Chapter 7: Ordinary Differential Equations

Given $\frac{d y}{d x}=f(x, y)$, find $y(x)$.

1 Analytical Method

Given $\frac{d y}{d x}+k y=f(x)$ and initial condition $\left(x_{0}, y_{0}\right)$

- Step 1: Find a particular solution, y_{p}
- If $f(x)=x$, then $y_{p}=A x+B$.
- If $f(x)=x^{2}$, then $y_{p}=A x^{2}+B x+C$
- If $f(x)=\sin \omega x$ or $\cos \omega x$, then $y_{p}=A \sin \omega x+B \cos \omega x$.
- If $f(x)=e^{r x}, r \neq-k$, then $y_{p}=A e^{r x}$.
- If $f(x)=e^{-k x}$, then $y_{p}=A x e^{-k x}$.
- Step 2: Find the general solution of the homogeneous differential equation $\frac{d y}{d x}+$ $k y=0$
$\frac{d y}{k y}=-d x, \rightarrow \int \frac{d y}{k y}=\int-d x, \rightarrow \ln y=-k x+c k \rightarrow y=e^{-k x} e^{c k}$, or
$y_{h}=C e^{-k x}$
- Find constant C using initial condition $\left(x_{0}, y_{0}\right)$

2 Euler's Method

Basic idea of iterative methods: given $\left(x_{i}, y_{i}\right), x_{i+1}=x_{i}+h, y_{i+1}=y_{i}+\phi h$, where ϕ is estimated function slope.

Figure 1: Illustration of iterative methods
In Euler's method, the first derivative is used to estimate the function slope, i.e., $\phi=f\left(x_{i}, y_{i}\right)$, and $y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) \cdot h$.

Using Taylor serious to analyze local truncation error
If $y(x)$ is continuous and its derivatives are continuous too, its Taylor series can be represented as

$$
y_{i+1}=y_{i}+y_{i}^{\prime} h+\frac{y_{i}^{\prime \prime}}{2!} h^{2}+\cdots+\frac{y_{i}^{(n)}}{n!} h^{n}+R_{n}
$$

where $h=x_{i+1}-x_{i}$ and R_{n} is the remainder term given by

$$
R_{n}=\frac{y^{(n+1)}(\alpha)}{(n+1)!} h^{n+1}=O\left(h^{n+1}\right)
$$

and α is a value between x_{i} and x_{i+1}. Since $y^{\prime}=\frac{d y}{d x}=f(x, y)$, we have $y_{i}^{\prime}=f\left(x_{i}, y_{i}\right)$, $y_{i}^{\prime \prime}=f^{\prime}\left(x_{i}, y_{i}\right), \ldots$, and $y_{i}^{(n)}=f^{(n-1)}\left(x_{i}, y_{i}\right)$. Then

$$
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h+\frac{1}{2} f^{\prime}\left(x_{i}, y_{i}\right) h^{2}+\cdots+\frac{1}{n!} f^{(n-1)}\left(x_{i}, y_{i}\right)+O\left(h^{n+1}\right)
$$

Using Eular's method,

$$
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

Therefore, the true local truncation error in using Euler's method is

$$
E_{t}=\frac{1}{2} f^{\prime}\left(x_{i}, y_{i}\right) h^{2}+\cdots+\frac{1}{n!} f^{(n-1)}\left(x_{i}, y_{i}\right)+O\left(h^{n+1}\right)
$$

When h is sufficiently small, the higher order terms can be neglected, and the approx-
imated local truncation error is

$$
E_{a}=\frac{1}{2} f^{\prime}\left(x_{i}, y_{i}\right) h^{2}
$$

- Local absolute truncation error, E_{a}, is proportional to h^{2} and $f^{\prime}\left(x_{i}, y_{i}\right)$.
- Taylor series only provides the local truncation error.
- Global truncation error using Euler's method is proportional to the step size, $O(h)$.
- The truncation error can be reduced by decreasing the step size.
- Euler's method provides error free prediction if the function $y(x)$ is linear.

Example: Integrate the equation $\frac{d y}{d x}=-2 x^{3}+12 x^{2}-20 x+8.5$ from $x=0$ to $x=1$ (1) using analytical method, and (2) using Euler's method with a step size of 0.5 and 0.25 . The initial condition at $x=0$ is $y=1$.

Solution:

$f(x, y)=-2 x^{3}+12 x^{2}-20 x+8.5, x_{0}=0$, and $y_{0}=1$.
Using analytical method: The exact solution to the equation $\frac{d y}{d x}=-2 x^{3}+12 x^{2}-$ $20 x+8.5$ is

$$
y=\int\left(-2 x^{3}+12 x^{2}-20 x+8.5\right) d x=-\frac{1}{2} x^{4}+4 x^{3}-10 x^{2}+8.5 x+C
$$

where C is a constant. Using the initial condition $y=1$ when $x=0$, then $1=C$. Thus,

$$
y=-\frac{1}{2} x^{4}+4 x^{3}-10 x^{2}+8.5 x+1
$$

When $x=0.5$, the true function value is

$$
y(0.5)=-\frac{1}{2} \times 0.5^{4}+4 \times 0.5^{3}-10 \times 0.5^{2}+8.5 \times 0.5+1=3.21875
$$

and when $x=1$, the true function value is

$$
y(1)=-\frac{1}{2} \times 1^{4}+4 \times 1^{3}-10 \times 1^{2}+8.5 \times 1+1=3
$$

Using Euler's method with $h=0.5$:
$x_{1}=x_{0}+h=0.5$, and $y_{1}=y_{0}+f\left(x_{0}, y_{0}\right) h=1+f(0,1) \times 0.5=1+8.5 \times 0.5=5.25$. The percent relative error is
$\epsilon_{t}=\left|\frac{\text { true value }- \text { approximate }}{\text { true value }}\right| \times 100 \%=[(3.21875-5.25) / 3.21875] \times 100 \%=63.1 \%$
$x_{2}=x_{1}+h=0.5+0.5=1$, and $y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) h=5.25+f(0.5,5.25) \times 0.5=$ 5.875.

The percent relative error is $\epsilon_{t}=[(3-5.875) / 3] \times 100 \%=95.8 \%$.

Using Euler's method with $h=0.25$:
$x_{1}=x_{0}+h=0.25$, and $y_{1}=y_{0}+f\left(x_{0}, y_{0}\right) h=1+f(0,1) \times 0.25=1+8.5 \times 0.25=$ 3.1250 .
$x_{2}=x_{1}+h=0.25+0.25=0.5$, and $y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) h=3.1250+f(0.25,3.1250) \times$ $0.25=3.1250+4.2188 \times 0.25=4.1797$
The percent relative error is

$$
\epsilon_{t}=\left|\frac{\text { true value }- \text { approximate }}{\text { true value }}\right| \times 100 \%=\left[\frac{3.21875-4.1797}{3.21875} \times 100 \%=29.85 \%\right.
$$

$x_{3}=x_{2}+h=0.5+0.25=0.75$, and $y_{3}=y_{2}+f\left(x_{2}, y_{2}\right) h=4.1797+f(0.5,4.1797) \times$ $0.25=4.4922$.
$x_{4}=x_{3}+h=0.75+0.25=1$, and $y_{4}=y_{3}+f\left(x_{3}, y_{3}\right) h=4.4922+f(0.75,4.4922) \times$ $0.25=4.3438$.
The percent relative error is $\epsilon_{t}=[(3-4.3438) / 3] \times 100 \%=44.79 \%$.
Reducing step size can reduce the estimation error. Another approach to reducing the estimation error is to use higher order Taylor series.

Figure 2: Euler's method for $\frac{d y}{d x}=-2 x^{3}+12 x^{2}-20 x+8.5$

3 Higher-order Taylor Series Methods

Using the second-order Taylor series,

$$
y_{i+1}=y_{i}+y_{i}^{\prime} h+\frac{y_{i}^{\prime \prime}}{2!} h^{2}=y_{i}+f\left(x_{i}, y_{i}\right) h+\frac{1}{2} f^{\prime}\left(x_{i}, y_{i}\right) h^{2}
$$

where $f^{\prime}(x, y)$ is found using the chain-rule as

$$
f^{\prime}(x, y)=\frac{\partial f(x, y)}{\partial x}+\frac{\partial f(x, y)}{\partial y} \frac{d y}{d x}
$$

Using this method, the approximate local truncation error is

$$
E_{a}=\frac{1}{3!} f^{\prime \prime}\left(x_{i}, y_{i}\right) h^{3}=\frac{1}{6} f^{\prime \prime}\left(x_{i}, y_{i}\right) h^{3}
$$

where

$$
f^{\prime \prime}(x, y)=\frac{\partial f^{\prime}(x, y)}{\partial x}+\frac{\partial f^{\prime}(x, y)}{\partial y} \frac{d y}{d x}
$$

$f^{\prime}(x, y)$ and $f^{\prime \prime}(x, y)$ may be difficult to evaluate for complicated functions.

4 Runge-Kutta Methods

Runge-Kutta (RK) methods can achieve the accuracy of higher order Taylor series but avoid evaluating the higher order derivatives. The general form of RK methods is

$$
y_{i+1}=y_{i}+\phi\left(x_{i}, y_{i}, h\right) h
$$

where $\phi\left(x_{i}, y_{i}, h\right)$ is called an increment function and is written in general form as

$$
\phi=a_{1} k_{1}+a_{2} k_{2}+\cdots+a_{n} k_{n}
$$

where

$$
\begin{aligned}
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right) \\
& k_{3}=f\left(x_{i}+p_{2} h, y_{i}+q_{21} k_{1} h+q_{22} k_{2} h\right) \\
& \cdots \\
& k_{n}=f\left(x_{i}+p_{n-1} h, y_{i}+q_{n-1,1} k_{1} h+q_{n-1,2} k_{2} h+\cdots+q_{n-1, n-1} k_{n-1} h\right)
\end{aligned}
$$

Various types of RK methods can be devised by employing different numbers of terms in ϕ and different values of the parameters a 's p 's and q 's. For lower order versions of RK methods, the number of terms used is same as the order of the approach.
First-order RK methods
When $n=1$, letting $a_{1}=1$, we have $\phi\left(x_{i}, y_{i}, h\right)=a_{1} k_{1}=k_{1}$. Then

$$
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h
$$

is Euler's method. That is, Euler's method is the first-order RK method. Second-order RK methods
The second-order RK methods use

$$
y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h
$$

where

$$
\begin{aligned}
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right)
\end{aligned}
$$

How to find constants a_{1}, a_{2}, p_{1} and q_{11} ?
Using Taylor series:

$$
\begin{align*}
y_{i+1} & =y_{i}+y_{i}^{\prime} h+\frac{1}{2} y_{i}^{\prime \prime} h^{2} \quad \text { (ignore higher order terms) } \\
& =y_{i}+f\left(x_{i}, y_{i}\right) h+\frac{1}{2} f^{\prime}\left(x_{i}, y_{i}\right) h^{2} \\
& =y_{i}+f\left(x_{i}, y_{i}\right) h+\frac{1}{2}\left[\frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x}+\frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y} y_{i}^{\prime}\right] h^{2} \\
& =y_{i}+f\left(x_{i}, y_{i}\right) h+\frac{1}{2} \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x} h^{2}+\frac{1}{2} \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y} y_{i}^{\prime} h^{2} \tag{1}
\end{align*}
$$

Using 2nd-order RK method,

$$
\begin{align*}
y_{i+1} & =y_{i}+a_{1} k_{1} h+a_{2} k_{2} h \\
& =y_{i}+a_{1} f\left(x_{i}, y_{i}\right) h+a_{2} k_{2} h \tag{2}
\end{align*}
$$

where k_{2} can be expanded in Taylor series as

$$
\begin{align*}
k_{2}= & f\left(x_{i}+p_{1} h, y_{i}+q_{11} k_{1} h\right)=f\left(x_{i}, y_{i}\right)+\frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x} p_{1} h+\frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y} q_{11} k_{1} h \\
& \quad \text { ignore higher order terms) } \\
= & f\left(x_{i}, y_{i}\right)+\frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x} p_{1} h+\frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y} q_{11} f\left(x_{i}, y_{i}\right) h \tag{3}
\end{align*}
$$

Substituting k_{2} in (2) by (3), we have

$$
\begin{align*}
y_{i+1} & =y_{i}+a_{1} f\left(x_{i}, y_{i}\right) h+a_{2} f\left(x_{i}, y_{i}\right) h+a_{2} \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x} p_{1} h^{2}+a_{2} \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y} q_{11} f\left(x_{i}, y_{i}\right) h^{2} \\
& =y_{i}+\left(a_{1}+a_{2}\right) f\left(x_{i}, y_{i}\right) h+a_{2} \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial x} p_{1} h^{2}+a_{2} \frac{\partial f\left(x_{i}, y_{i}\right)}{\partial y} q_{11} f\left(x_{i}, y_{i}\right) h^{2} \tag{4}
\end{align*}
$$

Comparing the like terms in (4) and (1), we have

$$
\begin{aligned}
& a_{1}+a_{2}=1 \\
& a_{2} p_{1}=\frac{1}{2} \\
& a_{2} q_{11}=\frac{1}{2}
\end{aligned}
$$

There are three simultaneous equations containing four unkown constants. Therefore, there are infinite sets of constants that satisfy the equations. By assuming a value for one of the constants, we can determine the other three.
Heun method: $a_{1}=\frac{1}{2}, a_{2}=\frac{1}{2}$, and $p_{1}=q_{11}=1$. Then

$$
\begin{aligned}
& y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}\right) h=y_{i}+\frac{1}{2}\left(k_{1}+k_{2}\right) h \\
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+h, y_{i}+k_{1} h\right)
\end{aligned}
$$

Predictor: $y_{i+1}^{0}=y_{i}+f\left(x_{i}, y_{i}\right) h$
Corrector: $y_{i+1}=y_{i}+\frac{f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{0}\right)}{2} h$

The midpoint method $a_{1}=0, a_{2}=1$, and $p_{1}=q_{11}=\frac{1}{2}$. Then

$$
\begin{aligned}
& y_{i+1}=y_{i}+k_{2} h \\
& k_{1}=f\left(x_{i}, y_{i}\right) \\
& k_{2}=f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{k_{1} h}{2}\right)
\end{aligned}
$$

Figure 3: Illustration of the midpoint method
Fourth-order Runge-Kutta methods
Fourth-order RK methods have the form

$$
y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}+a_{3} k_{3}+a_{4} k_{4}\right) h
$$

Similar to the second-order RK methods, there are an infinite number of versions of fourth-order RK methods. The most commonly used form is

$$
y_{i+1}=y_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h
$$

where

$$
\begin{aligned}
k_{1} & =f\left(x_{i}, y_{i}\right) \\
k_{2} & =f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1} h\right) \\
k_{3} & =f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{2} h\right) \\
k_{4} & =f\left(x_{i}+h, y_{i}+k_{3} h\right)
\end{aligned}
$$

Example: Use the classical fourth-order RK method to integrate

$$
f(x, y)=-2 x^{3}+12 x^{2}-20 x+8.5
$$

using a step size of $h=0.5$ and an initial condition of $y=1$ at $x=0$.
Solution: $i=0, x_{0}=0, y_{0}=1$.
$k_{1}=f\left(x_{0}, y_{0}\right)=f(0,1)=8.5$
$k_{2}=f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{1}{2} k_{1} h\right)=f(0.25,3.125)=4.21875$
$k_{3}=f\left(x_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} k_{2} h\right)=f\left(0.25,1+\frac{1}{2} \times 4.21875 \times 0.5\right)=f(0.25,2.0547)=4.21875$
$k_{4}=f\left(x_{0}+h, y_{0}+k_{3} h\right)=f(0.25,1+4.21875 \times 0.5)=1.25$

Figure 4: Illustration of slope estimates in the 4th order RK method
$x_{1}=x_{0}+h=0.5$,
$y_{1}=y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h=1+\frac{1}{6}(8.5+2 \times 4.21875+3 \times 4.21875+1.25) \times 0.5=$ 3.21875

This is exactly same as the true value $(y(0.5)=3.21875$, see the previous example).
Because $y(x)$ is a fourth-order polynomial, the fourth-order RK methods give exact solution.
Example: Given $\frac{d y}{d x}=4 e^{0.8 x}-0.5 y$, and $y(0)=2$, (1) find $y(0.5)$ using analytical method, and (2) find $y(0.5)$ using the classical 4-th order RK method with step size $h=0.5$.
Solution:
Analytical method:
(1) $\frac{d y}{d x}+0.5 y=4 e^{0.8 x}$
$y_{p}=A e^{0.8 x}, \frac{d y_{p}}{d x}=0.8 A e^{0.8 x}$, then
$A \times 0.8 e^{0.8 x}+0.5 A e^{0 . x}=4 e^{0.8 x}, A=\frac{40}{13}$
$y_{p}=\frac{40}{13} e^{0.8 x}$.
(2) $\frac{d y_{h}}{d x}+0.5 h_{h}=0$, then $\frac{d y_{h}}{d x}=-0.5 y, \frac{d y_{h}}{0.5 y_{h}}=-d x$, or $\int \frac{d y_{h}}{0.5 y_{h}}=-\int d x$. Then
$\frac{1}{0.5} \ln y_{h}=-x+C^{\prime}, \ln y_{h}=-0.5 x+C^{\prime \prime}$, and
$y_{h}=e^{-0.5 x+C^{\prime \prime}}=C e^{-0.5 x}$.
(3) $y=h_{h}+y_{p}=C e^{-0.5 x}+\frac{40}{13} 0^{0.8 x}$, with $\left(x_{0}, y_{0}\right)=(0,2), 2=C+\frac{40}{13}, C=-\frac{14}{13}$, and
$y=-\frac{14}{13} e^{-0.5 x}+\frac{40}{13} e^{0.8 x}$
(4) When $x=0.5, y=-\frac{14}{13} e^{-0.25}+\frac{40}{13} e^{0.4}=3.7515$

Classical 4-th order RK method:
$\frac{d y}{d x}=4 e^{0.8 x}-0.5 y, f(x, y)=4 e^{0.8 x}-0.5 y$, then
$k_{1}=f\left(x_{0}, y_{0}\right)=f(0,2)=4 e^{0}-0.5 \times 2=3$
$k_{2}=f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{1}{2} k_{1} h\right)=f\left(0.25,2+\frac{1}{2} \times 3 \times 0.5\right)=f(0.25,2.75)=4 \times e^{0.8 \times 0.25}-$ $0.5 \times 2.75=3.5106$
$k_{3}=f\left(x_{0}+\frac{h}{2}, y_{0}+\frac{1}{2} k_{2} h\right)=f\left(0.25,2+\frac{1}{2} \times 3.5106 \times 0.5\right)=f(0.25,2.8777)=3.4468$
$k_{4}=f\left(x_{0}+h, y_{0}+k_{3} h\right)=f(0.5,2+\times 3.4468 \times 0.5)=f(0.5,3.7234)=4.1056$
$x_{1}=x_{0}+h=0.5, y_{1}=y_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h=2+\frac{1}{6}(3+2 \times 3.5106+2 \times$
$3.4468+4.1056) \times 0.5=3.75167$
$\epsilon_{t}=3.97 \times 10^{-5}$.
\underline{n}-th order RK methods

- Accurate to n-th order polynomial
- Equivalent $\mathrm{t} n$-th order Taylor series
- Does not require to evaluate derivatives

5 Systems of ODEs

For a system of simultaneous ODEs like

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right) \\
& \frac{d y_{2}}{d x}=f_{2}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right) \\
& \vdots \\
& \frac{d y_{n}}{d x}=f_{n}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)
\end{aligned}
$$

The solution of such a system requires that n initial conditions be known at the starting value of x, i.e., when $x=x_{0}$, the corresponding values of y_{i}, for all $i=1,2, \cdots, n$ are all known.
All the numerical methods we have discussed for single equations can be extended to solve a system of ODEs.
Example: Using Euler's method to solve the following set of ODEs:

$$
\begin{aligned}
& \frac{d y_{1}}{d x}=-0.5 y_{1} \\
& \frac{d y_{2}}{d x}=4-0.3 y_{2}-0.1 y_{1}
\end{aligned}
$$

assuming that $x=0, y_{1}=4$, and $y_{2}=6$. Integrate to $x=2$ with a step size of 0.5 .

Solution:

$$
\begin{aligned}
& y_{i+1,1}=y_{i, 1}+f_{1}\left(x_{i}, y_{i, 1}, y_{i, 2}\right) \\
& y_{i+1,2}=y_{i, 2}+f_{2}\left(x_{i}, y_{i, 2}, y_{i, 2}\right)
\end{aligned}
$$

where $f_{1}\left(x, y_{1}, y_{2}\right)=-0.5 y_{1}$, and $f_{2}\left(x, y_{1}, y_{2}\right)=4-0.3 y_{2}-0.1 y_{1}$.
When $i=0, x_{1}=x_{0}+h=0.5$,
$y_{1,1}=y_{0,1}+f_{1}\left(x_{0}, y_{0,1}, y_{0,2}\right) h=4+f_{1}(0,4,6)=4-0.5 \times 4 \times 0.5=3$
$y_{1,2}=y_{0,2}+f_{2}\left(x_{0}, y_{0,1}, y_{0,2}\right) h=6+f_{2}(0,4,6)=6+(4-0.3 \times 6-0.1 \times 4) \times 0.5=6.9$
When $i=1, x_{2}=x_{1}+h=1$
$y_{2,1}=y_{1,1}+f_{1}\left(x_{1}, y_{1,1}, y_{1,2}\right) h=3+f_{1}(0.5,3,6.9)=2.25$
$y_{2,2}=y_{1,2}+f_{2}\left(x_{1}, y_{1,1}, y_{1,2}\right) h=6.9+f_{2}(0.5,3,6.9)=7.715$
Example: Using the classical fourth-order RK method to solve the ODEs from the previous example.

Solution:

$$
\begin{aligned}
y_{i+1,1} & =y_{i, 1}+\frac{1}{6}\left(k_{1,1}+2 k_{1,2}+2 k_{1,3}+k_{1,4}\right) h \\
y_{i+1,2} & =y_{i, 2}+\frac{1}{6}\left(k_{2,1}+2 k_{2,2}+2 k_{2,3}+k_{2,4}\right) h
\end{aligned}
$$

where

$$
\begin{aligned}
k_{1,1} & =f_{1}\left(x_{i}, y_{i, 1}, y_{i, 2}\right) \\
k_{2,1} & =f_{1}\left(x_{i}+\frac{1}{2} h, y_{i, 1}+\frac{1}{2} k_{1,1} h, y_{i, 2}+\frac{1}{2} k_{1,2} h\right) \\
k_{3,1} & =f_{1}\left(x_{i}+\frac{1}{2} h, y_{i, 1}+\frac{1}{2} k_{2,1} h, y_{i, 2}+\frac{1}{2} k_{2,2} h\right) \\
k_{4,1} & =f_{1}\left(x_{i}+h, y_{i, 1}+k_{3,1} h, y_{i, 2}+k_{3,2} h\right)
\end{aligned}
$$

and

$$
\begin{aligned}
k_{1,2} & =f_{2}\left(x_{i}, y_{i, 1}, y_{i, 2}\right) \\
k_{2,2} & =f_{2}\left(x_{i}+\frac{1}{2} h, y_{i, 1}+\frac{1}{2} k_{1,1} h, y_{i, 2}+\frac{1}{2} k_{1,2} h\right) \\
k_{3,2} & =f_{2}\left(x_{i}+\frac{1}{2} h, y_{i, 1}+\frac{1}{2} k_{2,1} h, y_{i, 2}+\frac{1}{2} k_{2,2} h\right) \\
k_{4,2} & =f_{2}\left(x_{i}+h, y_{i, 1}+k_{3,1} h, y_{i, 2}+k_{3,2} h\right)
\end{aligned}
$$

6 Multistep Methods

All previous methods are one-step methods which utilize information at a single point x_{i} to predict a value of the dependent variable y_{i+1} at a future point x_{i+1}. The multistep methods are based on the insight that, once the computation has begun, infor-
mation from previous points can be used to estimate the function values at a future point.
The non-self-starting Heun method
This method a predictor and a corrector as

$$
\begin{aligned}
& \text { Predictor: } y_{i+1}^{0}=y_{i-1}^{m}+f\left(x_{i}, y_{i}^{m}\right) 2 h \\
& \text { Corrector: } \\
& y_{i+1}^{j}=y_{i}^{m}+\frac{f\left(x_{i}, y_{i}^{m}\right)+f\left(x_{i+1}, y_{i+1}^{j-1}\right)}{2} h \\
& \\
& \\
& (\text { for } j=1,2, \ldots, m)
\end{aligned}
$$

where the corrector is applied iteratively from $j=1$ to m to obtain refined solutions. The approximate percentage relative error is

$$
\left|\epsilon_{a}\right|=\left|\frac{y_{i+1}^{j}-y_{i+1}^{j-1}}{y_{i+1}^{j}}\right| \times 100 \%
$$

The iterations are terminated if ϵ_{a} is less than a prespecified error tolerance ϵ_{s}. The method is not self-starting because it involves a previous value of the dependent variable y_{i-1}.
Example: Use the non-self-starting Heun method to integrate

$$
y^{\prime}=4 e^{0.8 x}-0.5 y
$$

using a step size of $h=1.0$ and an initial condition of $y=2$ at $x=0$. Additional information is required for the multistep method: $y=-0.3929953$ at $x=-1$.

Solution: $x_{-1}=-1, y_{-1}=-0.3929953 ; x_{0}=0, y_{0}=2$.

Step 1: $x_{1}=x_{0}+h=1$.
The predictor is used to extrapolate linearly from x_{-1} to x_{1} :

$$
y_{1}^{0}=y_{-1}+f\left(x_{0}, y_{0}\right) 2 h=-0.3929953+\left(4 e^{0.8 \times 0}-0.5 \times 2\right) \times 2 \times 1=5.607005
$$

The corrector is then used to compute the value. When $j=1$,

$$
\begin{aligned}
y_{1}^{1} & =y_{0}+\frac{f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{0}\right)}{2} h \\
& =1+\frac{4 e^{0.8 \times 0}-0.5 \times 2+4 e^{0.8 \times 0}-0.5 \times 5.607005}{2}=6.549331
\end{aligned}
$$

The approximate percentage relative error is

$$
\epsilon_{a}=\left|\frac{y_{1}^{1}-y_{1}^{0}}{y_{1}^{1}}\right| \times 100 \%=14.39 \%
$$

When $j=2$,

$$
\begin{aligned}
y_{2}^{1} & =y_{0}+\frac{f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}^{1}\right)}{2} h \\
& =1+\frac{4 e^{0.8 \times 0}-0.5 \times 2+4 e^{0.8 \times 0}-0.5 \times 6.549331}{2}=6.313749
\end{aligned}
$$

The approximate percentage relative error is

$$
\epsilon_{a}=\left|\frac{y_{2}^{1}-y_{1}^{1}}{y_{1}^{2}}\right| \times 100 \%=3.73 \%
$$

The iteration can be repeated until ϵ_{a} is below a prespecified value of ϵ_{s}. The iterations converge on a value of 6.360865 .

Step 2: $x_{2}=x_{1}+h=2$.
The predictor is:

$$
y_{2}^{0}=y_{0}+f\left(x_{1}, y_{1}\right) 2 h=2+\left(4 e^{0.8 \times 1}-0.5 \times 6.360865\right) \times 2 \times 1=13.44346
$$

The correctors can be calculated similarly as in Step 1.

