in erroneous output due to cancellation. Alternative expressions
are needed for evaluation with negative exponents.

2.4 Significant figures (digits)

4 5
x=?

Figure 17: Significant figures

The significant digits of a number are those that can be used with confidence.
For example:

0.00453 = 4.53× 10−3 3 significant digits
0.004530 = 4.530× 10−3 4 significant digits

Example: π = 3.1415926 · · ·
With 2 significant digits, π ≈ 3.1
With 3 significant digits, π ≈ 3.14
With 4 significant digits, π ≈ 3.142

21

The number of significant digits is the number of certain digits plus one estimated
digit.

22

3 Approximating a function using a polynomial

3.1 McLaurin series

Assume that f (x) is a continuous function of x, then

f (x) =

∞∑
i=0

aix
i =

∞∑
i=0

f (i)(0)

i!
xi

is known as the McLaurin Series, where ai’s are the coefficients in the polynomial
expansion given by

ai =
f (i)(x)

i!
|x=0

and f (i)(x) is the i-th derivative of f (x).

The McLaurin series is used to predict the value f (x1) (for any x = x1) using the
function’s value f (0) at the “reference point” (x = 0). The series is approximated
by summing up to a suitably high value of i, which can lead to approximation or
truncation errors.

Problem: When function f (x) varies significantly over the interval from x = 0
to x = x1, the approximation may not work well.

23

A better solution is to move the reference point closer to x1, at which the func-
tion’s polynomial expansion is needed. Then, f (x1) can be represented in terms
of f (xr), f (1)(xr), etc.

1 x

f(x)

0 x xr
Figure 18: Taylor series

3.2 Taylor series

Assume that f (x) is a continuous function of x, then

f (x) =

∞∑
i=0

ai(x− xr)
i

24

where ai = f (i)(x)
i! |x=xr. Define h = x− xr. Then,

f (x) =

∞∑
i=0

aih
i =

∞∑
i=0

f (i)(xr)

i!
hi

which is known as the Taylor Series.

If xr is sufficiently close to x, we can approximate f (x) with a small number of
coefficients since (x− xr)

i → 0 as i increases.

Question: What is the error when approximating function f (x) at x by f (x) =∑n
i=0 aih

i, where n is a finite number (the order of the Taylor series)?

Taylor theorem:
A function f (x) can be represented exactly as

f (x) =

n∑
i=0

f (i)(xr)

i!
hi + Rn

where Rn is the remainder (error) term, and can be calculated as

Rn =
f (n+1)(α)

(n + 1)!
hn+1

25

and α is an unknown value between xr and x.

• Although α is unknown, Taylor’s theorem tells us that the error Rn is propor-
tional to hn+1, which is denoted by

Rn = O(hn+1)

which reads “Rn is order h to the power of n + 1”.

• With n-th order Taylor series approximation, the error is proportional to step
size h to the power n + 1. Or equivalently, the truncation error goes to zero
no slower than hn+1 does.

• With h ¿ 1, an algorithm or numerical method with O(h2) is better than one
with O(h). If you half the step size h, the error is quartered in the former but
is only halved in the latter.

Question: How to find Rn?

Rn =

∞∑
i=0

aih
i −

n∑
i=0

aih
i

=

∞∑
i=n+1

aih
i =

∞∑
i=n+1

f (i)(xr)

i!
hi

26

For small h (h ¿ 1),

Rn ≈ f (n+1)(xr)

(n + 1)!
hn+1

The above expression can be used to evaluate the dominant error terms in the
n-th order approximation.

For different values of n (the order of the Taylor series), a different trajectory is
fitted (or approximated) to the function. For example:

• n = 0 (zero order approximation) → straight line with zero slope

• n = 1 (first order approximation) → straight line with some slope

• n = 2 (second order approximation) → quadratic function

Example 1: Expand f (x) = ex as a McLaurin series.
Solution:

a0 = f (0) = e0 = 1,

a1 =
f
′
(x)

1!
|x=0 =

e0

1
= 1

ai =
f (i)(x)

i!
|x=0 =

e0

i!
=

1

i!

27

x

f(x)

f(x) zero order

First order

True

Second order

x =0 x

i

i i+1
Figure 19: Taylor series

28

Then f (x) = ex =
∑∞

i=0
xi

i! .

Example 2: Find the McLaurin series up to order 4, Taylor series (around x = 1)
up to order 4 of function f (x) = x3 − 2x2 + 0.25x + 0.75.
Solution:

f (x) = x3 − 2x2 + 0.25x + 0.75 f (0) = 0.75 f (1) = 0

f
′
(x) = 3x2 − 4x + 0.25 f

′
(0) = 0.25 f

′
(1) = −0.75

f
′′
(x) = 6x− 4 f

′′
(0) = −4 f

′′
(1) = 2

f (3)(x) = 6 f (3)(0) = 6 f (3)(1) = 6
f (4)(x) = 0 f (4)(0) = 0 f (4)(1) = 0

The McLaurin series of f (x) = x3 − 2x2 + 0.25x + 0.75 can be written as

f (x) =

∞∑
i=0

f (i)(0)

i!
xi =

3∑
i=0

f (i)(0)

i!
xi

Then the third order McLaurin series expansion is

fM3(x) = f (0) + f
′
(0)x +

1

2
f
′′
(0)x2 +

1

3!
f (3)(0)x3

= 0.75 + 0.25x− 2x2 + x3

which is the same as the original polynomial function.
29

The lower order McLaurin series expansion may be written as

fM2(x) = f (0) +
1

2
f
′′
(0)x2

= 0.75 + 0.25x− 2x2

fM1(x) = 0.75 + 0.25x

fM0(x) = 0.75

The Taylor series can be written as

f (x) =

∞∑
i=0

f (i)(xr)

i!
(x− xr)

i =

3∑
i=0

f (i)(1)

i!
(x− 1)i

Then the third order Taylor series of f (x) is

fT3(x) = f (1) + f
′
(1)(x− 1) +

1

2
f
′′
(1)(x− 1)2 +

1

3!
f (3)(1)(x− 1)3

= 0.75 + 0.25x− 2x2 + x3

which is the same as the original function.

30

The lower order Taylor series expansion may be written as

fT2(x) = f (1) +
1

2
f
′′
(1)(x− 1)2

= −0.75(x− 1) + (x− 1)2

= 1.75− 2.75x + x2

fT1(x) = f (1) + f
′
(x− 1)

= −0.75(x− 1) = 0.75− 0.75x

fT0(x) = f (1) = 0

31

0 0.5 1 1.5 2 2.5 3
−20

−15

−10

−5

0

5

10

15

f(x)
2nd order M.S.
1st order M.S.
0th order M.S.

Figure 20: Example 1

32

0 0.5 1 1.5 2 2.5 3
−2

0

2

4

6

8

10

12

f(x)
2nd order T.S.
1st order T.S.
0th order T.S.

Figure 21: Example 2

33

