Chapter 5: Numerical Integration and Differentiation

PART I: Numerical Integration

Newton-Cotes Integration Formulas
The idea of Newton-Cotes formulas is to replace a complicated function or tabulated data with an approximating function that is easy to integrate.

\[I = \int_{a}^{b} f(x)\,dx \approx \int_{a}^{b} f_n(x)\,dx \]

where

\[f_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n. \]

1 The Trapezoidal Rule

Using the first order Taylor series to approximate \(f(x) \),

\[I = \int_{a}^{b} f(x)\,dx \approx \int_{a}^{b} f_1(x)\,dx \]

where

\[f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \]
Then

\[I \approx \int_a^b \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] dx = (b - a) \frac{f(b) + f(a)}{2} \]

The trapezoidal rule is equivalent to approximating the area of the trapezoidal

![Trapezoidal Rule Diagram](image.png)

Figure 1: Graphical depiction of the trapezoidal rule

under the straight line connecting \(f(a) \) and \(f(b) \). An estimate for the local trun-
cation error of a single application of the trapezoidal rule can be obtained using Taylor series as
\[E_t = -\frac{1}{12} f''(\xi)(b - a)^3 \]
where \(\xi \) is a value between \(a \) and \(b \).

Example: Use the trapezoidal rule to numerically integrate
\[f(x) = 0.2 + 25x \]
from \(a = 0 \) to \(b = 2 \).

Solution: \(f(a) = f(0) = 0.2 \), and \(f(b) = f(2) = 50.2 \).

\[I = (b - a) \frac{f(b) + f(a)}{2} = (2 - 0) \times \frac{0.2 + 50.2}{2} = 50.4 \]

The true solution is
\[\int_0^2 f(x)dx = (0.2x + 12.5x^2)|_0^2 = (0.2 \times 2 + 12.5 \times 2^2) - 0 = 50.4 \]

Because \(f(x) \) is a linear function, using the trapezoidal rule gets the exact solution.

Example: Use the trapezoidal rule to numerically integrate
\[f(x) = 0.2 + 25x + 3x^2 \]
from $a = 0$ to $b = 2$.

Solution: $f(0) = 0.2$, and $f(2) = 62.2$.

\[
I = (b - a) \frac{f(b) + f(a)}{2} = (2 - 0) \times \frac{0.2 + 62.2}{2} = 62.4
\]

The true solution is

\[
\int_0^2 f(x) dx = (0.2x + 12.5x^2 + x^3)|_0^2 = (0.2 \times 2 + 12.5 \times 2^2 + 2^3) - 0 = 58.4
\]

The relative error is

\[
|\epsilon_t| = \left| \frac{58.4 - 62.4}{58.4} \right| \times 100\% = 6.85\%
\]
Multiple-application trapezoidal rule:
Using smaller integration interval can reduce the approximation error. We can
divide the integration interval from a to b into a number of segments and apply
the trapezoidal rule to each segment. Divide (a, b) into n segments of equal
width. Then

$$I = \int_a^b f(x)dx = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \ldots + \int_{x_{n-1}}^{x_n} f(x)dx$$

where $a = x_0 < x_1 < \ldots < x_n = b$, and $x_i - x_{i-1} = h = \frac{b-a}{n}$, for $i = 1, 2, \ldots, n$.
Substituting the Trapezoidal rule for each integral yields

$$I \approx h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \ldots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

$$= \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

$$= (b - a) \frac{f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n)}{2n}$$

The approximation error using the multiple trapezoidal rule is a sum of the indi-
vidual errors, i.e.,

$$E_t = - \sum_{i=1}^{n} \frac{h^3}{12} f''(\xi_i) = - \sum_{i=1}^{n} \frac{(b - a)^3}{12n^3} f''(\xi_i)$$
Let \(f'' = \sum_{i=1}^{n} f''(\xi_i) \). Then the approximate error is
\[
E_t = -\frac{(b - a)^3}{12n^2} f''
\]

Example: Use the 2-segment trapezoidal rule to numerically integrate
\[
f(x) = 0.2 + 25x + 3x^2
\]
from \(a = 0 \) to \(b = 2 \).
Solution: \(n = 2, \quad h = (a - b)/n = (2 - 0)/2 = 1. \)
\(f(0) = 0.2, \quad f(1) = 28.2, \) and \(f(2) = 62.2. \)

\[
I = (b - a) \frac{f(0) + 2f(1) + f(2)}{2n} = 2 \times \frac{0.2 + 2 \times 28.2 + 62.2}{4} = 59.4
\]

The relative error is

\[
|\epsilon_t| = \left| \frac{58.4 - 59.4}{58.4} \right| \times 100\% = 1.71\%
\]
2 Simpson’s Rules

Aside from using the trapezoidal rule with finer segmentation, another way to improve the estimation accuracy is to use higher order polynomials.

Simpson’s 1/3 rule:
Given function values at 3 points as \((x_0, f(x_0)), (x_1, f(x_1)),\) and \((x_2, f(x_2))\), we...
can estimate \(f(x) \) using Lagrange polynomial interpolation. Then

\[
I = \int_a^b f(x) \, dx \approx \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) \right. \\
+ \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \left. \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] \, dx
\]

When \(a = x_0, \ b = x_2, (a + b)/2 = x_1, \) and \(h = (b - a)/2, \)

\[
I \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] = (b - a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}
\]

It can be proved that single segment application of Simpson’s 1/3 rule has a truncation error of

\[
E_t = -\frac{1}{90} h^5 f^{(4)}(\xi)
\]

where \(\xi \) is between \(a \) and \(b. \)

Simpson’s 1/3 rule yields exact results for third order polynomials even though it is derived from parabola.

Example: Use Simpson’s 1/3 rule to integrate

\[
f(x) = 0.2 + 25x + 3x^2 + 8x^3
\]

from \(a = 0 \) to \(b = 2. \)
Solution: \(f(0) = 0.2, f(1) = 36.2, \) and \(f(2) = 126.2. \)

\[
I = (b - a)f(0) + 4f(1) + f(2) = 2 \times \frac{0.2 + 4 \times 36.2 + 126.2}{6} = 90.4
\]

The exact integral is

\[
\int_{0}^{2} f(x) \, dx = (0.2x + 12.5x^2 + x^3 + 2x^4)|_{0}^{2} = (0.2 \times 2 + 12.5 \times 2^2 + 2^3 + 2 \times 2^4) - 0 = 90.4
\]

Example: Use Simpson’s 1/3 rule to integrate

\[
f(x) = 0.2 + 25x + 3x^2 + 2x^4
\]

from \(a = 0 \) to \(b = 2. \)

Solution: \(f(0) = 0.2, f(1) = 30.2, \) and \(f(2) = 94.2. \)

\[
I = (b - a)f(0) + 4f(1) + f(2) = 2 \times \frac{0.2 + 4 \times 30.2 + 94.2}{6} = 71.73
\]

The exact integral is

\[
\int_{0}^{2} f(x) \, dx = (0.2x + 12.5x^2 + x^3 + 0.4x^5)|_{0}^{2} = (0.2 \times 2 + 12.5 \times 2^2 + 2^3 + 0.4 \times 2^5) - 0 = 71.2
\]

The relative error is

\[
|\epsilon_t| = \left| \frac{71.2 - 71.73}{71.2} \right| = 0.7\%
\]
Multiple-application Simpson’s 1/3 rule
Dividing the integration interval into n segments of equal width, we have

\[I = \int_{x_0}^{x_2} f(x) \, dx + \int_{x_2}^{x_4} f(x) \, dx + \ldots + \int_{x_{n-2}}^{x_n} f(x) \, dx \]

where $a = x_0 < x_1 < \ldots < x_n = b$, and $x_i - x_{i-1} = h = (b - a)/n$, for $i = 1, 2, \ldots, n$. Substituting the Simpson’s 1/3 rule for each integral yields

\[
I \approx 2h \frac{f(x_0) + 4f(x_1) + f(x_2)}{6} + 2h \frac{f(x_2) + 4f(x_3) + f(x_4)}{6} \\
+ \ldots + 2h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{6} \\
= (b - a) \frac{f(x_0) + 4 \sum_{i=1,3,5} f(x_i) + 2 \sum_{j=2,4,6} f(x_j) + f(x_n)}{3n}
\]

Note that n has to be even.

Example: Use 4-segment Simpson’s 1/3 rule to integrate

\[f(x) = 0.2 + 25x + 3x^2 + 2x^4 \]

from $a = 0$ to $b = 2$.

Solution: $n = 4$, $h = (b - a)/n = 0.5$.

$f(x_0) = f(0) = 0.2$, $f(x_1) = f(0.5) = 13.575$, $f(x_2) = f(1) = 30.2$, $f(x_3) =$
\[f(1.5) = 54.575, \text{ and } f(x_4) = f(2) = 94.2. \]

\[I = (b - a) \frac{f(0) + 4f(0.5) + 4f(1.5) + 2f(1) + f(2)}{3 \times 4} \]

\[= 2 \times \frac{0.2 + 4 \times 13.575 + 4 \times 54.575 + 2 \times 30.2 + 94.2}{12} = 71.2333 \]

The exact integral is

\[\int_0^2 f(x) \, dx = (0.2x + 12.5x^2 + x^3 + 0.4x^5)|_0^2 = (0.2 \times 2 + 12.5 \times 2^2 + 2^3 + 0.4 \times 2^5) - 0 = 71.2 \]

The relative error is

\[|\epsilon_t| = \left| \frac{71.2 - 71.2333}{71.2} \right| = 0.047\% \]

Simpson’s 3/8 rule

This is to use a third-order Lagrange polynomial to fit to four points of \(f(x) \) and yields

\[I \approx \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] \]

where \(h = (b - a)/3 \). The approximation error using this rule is

\[E_t = -\frac{3}{80} h^5 f^{(4)}(\xi) = -\frac{(b - a)^5}{6480} f^{(4)}(\xi) \]

where \(\xi \) is between \(a \) and \(b \).
3 Integration of Equations

Newton-Cotes algorithms for equations

Compare the following two Pseudocodes for multiple applications of the trapezoidal rule.

Pseudocode 1: Algorithm for multiple applications of the trapezoidal rule

```
function Trapm(h,n,f)
    sum=f0
    for i=1:n-1
        sum=sum+2*fi
    end
    sum=sum+fn
    Trapm=h*sum/2
```

Pseudocode 2: Algorithm for multiple application of the trapezoidal rule when function f(x) is available

```
function TrapEq(n,a,b)
    h=(b-a)/n
    x=a
    sum=f(x)
    for i=1:n-1
```
\begin{verbatim}

\textbf{Pseudocode 1:}

\begin{verbatim}
x=x+h
\text{sum} = \text{sum} + 2 \times f(x)
\text{end}
end

\text{sum} = \text{sum} + f(b)
\text{TraEq} = \frac{(b-a) \times \text{sum}}{2 \times n}
\end{verbatim}

Pseudocode 1 can be used when only a limited number of points are given or the function is available. Pseudocode 2 is for the case where the analytical function is available. The difference between the two pseudocodes is that in Pseudocode 2 neither the independent nor the dependent variable values are passed into the function via its argument as in Pseudocode 1. When the analytical function is available, the function values are computed using calls to the function being analyzed, \(f(x) \).

\section{Romberg Integration}

Romberg integration is one technique that can improve the results of numerical integration using error-correction techniques. \textit{Richardson’s extrapolation} uses two estimates of an integral to compute a third, more accurate approximation. The estimate and error associated with a multiple-application trapezoidal rule
can be represented as

\[I = I(h) + E(h) \]

where \(I \) is the exact value of the integral, \(I(h) \) is the approximation from an \(n \)-segment application of the trapezoidal rule with step size \(h = (b - a)/n \), and \(E(h) \) is the truncation error. If we make two separate estimates using step sizes of \(h_1 \) and \(h_2 \) and have exact values for the error, then

\[I(h_1) + E(h_1) = I(h_2) + E(h_2) \quad (1) \]

The error of the multiple-application trapezoidal rule can be represented approximately as

\[E \approx -\frac{b - a}{12} h^2 f'' \]

where \(h = (b - a)/n \). Assuming that \(f'' \) is constant regardless of step size, we have

\[\frac{E(h_1)}{E(h_2)} \approx \frac{h_1^2}{h_2^2} \]

Then we have

\[E(h_1) \approx E(h_2) \left(\frac{h_1}{h_2} \right)^2 \]

which can be substituted into (1):

\[I(h_1) + E(h_2) \left(\frac{h_1}{h_2} \right)^2 = I(h_2) + E(h_2) \]
Then $E(h_2)$ can be solved as

$$E(h_2) = \frac{I(h_2) - I(h_1)}{(h_1/h_2)^2 - 1}$$

This estimate can then be substituted into

$$I = I(h_2) + E(h_2)$$

to yield an improved estimate of the integral:

$$I \approx I(h_2) + \frac{I(h_2) - I(h_1)}{(h_1/h_2)^2 - 1}$$

It can be shown that the error of this estimate is $O(h^4)$. Thus, we have combined two trapezoidal rule estimates of $O(h^2)$ to yield a new estimate of $O(h^4)$. For the special case where the interval is $h_2 = h_1/2$, we have

$$I \approx I(h_2) + \frac{1}{2^2 - 1}[I(h_2) - I(h_1)] = \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1)$$

With two improved integrals of $O(h^4)$ on the basis of three trapezoidal rule estimates, we can combine them to yield an even better value with $O(h^6)$.

The Romberg integration algorithm has the general form as

$$I_{j,k} \approx \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}$$
where \(I_{j+1,k-1} \) and \(I_{j,k-1} \) are the more and less accurate integrals, respectively, and \(I_{j,k} \) is the improved integral. The index \(k \) signifies the level of the integration, where \(k = 1 \) corresponds to the original trapezoidal rule estimates, \(k = 2 \) corresponds to \(O(h^4) \), \(k = 3 \) to \(O(h^6) \), and so forth.

Example: \(f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5 \), find \(\int_a^b f(x)dx \), \(a = 0, b = 0.8 \).

Solution:

True solution: \(I = \int_0^{0.8} f(x)dx = \int_0^{0.8} (0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5)dx = 1.640533 \)

\[n_1 = 1, \; h_1 = 0.8 \]
\[f(0) = 0.2, \; f(0.8) = 0.232 \]
\[I_{1,1} = \int_0^{0.8} f_1(x)dx = 0.8 \times \frac{f(0)+f(0.8)}{2} = 0.1728, \; \epsilon_t = 89.5\% \]

\[n_2 = 2, \; h_2 = \frac{b-a}{2} = 0.4, \; (h_2 = h_1/2) \]
\[f(0) = 0.2, \; f(0.8) = 0.232, \; f(0.4) = 2.456 \]
\[I_{2,1} = \int_0^{0.4} f_1(x)dx + \int_{0.4}^{0.8} f_1(x)dx = 0.4 \times \frac{f(0)+f(0.4)}{2} + 0.4 \times \frac{f(0.4)+f(0.8)}{2} = 1.0688, \]
\[\epsilon_t = 34.9\% \]

\[n_3 = 4, \; h_3 = \frac{b-a}{4} = 0.2, \; (h_3 = h_2/2) \]

17
\[I_{3,1} = \frac{0.2}{2} \left[f(0) + 2f(0.2) + 2f(0.4) + 2f(0.6) + f(0.8) \right] = 1.4848, \quad \epsilon_t = 9.5\% \]

\[I_{1,2} = \frac{4I_{2,1} - I_{1,1}}{4-1} = \frac{4}{3} I_{2,1} - \frac{1}{3} I_{1,1} = \frac{4}{3} \times 1.0688 - \frac{1}{3} \times 0.1728 = 1.367467, \quad \epsilon_t = 16.6\% \]

\[I_{2,2} = \frac{4I_{3,1} - I_{2,1}}{4-1} = \frac{4}{3} I_{3,1} - \frac{1}{3} I_{2,1} = \frac{4}{3} \times 1.4848 - \frac{1}{3} \times 1.0688 = 1.623467, \quad \epsilon_t = 1.0\% \]

\[I_{1,3} = \frac{4^2 I_{2,2} - I_{1,2}}{4^2 - 1} = \frac{16}{15} I_{2,2} - \frac{1}{15} I_{1,2} = \frac{16}{15} \times 1.623467 - \frac{1}{15} \times 1.367467 = 1.640533, \quad \epsilon_t = 0 \]

<table>
<thead>
<tr>
<th>(O(h^2))</th>
<th>(O(h^4))</th>
<th>(O(h^6))</th>
<th>(O(h^8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 0.172800</td>
<td>1.367467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.068800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) 0.172800</td>
<td>1.367467</td>
<td>1.640533</td>
<td></td>
</tr>
<tr>
<td>1.068800</td>
<td>1.623467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.484800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) 0.172800</td>
<td>1.367467</td>
<td>1.640533</td>
<td>1.640533</td>
</tr>
<tr>
<td>1.068800</td>
<td>1.623467</td>
<td>1.640533</td>
<td></td>
</tr>
<tr>
<td>1.484800</td>
<td>1.639467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.600800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Example of Romberg integration
PART II: Numerical Differentiation

Finite Divided Difference

5 First Order Derivatives:

- The first forward finite divided difference
 Using Taylor series,
 \[f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + O(h^3) \]
 where \(h = x_{i+1} - x_i \). Then \(f'(x_i) \) can be found as
 \[f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h) \]
 The first forward finite divided difference is
 \[f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{h} \]

- The first backward finite divided difference
 Using Taylor series,
 \[f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + O(h^3) \]
where \(h = x_i - x_{i-1} \). Then \(f'(x_i) \) can be found as

\[
f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} + O(h)
\]

and \(f'(x_i) \) can also be approximated as

\[
f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{h}
\]

which is called the first backward finite divided difference.

• The first centered finite divided difference

\[
f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + O(h^3)
\]

and \(f'(x_i) \) can be found as

\[
f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} - O(h^2)
\]

and \(f'(x_i) \) can also be approximated as

\[
f'(x_i) \approx \frac{f(x_{i+1}) - f(x_{i-1})}{2h}
\]

which is called the first centered finite divided difference.
Notice that the truncation error is of the order of h^2 in contrast to the forward and backward approximations that are of the order of h. Therefore, the centered difference is a more accurate representation of the derivative.

![Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference approximations of the first derivative](image)

Example: Estimate the first derivative of

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

at $x = 0.5$ using a step size $h = 0.5$. Repeat the computation using $h = 0.25$.

Solution:
The problem can be solved analytically

$$f'(x) = -0.4x^3 - 0.45x^2 - x - 0.25$$

and $f'(0.5) = -0.9125$.

When $h = 0.5$, $x_{i-1} = x_i - h = 0$, and $f(x_{i-1}) = 1.2$; $x_i = 0.5$, $f(x_i) = 0.925$; $x_{i+1} = x_i + h = 1$, and $f(x_{i+1}) = 0.2$.

The forward divided difference:

$$f'(0.5) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{0.2 - 0.925}{0.5} = -1.45$$

The percentage relative error:

$$|\epsilon_t| = \left| \frac{(-0.9125) - (-1.45)}{-0.9125} \right| \times 100\% = 58.9\%$$

The backward divided difference:

$$f'(0.5) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = \frac{0.925 - 1.2}{0.5} = -0.55$$

The percentage relative error:

$$|\epsilon_t| = \left| \frac{(-0.9125) - (-0.55)}{-0.9125} \right| \times 100\% = 39.7\%$$

The centered divided difference:

$$f'(0.5) \approx \frac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}} = \frac{0.925 - 1.2}{2 \times 0.5} = -1.0$$

The percentage relative error:

$$|\epsilon_t| = \left| \frac{(-0.9125) - (-1.0)}{-0.9125} \right| \times 100\% = 9.6\%$$
When $h = 0.25$, $x_{i-1} = x_i - h = 0.25$, and $f(x_{i-1}) = 1.1035$; $x_i = 0.5$, $f(x_i) = 0.925$; $x_{i+1} = x_i + h = 0.75$, and $f(x_{i+1}) = 0.6363$.

The forward divided difference:
\[
f'(0.5) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{0.6363 - 0.925}{0.75 - 0.5} = -1.155
\]

The percentage relative error:
\[
|\epsilon_t| = \left| \frac{(-0.9125) - (-1.155)}{-0.9125} \right| \times 100\% = 26.5\%
\]

The backward divided difference:
\[
f'(0.5) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = \frac{0.925 - 1.1035}{0.25} = -0.714
\]

The percentage relative error:
\[
|\epsilon_t| = \left| \frac{(-0.9125) - (-0.714)}{-0.9125} \right| \times 100\% = 21.7\%
\]

The centered divided difference:
\[
f'(0.5) \approx \frac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}} = \frac{0.6363 - 1.1035}{2 \times 0.25} = -0.934
\]

The percentage relative error:
\[
|\epsilon_t| = \left| \frac{(-0.9125) - (-0.934)}{-0.9125} \right| \times 100\% = 2.4\%
\]
Using centered finite divided difference and small step size achieves lower approximation error.

6 Higher Order Derivatives:

- The second forward finite divided difference

\[
f(x_{i+2}) = f(x_i) + f'(x_i)(2h) + \frac{f''(x_i)}{2!}(2h)^2 + O(h^3) \tag{2}
\]

\[
f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + O(h^3) \tag{3}
\]

(2)-(3)×2:

\[
f(x_{i+2}) - 2f(x_{i+1}) = -f(x_i) + f''(x_i)h^2 + O(h^3)
\]

\[
f''(x_i) \text{ can be found as } f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)
\]

and \(f''(x_i) \) can be approximated as

\[
f''(x_i) \approx \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}
\]
This is the second forward finite divided difference.

- The second backward finite divided difference

\[f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} + O(h) \]

and \(f''(x_i) \) can be approximated as

\[f''(x_i) \approx \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} \]

is the second backward finite divided difference.

- The second centered finite divided difference

\[f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^{(3)}(x_i)}{3!}h^3 + O(h^4) \quad (4) \]

\[f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2!}h^2 - \frac{f^{(3)}(x_i)}{3!}h^3 + O(h^4) \quad (5) \]

(4)+(5):

\[f(x_{i+1}) + f(x_{i-1}) = 2f(x_i) + f''(x_i)h^2 + O(h^4) \quad (6) \]

Then \(f''(x_i) \) can be solved from (6) as

\[f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + O(h^2) \]
and

\[f''(x_i) \approx \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} \]

is the second centered finite divided difference.

7 High-Accuracy Numerical Differentiation

- The second forward finite divided difference

\[f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2}h + O(h^2) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h) \tag{7} \]

\[f''(x) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h) \tag{8} \]

Substitute (8) into (7),

\[f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{2h} + O(h^2) \tag{9} \]

Then we have

\[f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2) \tag{10} \]
• The second backward finite divided difference

\[
 f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} + O(h^2) \tag{11}
\]

• The second centered finite divided difference

\[
 f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h} + O(h^4) \tag{12}
\]

Example: \(f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2 \), \(x_i = 0.5 \), \(h = 0.25 \).

\(x_i = 0.5, x_{i-1} = x_i - h = 0.25, x_{i-2} = 0, x_{i+1} = x_i + h = 0.75, x_{i+2} = 1. \)

\(f(x_i) = 0.925, f(x_{i-1}) = 1.1035, f(x_{i-2}) = 1.2, f(x_{i+1}) = 0.6363, \text{ and } f(x_{i+2}) = 0.2. \)

Using the forward f.d.d., \(f'(x_i) = -1.155, \epsilon_t = -26.5\% \)

Using the backward f.d.d., \(f'(x_i) = 0.714, \epsilon_t = 21.7\% \)

Using the centered f.d.d., \(f'(x_i) = -0.934, \epsilon_t = -2.4\% \)

Using the second forward f.d.d.,

\[
 f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} = \frac{-0.2 + 4 \times 0.6363 - 3 \times 0.925}{2 \times 0.25} = -0.8594
\]

\[\epsilon_t = \left| \frac{-0.8594 - (-0.9125)}{-0.9125} \right| \times 100\% = 5.82\% \]

Using the second backward f.d.d., \(f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} = -0.8781, \epsilon_t = 3.77\% \)
Using the second centered f.d.d., \(f'(x_i) = \frac{-f(x_{i+2})+8f(x_{i+1})-8f(x_{i-1})+f(x_{i-2})}{12h} = -0.9125 \), \(\epsilon = 0\% \).
8 Richardson Extrapolation

This is to use two derivative estimates to compute a third, more accurate one.

\[D \approx \frac{4}{3} D(h_2) - \frac{1}{3} D(h_1), \quad h_2 = \frac{h_1}{2} \]

(13)

Example: \(f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2, \ x_i = 0.5, \ h_1 = 0.5, \ h_2 = 0.25 \).

Solution:

With \(h_1, \ x_{i+1} = 1, \ x_{i-1} = 0, \ D(h_1) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h_1} = \frac{0.2 - 1.2}{1} = -1.0, \ \epsilon_t = -9.6\% \).

With \(h_2, \ x_{i+1} = 0.75, \ x_{i-1} = 0.25, \ D(h_2) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h_2} = -0.934375, \ \epsilon_t = -2.4\% \).

\[D = \frac{4}{3} D(h_2) - \frac{1}{3} D(h_1) = \frac{4}{3} \times (-0.934575) - \frac{1}{3} \times (-1) = -0.9125, \ \epsilon_t = 0. \]

For centered difference approximations with \(O(h^2) \), using (13) yields a new estimate of \(O(h^4) \).