Chapter 4: Unconstrained Optimization

- Unconstrained optimization problem \(\min_x F(x) \) or \(\max_x F(x) \)
- Constrained optimization problem

\[
\min_x F(x) \text{ or } \max_x F(x)
\]

subject to \(g(x) = 0 \)
and/or \(h(x) < 0 \) or \(h(x) > 0 \)

Example: minimize the outer area of a cylinder subject to a fixed volume.

Objective function

\[
F(x) = 2\pi r^2 + 2\pi rh, \quad x = \begin{bmatrix} r \\ h \end{bmatrix}
\]

Constraint: \(2\pi r^2 h = V \)
Outline:

- Part I: one-dimensional unconstrained optimization
 - Analytical method
 - Newton’s method
 - Golden-section search method

- Part II: multidimensional unconstrained optimization
 - Analytical method
 - Gradient method — steepest ascent (descent) method
 - Newton’s method
PART I: One-Dimensional Unconstrained Optimization Techniques

1 Analytical approach (1-D)

\[\min_x F(x) \text{ or } \max_x F(x) \]

- Let \(F'(x) = 0 \) and find \(x = x^*. \)
- If \(F''(x^*) > 0, F(x^*) = \min_x F(x), x^* \) is a local minimum of \(F(x); \)
- If \(F''(x^*) < 0, F(x^*) = \max_x F(x), x^* \) is a local maximum of \(F(x); \)
- If \(F''(x^*) = 0, x^* \) is a critical point of \(F(x) \)

Example 1: \(F(x) = x^2, F'(x) = 2x = 0, x^* = 0. F''(x^*) = 2 > 0. \) Therefore, \(F(0) = \min_x F(x) \)

Example 2: \(F(x) = x^3, F'(x) = 3x^2 = 0, x^* = 0. F''(x^*) = 0. x^* \) is not a local minimum nor a local maximum.

Example 3: \(F(x) = x^4, F'(x) = 4x^3 = 0, x^* = 0. F''(x^*) = 0. \)

In example 2, \(F'(x) > 0 \) when \(x < x^* \) and \(F'(x) > 0 \) when \(x > x^* \).

In example 3, \(x^* \) is a local minimum of \(F(x). \) \(F'(x) < 0 \) when \(x < x^* \) and \(F'(x) > 0 \) when \(x > x^* \).
2 Newton’s Method

\[\min_x F(x) \text{ or } \max_x F(x) \]

Use \(x_k \) to denote the current solution.

\[
F(x_k + p) = F(x_k) + pF'(x_k) + \frac{p^2}{2}F''(x_k) + \ldots
\]

\[
\approx F(x_k) + pF'(x_k) + \frac{p^2}{2}F''(x_k)
\]
\[F(x^*) = \min_x F(x) \approx \min_p F(x_k + p) \]
\[\approx \min_p \left[F(x_k) + pF'(x_k) + \frac{p^2}{2}F''(x_k) \right] \]

Let
\[
\frac{\partial F(x)}{\partial p} = F'(x_k) + pF''(x_k) = 0
\]
we have
\[
p = -\frac{F'(x_k)}{F''(x_k)}
\]

Newton’s iteration
\[
x_{k+1} = x_k + p = x_k - \frac{F'(x_k)}{F''(x_k)}
\]

Example: find the maximum value of \(f(x) = 2 \sin x - \frac{x^2}{10} \) with an initial guess of \(x_0 = 2.5 \).

Solution:
\[
f'(x) = 2 \cos x - \frac{2x}{10} = 2 \cos x - \frac{x}{5}
\]
\[f''(x) = -2 \sin x - \frac{1}{5} \]

\[x_{i+1} = x_i - \frac{2 \cos x_i - x_i}{-2 \sin x_i - \frac{1}{5}} \]

\[x_0 = 2.5, \ x_1 = 0.995, \ x_2 = 1.469. \]

Comments:

- Same as N.-R. method for solving \(F'(x) = 0 \).
- Quadratic convergence, \(|x_{k+1} - x^*| \leq \beta |x_k - x^*|^2 \)
- May diverge
- Requires both first and second derivatives
- Solution can be either local minimum or maximum
3 Golden-section search for optimization in 1-D

$max_x F(x)$ (min$_x F(x)$ is equivalent to max$_x -F(x)$)

Assume: only 1 peak value (x^*) in (x_l, x_u)

Steps:

1. Select $x_l < x_u$

2. Select 2 intermediate values, x_1 and x_2 so that $x_1 = x_l + d$, $x_2 = x_u - d$, and $x_1 > x_2$.

3. Evaluate $F(x_1)$ and $F(x_2)$ and update the search range
 - If $F(x_1) < F(x_2)$, then $x^* < x_1$. Update $x_l = x_l$ and $x_u = x_1$.
 - If $F(x_1) > F(x_2)$, then $x^* > x_2$. Update $x_l = x_2$ and $x_u = x_u$.
 - If $F(x_1) = F(x_2)$, then $x_2 < x^* < x_1$. Update $x_l = x_2$ and $x_u = x_1$.

4. Estimate
 - $x^* = x_1$ if $F(x_1) > F(x_2)$, and
 - $x^* = x_2$ if $F(x_1) < F(x_2)$
• Calculate ϵ_a. If $\epsilon_a < \epsilon_{threshold}$, end.

$$
\epsilon_a = \left| \frac{x_{new} - x_{old}}{x_{new}} \right| \times 100\%
$$
The choice of d

- Any values can be used as long as $x_1 > x_2$.
- If d is selected appropriately, the number of function evaluations can be minimized.

![Figure 3: Golden search: the choice of d](image)

\[d_0 = l_1, \quad d_1 = l_2 = l_0 - d_0 = l_0 - l_1. \text{ Therefore, } l_0 = l_1 + l_2.\]

\[\frac{l_0}{d_0} = \frac{l_1}{d_1}. \text{ Then } \frac{l_0}{l_1} = \frac{l_1}{l_2}.\]

\[l_1^2 = l_0 l_2 = (l_1 + l_2)l_2. \text{ Then } 1 = \left(\frac{l_2}{l_1}\right)^2 + \frac{l_2}{l_1}.\]
Define \(r = \frac{d_0}{l_0} = \frac{d_1}{l_1} = \frac{l_2}{l_1} \). Then \(r^2 + r - 1 = 0 \), and \(r = \frac{\sqrt{5} - 1}{2} \approx 0.618 \).

\(d = r(x_u - x_l) \approx 0.618(x_u - x_l) \) is referred to as the golden value.

Relative error

\[
\epsilon_a = \left| \frac{x_{new} - x_{old}}{x_{new}} \right| \times 100\%
\]

Consider \(F(x_2) < F(x_1) \). That is, \(x_l = x_2 \), and \(x_u = x_u \).

For case (a), \(x^* > x_2 \) and \(x^* \) closer to \(x_2 \).

\[
\Delta x \leq x_1 - x_2 = (x_l + d) - (x_u - d) \\
= (x_l - x_u) + 2d = (x_l - x_u) + 2r(x_u - x_l) \\
= (2r - 1)(x_u - x_l) \approx 0.236(x_u - x_l)
\]

For case (b), \(x^* > x_2 \) and \(x^* \) closer to \(x_u \).

\[
\Delta x \leq x_u - x_1 \\
= x_u - (x_l + d) = x_u - x_l - d \\
= (x_u - x_l) - r(x_u - x_l) = (1 - r)(x_u - x_l) \\
\approx 0.382(x_u - x_l)
\]

Therefore, the maximum absolute error is \((1 - r)(x_u - x_l) \approx 0.382(x_u - x_l) \).
\[\epsilon_a \leq \frac{|\Delta x|}{|x^*|} \times 100\% \]
\[\leq \frac{(1 - r)(x_u - x_l)}{|x^*|} \times 100\% \]
\[= \frac{0.382(x_u - x_l)}{|x^*|} \times 100\% \]

Example: Find the maximum of \(f(x) = 2 \sin x - \frac{x^2}{10} \) with \(x_l = 0 \) and \(x_u = 4 \) as the starting search range.

Solution:

Iteration 1: \(x_l = 0, x_u = 4, d = \frac{\sqrt{5} - 1}{2}(x_u - x_l) = 2.472, x_1 = x_l + d = 2.472, \)
\(x_2 = x_u - d = 1.528. f(x_1) = 0.63, f(x_2) = 1.765. \)
Since \(f(x_2) > f(x_1), x^* = x_2 = 1.528, x_l = x_l = 0 \) and \(x_u = x_1 = 2.472. \)

Iteration 2: \(x_l = 0, x_u = 2.472, d = \frac{\sqrt{5} - 1}{2}(x_u - x_l) = 1.528, x_1 = x_l + d = 1.528, \)
\(x_2 = x_u - d = 0.944. f(x_1) = 1.765, f(x_2) = 1.531. \)
Since \(f(x_1) > f(x_2), x^* = x_1 = 1.528, x_l = x_2 = 0.944 \) and \(x_u = x_u = 2.472. \)
4 Analytical Method

- Definitions:
 - If \(f(x, y) < f(a, b) \) for all \((x, y)\) near \((a, b)\), \(f(a, b) \) is a local maximum;
 - If \(f(x, y) > f(a, b) \) for all \((x, y)\) near \((a, b)\), \(f(a, b) \) is a local minimum.

- If \(f(x, y) \) has a local maximum or minimum at \((a, b)\), and the first order partial derivatives of \(f(x, y) \) exist at \((a, b)\), then
 \[
 \frac{\partial f}{\partial x}\big|_{(a,b)} = 0, \text{ and } \frac{\partial f}{\partial y}\big|_{(a,b)} = 0
 \]

- If
 \[
 \frac{\partial f}{\partial x}\big|_{(a,b)} = 0 \text{ and } \frac{\partial f}{\partial y}\big|_{(a,b)} = 0,
 \]
 then \((a, b)\) is a critical point or stationary point of \(f(x, y) \).

- If
 \[
 \frac{\partial f}{\partial x}\big|_{(a,b)} = 0 \text{ and } \frac{\partial f}{\partial y}\big|_{(a,b)} = 0
 \]
and the second order partial derivatives of $f(x, y)$ are continuous, then

- When $|H| > 0$ and $\frac{\partial^2 f}{\partial x^2}(a, b) < 0$, $f(a, b)$ is a local maximum of $f(x, y)$.
- When $|H| > 0$ and $\frac{\partial^2 f}{\partial x^2}(a, b) > 0$, $f(a, b)$ is a local minimum of $f(x, y)$.
- When $|H| < 0$, $f(a, b)$ is a saddle point.

Hessian of $f(x, y)$:

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

- $|H| = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial^2 f}{\partial y \partial x}$
- When $\frac{\partial^2 f}{\partial x \partial y}$ is continuous, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.
- When $|H| > 0$, $\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} > 0$.

Example (saddle point): $f(x, y) = x^2 - y^2$.

$\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = -2y$.

Let $\frac{\partial f}{\partial x} = 0$, then $x^* = 0$. Let $\frac{\partial f}{\partial y} = 0$, then $y^* = 0$.

13
Therefore, \((0, 0)\) is a critical point.

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x}(2x) = 2, \\
\frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y}(-2y) = -2 \\
\frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x}(-2y) = 0, \\
\frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial}{\partial y}(2x) = 0
\end{align*}
\]

\[
|H| = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial^2 f}{\partial y \partial x} = -4 < 0
\]

Therefore, \((x^*, y^*) = (0, 0)\) is a saddle maximum.

Example: \(f(x, y) = 2xy + 2x - x^2 - 2y^2\), find the optimum of \(f(x, y)\).

Solution:

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 2y + 2 - 2x, \\
\frac{\partial f}{\partial y} &= 2x - 4y.
\end{align*}
\]

Let \(\frac{\partial f}{\partial x} = 0, -2x + 2y = -2\).

Let \(\frac{\partial f}{\partial y} = 0, 2x - 4y = 0\).

Then \(x^* = 2\) and \(y^* = 1\), i.e., \((2, 1)\) is a critical point.

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2} &= \frac{\partial}{\partial x}(2y + 2 - 2x) = -2 \\
\frac{\partial^2 f}{\partial y^2} &= \frac{\partial}{\partial y}(2x - 4y) = -4 \\
\frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial}{\partial x}(2x - 4y) = 2, \text{ or }
\end{align*}
\]
Figure 4: Saddle point

$z = x^2 - y^2$
\[
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (2y + 2 - 2x) = 2
\]
\[
|H| = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \partial y} \cdot \frac{\partial^2 f}{\partial y \partial x} = (-2) \times (-4) - 2^2 = 4 > 0
\]
\[
\frac{\partial^2 f}{\partial x^2} < 0. \ (x^*, y^*) = (2, 1) \text{ is a local maximum.}
\]

5 Steepest Ascent (Descent) Method

Idea: starting from an initial point, find the function maximum (minimum) along the steepest direction so that shortest searching time is required.

Steepest direction: directional derivative is maximum in that direction — gradient direction.

Directional derivative
\[
D_h f(x, y) = \frac{\partial f}{\partial x} \cdot \cos \theta + \frac{\partial f}{\partial y} \cdot \sin \theta = \left\langle \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right]', \left[\cos \theta \quad \sin \theta \right]' \right\rangle
\]
\[
\langle \cdot \rangle: \text{ inner product}
\]
Gradient
When \([\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}]'\) is in the same direction as \([\cos \theta \; \sin \theta]'\), the directional derivative is maximized. This direction is called gradient of \(f(x, y)\).

The gradient of a 2-D function is represented as \(\nabla f(x, y) = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j}\), or \([\frac{\partial f}{\partial x} \; \frac{\partial f}{\partial y}]'\).

The gradient of an \(n\)-D function is represented as \(\nabla f(\vec{X}) = \left[\frac{\partial f}{\partial x_1} \; \frac{\partial f}{\partial x_2} \; \ldots \; \frac{\partial f}{\partial x_n} \right]'\), where \(\vec{X} = [x_1 \; x_2 \; \ldots \; x_n]'\)

Example: \(f(x, y) = xy^2\). Use the gradient to evaluate the path of steepest ascent at (2,2).

Solution:
\[
\frac{\partial f}{\partial x} = y^2, \; \frac{\partial f}{\partial y} = 2xy.
\]
\[
\frac{\partial f}{\partial x}|_{(2,2)} = 2^2 = 4, \; \frac{\partial f}{\partial y}|_{(2,2)} = 2 \times 2 \times 2 = 8
\]

Gradient: \(\nabla f(x, y) = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} = 4\hat{i} + 8\hat{j}\)

\(\theta = \tan^{-1} \frac{8}{4} = 1.107\), or 63.4°.

\(\cos \theta = \frac{4}{\sqrt{4^2 + 8^2}}, \; \sin \theta = \frac{8}{\sqrt{4^2 + 8^2}}\).

Directional derivative at (2,2): \(\frac{\partial f}{\partial x} \cdot \cos \theta + \frac{\partial f}{\partial y} \cdot \sin \theta = 4 \cos \theta + 8 \sin \theta = 8.944\)
If $\theta' \neq \theta$, for example, $\theta' = 0.5325$, then

$$D_{h'} f|_{(2,2)} = \frac{\partial f}{\partial x} \cdot \cos \theta' + \frac{\partial f}{\partial y} \cdot \sin \theta' = 4 \cos \theta' + 8 \sin \theta' = 7.608 < 8.944$$

Steepest ascent method

Ideally:

- Start from (x_0, y_0). Evaluate gradient at (x_0, y_0).
- Walk for a tiny distance along the gradient direction till (x_1, y_1).
- Reevaluate gradient at (x_1, y_1) and repeat the process.

Pros: always keep steepest direction and walk shortest distance
Cons: not practical due to continuous reevaluation of the gradient.

Practically:

- Start from (x_0, y_0).
- Evaluate gradient (h) at (x_0, y_0).
• Evaluate \(f(x, y) \) in direction \(h \).
• Find the maximum function value in this direction at \((x_1, y_1) \).
• Repeat the process until \((x_{i+1}, y_{i+1}) \) is close enough to \((x_i, y_i) \).

Find \(\mathbf{X}_{i+1} \) from \(\mathbf{X}_i \)

For a 2-D function, evaluate \(f(x, y) \) in direction \(h \):

\[
g(\alpha) = f(x_i + \frac{\partial f}{\partial x}|_{(x_i, y_i)} \cdot \alpha, y_i + \frac{\partial f}{\partial y}|_{(x_i, y_i)} \cdot \alpha)
\]

where \(\alpha \) is the coordinate in \(h \)-axis.

For an \(n \)-D function \(f(\mathbf{X}) \),

\[
g(\alpha) = f(\mathbf{X} + \nabla f|_{\mathbf{X}_i} \cdot \alpha)
\]

Let \(g'(\alpha) = 0 \) and find the solution \(\alpha = \alpha^* \).

Update \(x_{i+1} = x_i + \frac{\partial f}{\partial x}|_{(x_i, y_i)} \cdot \alpha^* \), \(y_{i+1} = y_i + \frac{\partial f}{\partial y}|_{(x_i, y_i)} \cdot \alpha^* \).
Figure 5: Illustration of steepest ascent
Figure 6: Relationship between an arbitrary direction h and x and y coordinates

$\nabla f = 3i + 4j$
Example: $f(x, y) = 2xy + 2x - x^2 - 2y^2$, $(x, y_0) = (-1, 1)$.

First iteration:

$x_0 = -1, y_0 = 1$.

$\frac{\partial f}{\partial x} |_{(-1,1)} = 2y + 2 - 2x |_{(-1,1)} = 6$, $\frac{\partial f}{\partial y} |_{(-1,1)} = 2x - 4y |_{(-1,1)} = -6$

$\nabla f = 6\vec{i} - 6\vec{j}$

$g(\alpha) = f(x_0 + \frac{\partial f}{\partial x} |_{(x_0,y_0)} \cdot \alpha, y + \frac{\partial f}{\partial y} |_{(x_0,y_0)} \cdot \alpha)$

$= f(-1 + 6\alpha, 1 - 6\alpha)$

$= 2 \times (-1 + 6\alpha) \cdot (1 - 6\alpha) + 2(-1 + 6\alpha) - (-1 + 6\alpha)^2 - 2(1 - 6\alpha)^2$

$= -180\alpha^2 + 72\alpha - 7$

$g'(\alpha) = -360\alpha + 72 = 0$, $\alpha^* = 0.2$.

Second iteration:

$x_1 = x_0 + \frac{\partial f}{\partial x} |_{(x_0,y_0)} \cdot \alpha^* = -1 + 6 \times 0.2 = 0.2$, $y_1 = y_0 + \frac{\partial f}{\partial y} |_{(x_0,y_0)} \cdot \alpha^* = 1 - 6 \times 0.2 = -0.2$

$\frac{\partial f}{\partial x} |_{(0.2,-0.2)} = 2y + 2 - 2x |_{(0.2,-0.2)} = 2 \times (-0.2) + 2 - 2 \times 0.2 = 1.2$,

$\frac{\partial f}{\partial y} |_{(0.2,-0.2)} = 2x - 4y |_{(0.2,-0.2)} = 2 \times 0.2 - 4 \times (-0.2) = 1.2$
\[\nabla f = 1.2\vec{i} + 1.2\vec{j} \]

\[
g(\alpha) = f(x_1 + \frac{\partial f}{\partial x}\big|_{(x_1,y_1)} \cdot \alpha, y_1 + \frac{\partial f}{\partial y}\big|_{(x_1,y_1)} \cdot \alpha) \\
= f(0.2 + 1.2\alpha, -0.2 + 1.2\alpha) \\
= 2 \times (0.2 + 1.2\alpha) \cdot (-0.2 + 1.2\alpha) + 2(0.2 + 1.2\alpha) \\
- (0.2 + 1.2\alpha)^2 - 2(-0.2 + 1.2\alpha)^2 \\
= -1.44\alpha^2 + 2.88\alpha + 0.2
\]

\[g'(\alpha) = -2.88\alpha + 2.88 = 0, \quad \alpha^* = 1. \]

Third iteration:

\[x_2 = x_1 + \frac{\partial f}{\partial x}\big|_{(x_1,y_1)} \cdot \alpha^* = 0.2 + 1.2 \times 1 = 1.4, \quad y_2 = y_1 + \frac{\partial f}{\partial y}\big|_{(x_1,y_1)} \cdot \alpha^* = -0.2 + 1.2 \times 1 = 1 \]

\[(x^*, y^*) = (2, 1) \]
6 Newton’s Method

Extend the Newton’s method for 1-D case to multidimensional case. Given $f(\vec{X})$, approximate $f(\vec{X})$ by a second order Taylor series at $\vec{X} = \vec{X}_i$:

$$f(\vec{X}) \approx f(\vec{X}_i) + \nabla f'(\vec{X}_i)(\vec{X} - \vec{X}_i) + \frac{1}{2}(\vec{X} - \vec{X}_i)'H_i(\vec{X} - \vec{X}_i)$$

where H_i is the Hessian matrix

$$H = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}
\end{bmatrix}$$

At the maximum (or minimum) point, $\frac{\partial f(\vec{X})}{\partial x_j} = 0$ for all $j = 1, 2, \ldots, n$, or $\nabla f = \vec{0}$. Then

$$\nabla f(\vec{X}_i) + H_i(\vec{X} - \vec{X}_i) = 0$$

If H_i is non-singular,

$$\vec{X} = \vec{X}_i - H_i^{-1}\nabla f(\vec{X}_i)$$
Iteration: $\vec{X}_{i+1} = \vec{X}_i - H_i^{-1}\nabla f(\vec{X}_i)$

Example: $f(\vec{X}) = 0.5x_1^2 + 2.5x_2^2$

$\nabla f(\vec{X}) = \begin{bmatrix} x_1 \\ 5x_2 \end{bmatrix}$

\[
H = \begin{bmatrix}
\frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\
\frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2}
\end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}
\]

$\vec{X}_0 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$, $\vec{X}_1 = \vec{X}_0 - H^{-1}\nabla f(\vec{X}_0) = \begin{bmatrix} 5 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Comments: Newton’s method

- Converges quadratically near the optimum
- Sensitive to initial point
- Requires matrix inversion
- Requires first and second order derivatives