
Chapter 5: Numerical Integration and Differentiation

PART I: Numerical Integration

Newton-Cotes Integration Formulas
The idea of Newton-Cotes formulas is to replace a complicated function or tabu-
lated data with an approximating function that is easy to integrate.

I =

∫ b

a

f (x)dx ≈
∫ b

a

fn(x)dx

where fn(x) = a0 + a1x + a2x
2 + . . . + anx

n.

1 The Trapezoidal Rule

Using the first order Taylor series to approximate f (x),

I =

∫ b

a

f (x)dx ≈
∫ b

a

f1(x)dx

where
f1(x) = f (a) +

f (b)− f (a)

b− a
(x− a)

1



Then

I ≈
∫ b

a

[
f (a) +

f (b)− f (a)

b− a
(x− a)

]
dx

= (b− a)
f (b) + f (a)

2
The trapezoidal rule is equivalent to approximating the area of the trapezoidal

Figure 1: Graphical depiction of the trapezoidal rule

under the straight line connecting f (a) and f (b). An estimate for the local trun-
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cation error of a single application of the trapezoidal rule can be obtained using
Taylor series as

Et = − 1

12
f
′′
(ξ)(b− a)3

where ξ is a value between a and b.
Example: Use the trapezoidal rule to numerically integrate

f (x) = 0.2 + 25x

from a = 0 to b = 2.
Solution: f (a) = f (0) = 0.2, and f (b) = f (2) = 50.2.

I = (b− a)
f (b) + f (a)

2
= (2− 0)× 0.2 + 50.2

2
= 50.4

The true solution is∫ 2

0

f (x)dx = (0.2x + 12.5x2)|20 = (0.2× 2 + 12.5× 22)− 0 = 50.4

Because f (x) is a linear function, using the trapezoidal rule gets the exact solu-
tion.
Example: Use the trapezoidal rule to numerically integrate

f (x) = 0.2 + 25x + 3x2
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from a = 0 to b = 2.
Solution: f (0) = 0.2, and f (2) = 62.2.

I = (b− a)
f (b) + f (a)

2
= (2− 0)× 0.2 + 62.2

2
= 62.4

The true solution is∫ 2

0

f (x)dx = (0.2x + 12.5x2 + x3)|20 = (0.2× 2 + 12.5× 22 + 23)− 0 = 58.4

The relative error is

|εt| =

∣∣∣∣
58.4− 62.4

58.4

∣∣∣∣× 100% = 6.85%
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Multiple-application trapezoidal rule:
Using smaller integration interval can reduce the approximation error. We can
divide the integration interval from a to b into a number of segments and apply
the trapezoidal rule to each segment. Divide (a, b) into n segments of equal
width. Then

I =

∫ b

a

f (x)dx =

∫ x1

x0

f (x)dx +

∫ x2

x1

f (x)dx + . . . +

∫ xn

xn−1

f (x)dx

where a = x0 < x1 < . . . < xn = b, and xi−xi−1 = h = b−a
n , for i = 1, 2, . . . , n.

Substituting the Trapezoidal rule for each integral yields

I ≈ h
f (x0) + f (x1)

2
+ h

f (x1) + f (x2)

2
+ . . . + h

f (xn−1) + f (xn)

2

=
h

2

[
f (x0) + 2

n−1∑
i=1

f (xi) + f (xn)

]

= (b− a)
f (x0) + 2

∑n−1
i=1 f (xi) + f (xn)

2n
The approximation error using the multiple trapezoidal rule is a sum of the indi-
vidual errors, i.e.,

Et = −
n∑

i=1

h3

12
f
′′
(ξi) = −

n∑
i=1

(b− a)3

12n3
f
′′
(ξi)
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Let f ′′ =
∑n

i=1 f
′′
(ξi)

n . Then the approximate error is

Et = −(b− a)3

12n2
f ′′

Example: Use the 2-segment trapezoidal rule to numerically integrate

f (x) = 0.2 + 25x + 3x2

from a = 0 to b = 2.
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Solution: n = 2, h = (a− b)/n = (2− 0)/2 = 1.
f (0) = 0.2, f (1) = 28.2, and f (2) = 62.2.

I = (b− a)
f (0) + 2f (1) + f (2)

2n
= 2× 0.2 + 2× 28.2 + 62.2

4
= 59.4

The relative error is

|εt| =

∣∣∣∣
58.4− 59.4

58.4

∣∣∣∣× 100% = 1.71%
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2 Simpson’s Rules

Aside from using the trapezoidal rule with finer segmentation, another way to
improve the estimation accuracy is to use higher order polynomials.

Figure 2: Illustration of (a) Simpson’s 1/3 rule, and (b) Simpson’s 3/8 rule

Simpson’s 1/3 rule:
Given function values at 3 points as (x0, f (x0)), (x1, f (x1)), and (x2, f (x2)), we
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can estimate f (x) using Lagrange polynomial interpolation. Then

I =

∫ b

a

f (x)dx ≈
∫ x2

x0

[
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f (x0)

+
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f (x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f (x2)

]
dx

When a = x0, b = x2, (a + b)/2 = x1, and h = (b− a)/2,

I ≈ h

3
[f (x0) + 4f (x1) + f (x2)] = (b− a)

f (x0) + 4f (x1) + f (x2)

6

It can be proved that single segment application of Simpson’s 1/3 rule has a
truncation error of

Et = − 1

90
h5f (4)(ξ)

where ξ is between a and b.
Simpson’s 1/3 rule yields exact results for third order polynomials even though
it is derived from parabola.
Example: Use Simpson’s 1/3 rule to integrate

f (x) = 0.2 + 25x + 3x2 + 8x3

from a = 0 to b = 2.
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Solution: f (0) = 0.2, f (1) = 36.2, and f (2) = 126.2.

I = (b− a)
f (0) + 4f (1) + f (2)

6
= 2× 0.2 + 4× 36.2 + 126.2

6
= 90.4

The exact integral is
∫ 2

0

f (x)dx = (0.2x+12.5x2+x3+2x4)|20 = (0.2×2+12.5×22+23+2×24)−0 = 90.4

Example: Use Simpson’s 1/3 rule to integrate

f (x) = 0.2 + 25x + 3x2 + 2x4

from a = 0 to b = 2.
Solution: f (0) = 0.2, f (1) = 30.2, and f (2) = 94.2.

I = (b− a)
f (0) + 4f (1) + f (2)

6
= 2× 0.2 + 4× 30.2 + 94.2

6
= 71.73

The exact integral is
∫ 2

0

f (x)dx = (0.2x+12.5x2+x3+0.4x5)|20 = (0.2×2+12.5×22+23+0.4×25)−0 = 71.2

The relative error is

|εt| =

∣∣∣∣
71.2− 71.73

71.2

∣∣∣∣ = 0.7%
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Multiple-application Simpson’s 1/3 rule
Dividing the integration interval into n segments of equal width, we have

I =

∫ x2

x0

f (x)dx +

∫ x4

x2

f (x)dx + . . . +

∫ xn

xn−2

f (x)dx

where a = x0 < x1 < . . . < xn = b, and xi − xi−1 = h = (b − a)/n, for
i = 1, 2, . . . , n. Substituting the Simpson’s 1/3 rule for each integral yields

I ≈ 2h
f (x0) + 4f (x1) + f (x2)

6
+ 2h

f (x2) + 4f (x3) + f (x4)

6

+ · · · + 2h
f (xn−2) + 4f (xn−1) + f (xn)

6

= (b− a)
f (x0) + 4

∑n−1
i=1,3,5 f (xi) + 2

∑n−2
j=2,4,6 f (xj) + f (xn)

3n

Note that n has to be even.
Example: Use 4-segment Simpson’s 1/3 rule to integrate

f (x) = 0.2 + 25x + 3x2 + 2x4

from a = 0 to b = 2.
Solution: n = 4, h = (b− a)/n = 0.5.
f (x0) = f (0) = 0.2, f (x1) = f (0.5) = 13.575, f (x2) = f (1) = 30.2, f (x3) =
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f (1.5) = 54.575, and f (x4) = f (2) = 94.2.

I = (b− a)
f (0) + 4f (0.5) + 4f (1.5) + 2f (1) + f (2)

3× 4

= 2× 0.2 + 4× 13.575 + 4× 54.575 + 2× 30.2 + 94.2

12
= 71.2333

The exact integral is∫ 2

0

f (x)dx = (0.2x+12.5x2+x3+0.4x5)|20 = (0.2×2+12.5×22+23+0.4×25)−0 = 71.2

The relative error is

|εt| =

∣∣∣∣
71.2− 71.2333

71.2

∣∣∣∣ = 0.047%

Simpson’s 3/8 rule
This is to use a third-order Lagrange polynomial to fit to four points of f (x) and
yields

I ≈ 3h

8
[f (x0) + 3f (x1) + 3f (x2) + f (x3)]

where h = (b− a)/3. The approximation error using this rule is

Et = − 3

80
h5f (4)(ξ) = −(b− a)5

6480
f (4)(ξ)

where ξ is between a and b.
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3 Integration of Equations

Newton-Cotes algorithms for equations
Compare the following two Pseudocodes for multiple applications of the trape-
zoidal rule.

Pseudocode 1: Algorithm for multiple applications of the trapezoidal rule
function Trapm(h,n,f)
sum=f0
for i=1:n-1
sum=sum+2*fi

end
sum=sum+fn
Trapm=h*sum/2

Pseudocode 2: Algorithm for multiple application of the trapezoidal rule when
function f (x) is available
function TrapEq(n,a,b)
h=(b-a)/n
x=a
sum=f(x)
for i=1:n-1
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x=x+h
sum=sum+2*f(x)

end
sum=sum+f(b)
TraEq=(b-a)*sum/(2*n)

Pseudocode 1 can be used when only a limited number of points are given or the
function is available. Pseudocode 2 is for the case where the analytical function
is available. The difference between the two pseudocodes is that in Pseudocode
2 neigher the independent nor the dependent variable values are passed into the
function via its argument as in Pseudocode 1. When the analytical function is
available, the function values are computed using calls to the function being
analyzed, f (x).

4 Romberg Integration

Romberg integration is one technique that can improve the results of numerical
integration using error-correction techniques.
Richardson’s extrapolation uses two estimates of an integral to compute a third,
more accurate approximation.
The estimate and error associated with a multiple-application trapezoidal rule
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can be represented as
I = I(h) + E(h)

where I is the exact value of the integral, I(h) is the approximation from an n-
segment application of the trapezoidal rule with step size h = (b − a)/n, and
E(h) is the truncation error. If we make two separate estimates using step sizes
of h1 and h2 and have exact values for the error, then

I(h1) + E(h1) = I(h2) + E(h2) (1)
The error of the multiple-application trapezoidal rule can be represented approx-
imately as

E ≈ −b− a

12
h2f̄

′′

where h = (b − a)/n. Assuming that f̄
′′

is constant regardless of step size, we
have

E(h1)

E(h2)
≈ h2

1

h2
2

Then we have

E(h1) ≈ E(h2)

(
h1

h2

)2

which can be substituted into (1):

I(h1) + E(h2)

(
h1

h2

)2

= I(h2) + E(h2)
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Then E(h2) can be solved as

E(h2) =
I(h2)− I(h1)

(h1/h2)2 − 1

This estimate can then be substituted into

I = I(h2) + E(h2)

to yield an improved estimate of the integral:

I ≈ I(h2) +
I(h2)− I(h1)

(h1/h2)2 − 1

It can be shown that the error of this estimate is O(h4). Thus, we have combined
two trapezoidal rule estimates of O(h2) to yield a new estimate of O(h4). For the
special case where the interval is h2 = h1/2, we have

I ≈ I(h2) +
1

22 − 1
[I(h2)− I(h1)] =

4

3
I(h2)− 1

3
I(h1)

With two improved integrals of O(h4) on the basis of three trapezoidal rule esti-
mates, we can combine them to yield an even better value with O(h6).
The Romberg integration algorithm has the general form as

Ij,k ≈ 4k−1Ij+1,k−1 − Ij,k−1

4k−1 − 1
16



where Ij+1,k−1 and Ij,k−1 are the more and less accurate integrals, respectively,
and Ij,k is the improved integral. The index k signifies the level of the integra-
tion, where k = 1 corresponds to the original trapezoidal rule estimates, k = 2
corresponds to O(h4), k = 3 to O(h6), and so forth.

Example: f (x) = 0.2 + 25x− 200x2 + 675x3 − 900x4 + 400x5, find
∫ b

a f (x)dx,
a = 0, b = 0.8.
Solution:
True solution: I =

∫ 0.8

0 f (x)dx =
∫ 0.8

0 (0.2 + 25x − 200x2 + 675x3 − 900x4 +
400x5)dx = 1.640533

n1 = 1, h1 = 0.8
f (0) = 0.2, f (0.8) = 0.232

I1,1 =
∫ 0.8

0 f1(x)dx = 0.8× f(0)+f(0.8)
2 = 0.1728, εt = 89.5%

n2 = 2, h2 = b−a
2 = 0.4, (h2 = h1/2)

f (0) = 0.2, f (0.8) = 0.232, f (0.4) = 2.456

I2,1 =
∫ 0.4

0 f1(x)dx+
∫ 0.8

0.4 f1(x)dx = 0.4× f(0)+f(0.4)
2 +0.4× f(0.4)+f(0.8)

2 = 1.0688,
εt = 34.9%

n3 = 4, h3 = b−a
4 = 0.2, (h3 = h2/2)
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I3,1 = 0.2
2 [f (0) + 2f (0.2) + 2f (0.4) + 2f (0.6) + f (0.8)] = 1.4848, εt = 9.5%

I1,2 =
4I2,1−I1,1

4−1 = 4
3I2,1− 1

3I1,1 = 4
3 × 1.0688− 1

3 × 0.1728 = 1.367467, εt = 16.6%

I2,2 =
4I3,1−I2,1

4−1 = 4
3I3,1 − 1

3I2,1 = 4
3 × 1.4848− 1

3 × 1.0688 = 1.623467, εt = 1.0%

I1,3 =
42I2,2−I1,2

42−1
= 16

15I2,2 − 1
15I1,2 = 16

15 × 1.623467 − 1
15 × 1.367467 = 1.640533,

εt = 0

Figure 3: Example of Romberg integration
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PART II: Numerical Differentiation

Finite Divided Difference

5 First Order Derivatives:

• The first forward finite divided difference
Using Taylor series,

f (xi+1) = f (xi) + f
′
(xi)h +

f
′′
(xi)

2!
h2 + O(h3)

where h = xi+1 − xi. Then f
′
(xi) can be found as

f
′
(xi) =

f (xi+1)− f (xi)

h
+ O(h)

The first forward finite divided difference is

f
′
(xi) ≈ f (xi+1)− f (xi)

h
• The first backward finite divided difference

Using Taylor series,

f (xi−1) = f (xi)− f
′
(xi)h +

f
′′
(xi)

2!
h2 + O(h3)
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where h = xi − xi−1. Then f
′
(xi) can be found as

f
′
(xi) =

f (xi)− f (xi−1)

h
+ O(h)

and f
′
(xi) can also be approximated as

f
′
(xi) ≈ f (xi)− f (xi−1)

h

which is called the first backward finite divided difference.

• The first centered finite divided difference

f (xi+1)− f (xi−1) = 2f
′
(xi)h + O(h3)

and f
′
(xi) can be found as

f
′
(xi) =

f (xi+1)− f (xi−1)

2h
−O(h2)

and f
′
(xi) can also be approximated as

f
′
(xi) ≈ f (xi+1)− f (xi−1)

2h

which is called the first centered finite divided difference.
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Notice that the truncation error is of the order of h2 in contrast to the forward
and backward approximations that are of the order of h. Therefore, the centered
difference is a more accurate representation of the derivative.

Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference approximations of the first derivative

Example: Estimate the first derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25.
Solution:
The problem can be solved analytically

f
′
(x) = −0.4x3 − 0.45x2 − x− 0.25

and f
′
(0.5) = −0.9125.
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When h = 0.5, xi−1 = xi − h = 0, and f (xi−1) = 1.2; xi = 0.5, f (xi) = 0.925;
xi+1 = xi + h = 1, and f (xi+1) = 0.2.
The forward divided difference:

f
′
(0.5) ≈ f (xi+1)− f (xi)

xi+1 − xi
=

0.2− 0.925

0.5
= −1.45

The percentage relative error:

|εt| =

∣∣∣∣
(−0.9125)− (−1.45)

−0.9125

∣∣∣∣× 100% = 58.9%

The backward divided difference:

f
′
(0.5) ≈ f (xi)− f (xi−1)

xi − xi−1
=

0.925− 1.2

0.5
= −0.55

The percentage relative error:

|εt| =

∣∣∣∣
(−0.9125)− (−0.55)

−0.9125

∣∣∣∣× 100% = 39.7%

The centered divided difference:

f
′
(0.5) ≈ f (xi+1)− f (xi−1)

xi+1 − xi−1
=

0.925− 1.2

2× 0.5
= −1.0

The percentage relative error:

|εt| =

∣∣∣∣
(−0.9125)− (−1.0)

−0.9125

∣∣∣∣× 100% = 9.6%
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When h = 0.25, xi−1 = xi − h = 0.25, and f (xi−1) = 1.1035; xi = 0.5,
f (xi) = 0.925; xi+1 = xi + h = 0.75, and f (xi+1) = 0.6363.
The forward divided difference:

f
′
(0.5) ≈ f (xi+1)− f (xi)

xi+1 − xi
=

0.6363− 0.925

0.25
= −1.155

The percentage relative error:

|εt| =

∣∣∣∣
(−0.9125)− (−1.155)

−0.9125

∣∣∣∣× 100% = 26.5%

The backward divided difference:

f
′
(0.5) ≈ f (xi)− f (xi−1)

xi − xi−1
=

0.925− 1.1035

0.25
= −0.714

The percentage relative error:

|εt| =

∣∣∣∣
(−0.9125)− (−0.714)

−0.9125

∣∣∣∣× 100% = 21.7%

The centered divided difference:

f
′
(0.5) ≈ f (xi+1)− f (xi−1)

xi+1 − xi−1
=

0.6363− 1.1035

2× 0.25
= −0.934

The percentage relative error:

|εt| =

∣∣∣∣
(−0.9125)− (−0.934)

−0.9125

∣∣∣∣× 100% = 2.4%
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Using centered finite divided difference and small step size achieves lower ap-
proximation error.

6 Higher Order Derivatives:

• The second forward finite divided difference

f (xi+2) = f (xi) + f
′
(xi)(2h) +

f
′′
(xi)

2!
(2h)2 + O(h3) (2)

f (xi+1) = f (xi) + f
′
(xi)h +

f
′′
(xi)

2!
h2 + O(h3) (3)

(2)-(3)×2:

f (xi+2)− 2f (xi+1) = −f (xi) + f
′′
(xi)h

2 + O(h3)

f
′′
(xi) can be found as

f
′′
(xi) =

f (xi+2)− 2f (xi+1) + f (xi)

h2
+ O(h)

and f
′′
(xi) can be approximated as

f
′′
(xi) ≈ f (xi+2)− 2f (xi+1) + f (xi)

h2
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This is the second forward finite divided difference.

• The second backward finite divided difference

f
′′
(xi) =

f (xi)− 2f (xi−1) + f (xi−2)

h2
+ O(h)

and f
′′
(xi) can be approximated as

f
′′
(xi) ≈ f (xi)− 2f (xi−1) + f (xi−2)

h2

is the second backward finite divided difference.

• The second centered finite divided difference

f (xi+1) = f (xi) + f
′
(xi)h +

f
′′
(xi)

2!
h2 +

f (3)(xi)

3!
h3 + O(h4) (4)

f (xi−1) = f (xi)− f
′
(xi)h +

f
′′
(xi)

2!
h2 − f (3)(xi)

3!
h3 + O(h4) (5)

(4)+(5):
f (xi+1) + f (xi−1) = 2f (xi) + f

′′
(xi)h

2 + O(h4) (6)
Then f

′′
(xi) can be solved from (6) as

f
′′
(xi) =

f (xi+1)− 2f (xi) + f (xi−1)

h2
+ O(h2)
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and
f
′′
(xi) ≈ f (xi+1)− 2f (xi) + f (xi−1)

h2

is the second centered finite divided difference.

7 High-Accuracy Numerical Differentiation

• The second forward finite divided difference

f
′
(xi) =

f (xi+1)− f (xi)

h
− f

′′
(xi)

2
h + O(h2) =

f (xi+1)− f (xi)

h
+ O(h)(7)

f
′′
(x) =

f (xi+2)− 2f (xi+1) + f (xi)

h2
+ O(h) (8)

Substitute (8) into (7),

f
′
(xi) =

f (xi+1)− f (xi)

h
− f (xi+2)− 2f (xi+1) + f (xi)

2h
+ O(h2) (9)

Then we have

f
′
(xi) =

−f (xi+2) + 4f (xi+1)− 3f (xi)

2h
+ O(h2) (10)
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• The second backward finite divided difference

f
′
(xi) =

3f (xi)− 4f (xi−1) + f (xi−2)

2h
+ O(h2) (11)

• The second centered finite divided difference

f
′
(xi) =

−f (xi+2) + 8f (xi+1)− 8f (xi−1) + f (xi−2)

12h
+ O(h4) (12)

Example: f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2, xi = 0.5, h = 0.25.

xi = 0.5, xi−1 = xi − h = 0.25, xi−2 = 0, xi+1 = xi + h = 0.75, xi+2 = 1.
f (xi) = 0.925, f (xi−1) = 1.1035, f (xi−2) = 1.2, f (xi+1) = 0.6363, and f (xi+2) =
0.2.
Using the forward f.d.d., f

′
(xi)

.
= −1.155, εt = −26.5%

Using the backward f.d.d., f
′
(xi)

.
= 0.714, εt = 21.7%

Using the centered f.d.d., f
′
(xi)

.
= −0.934, εt = −2.4%

Using the second forward f.d.d.,
f
′
(xi) = −f(xi+2)+4f(xi+1−3f(xi)

2h = −0.2+4×0.6363−3×0.925
2×0.25 = −0.8594

εt =
∣∣∣−0.8594−(−0.9125)

−0.9125

∣∣∣× 100% = 5.82%

Using the second backward f.d.d., f
′
(xi) = 3f(xi)−4f(xi−1+f(xi−2)

2h = −0.8781, εt =
3.77%
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Using the second centered f.d.d., f
′
(xi) = −f(xi+2)+8f(xi+1−8f(xi−1)+f(xi−2)

12h = −0.9125,
ε = 0%.
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8 Richardson Extrapolation

This is to use two derivative estimates to compute a third, more accurate one.

D ≈ 4

3
D(h2)− 1

3
D(h1), h2 =

h1

2
(13)

Example: f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2, xi = 0.5, h1 = 0.5,
h2 = 0.25.
Solution:
With h1, xi+1 = 1, xi−1 = 0, D(h1) = f(xi+1)−f(xi−1)

2h1
= 0.2−1.2

1 = −1.0, εt =

−9.6%.
With h2, xi+1 = 0.75, xi−1 = 0.25, D(h2) = f(xi+1)−f(xi−1)

2h2
= −0.934375,

εt = −2.4%.

D = 4
3D(h2)− 1

3D(h1) = 4
3 × (−0.934575)− 1

3 × (−1) = −0.9125, εt = 0.
For centered difference approximations with O(h2), using (13) yields a new es-
timate of O(h4).
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