
Chapter 7: Ordinary Differential Equations

Given dy
dx = f (x, y), find y(x).

1 Analytical Method

Given dy
dx + ky = f (x) and initial condition (x0, y0)

• Step 1: Find a particular solution, yp

– If f (x) = x, then yp = Ax + B.
– If f (x) = x2, then yp = Ax2 + Bx + C

– If f (x) = sin ωx or cos ωx, then yp = A sin ωx + B cos ωx.
– If f (x) = erx, r 6= −k, then yp = Aerx.
– If f (x) = e−kx, then yp = Axe−kx.

• Step 2: Find the general solution of the homogeneous differential equation dy
dx +

ky = 0
dy
ky = −dx, → ∫

dy
ky =

∫ −dx, → ln y = −kx + ck → y = e−kxeck, or
yh = Ce−kx

• Find constant C using initial condition (x0, y0)
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2 Euler’s Method

Basic idea of iterative methods: given (xi, yi), xi+1 = xi + h, yi+1 = yi + φh, where
φ is estimated function slope.

Figure 1: Illustration of iterative methods

In Euler’s method, the first derivative is used to estimate the function slope, i.e.,
φ = f (xi, yi), and yi+1 = yi + f (xi, yi) · h.
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Using Taylor serious to analyze local truncation error
If y(x) is continuous and its derivatives are continuous too, its Taylor series can be
represented as

yi+1 = yi + y
′
ih +

y
′′
i

2!
h2 + · · · + y

(n)
i

n!
hn + Rn

where h = xi+1 − xi and Rn is the remainder term given by

Rn =
y(n+1)(α)

(n + 1)!
hn+1 = O(hn+1)

and α is a value between xi and xi+1. Since y
′
= dy

dx = f (x, y), we have y
′
i = f (xi, yi),

y
′′
i = f

′
(xi, yi), . . . , and y

(n)
i = f (n−1)(xi, yi). Then

yi+1 = yi + f (xi, yi)h +
1

2
f
′
(xi, yi)h

2 + · · · + 1

n!
f (n−1)(xi, yi) + O(hn+1)

Using Eular’s method,
yi+1 = yi + f (xi, yi)h

Therefore, the true local truncation error in using Euler’s method is

Et =
1

2
f
′
(xi, yi)h

2 + · · · + 1

n!
f (n−1)(xi, yi) + O(hn+1)

When h is sufficiently small, the higher order terms can be neglected, and the approx-
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imated local truncation error is

Ea =
1

2
f
′
(xi, yi)h

2

• Local absolute truncation error, Ea, is proportional to h2 and f
′
(xi, yi).

• Taylor series only provides the local truncation error.

• Global truncation error using Euler’s method is proportional to the step size, O(h).

• The truncation error can be reduced by decreasing the step size.

• Euler’s method provides error free prediction if the function y(x) is linear.

Example: Integrate the equation dy
dx = −2x3 + 12x2− 20x + 8.5 from x = 0 to x = 1

(1) using analytical method, and (2) using Euler’s method with a step size of 0.5 and
0.25. The initial condition at x = 0 is y = 1.
Solution:
f (x, y) = −2x3 + 12x2 − 20x + 8.5, x0 = 0, and y0 = 1.
Using analytical method: The exact solution to the equation dy

dx = −2x3 + 12x2 −
20x + 8.5 is

y =

∫
(−2x3 + 12x2 − 20x + 8.5)dx = −1

2
x4 + 4x3 − 10x2 + 8.5x + C
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where C is a constant. Using the initial condition y = 1 when x = 0, then 1 = C.
Thus,

y = −1

2
x4 + 4x3 − 10x2 + 8.5x + 1

When x = 0.5, the true function value is

y(0.5) = −1

2
× 0.54 + 4× 0.53 − 10× 0.52 + 8.5× 0.5 + 1 = 3.21875

and when x = 1, the true function value is

y(1) = −1

2
× 14 + 4× 13 − 10× 12 + 8.5× 1 + 1 = 3

Using Euler’s method with h = 0.5:
x1 = x0+h = 0.5, and y1 = y0+f (x0, y0)h = 1+f (0, 1)×0.5 = 1+8.5×0.5 = 5.25.
The percent relative error is

εt = |true value− approximate
true value

|×100% = [(3.21875−5.25)/3.21875]×100% = 63.1%

x2 = x1 + h = 0.5 + 0.5 = 1, and y2 = y1 + f (x1, y1)h = 5.25 + f (0.5, 5.25)× 0.5 =
5.875.
The percent relative error is εt = [(3− 5.875)/3]× 100% = 95.8%.
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Using Euler’s method with h = 0.25:
x1 = x0 + h = 0.25, and y1 = y0 + f (x0, y0)h = 1 + f (0, 1)× 0.25 = 1 + 8.5× 0.25 =
3.1250.
x2 = x1+h = 0.25+0.25 = 0.5, and y2 = y1+f (x1, y1)h = 3.1250+f (0.25, 3.1250)×
0.25 = 3.1250 + 4.2188× 0.25 = 4.1797

The percent relative error is

εt = |true value− approximate
true value

| × 100% = [
3.21875− 4.1797

3.21875
× 100% = 29.85%

x3 = x2+h = 0.5+0.25 = 0.75, and y3 = y2+f (x2, y2)h = 4.1797+f (0.5, 4.1797)×
0.25 = 4.4922.
x4 = x3 +h = 0.75+0.25 = 1, and y4 = y3 +f (x3, y3)h = 4.4922+f (0.75, 4.4922)×
0.25 = 4.3438.
The percent relative error is εt = [(3− 4.3438)/3]× 100% = 44.79%.
Reducing step size can reduce the estimation error. Another approach to reducing the
estimation error is to use higher order Taylor series.
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Figure 2: Euler’s method for dy
dx

= −2x3 + 12x2 − 20x + 8.5
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3 Higher-order Taylor Series Methods

Using the second-order Taylor series,

yi+1 = yi + y
′
ih +

y
′′
i

2!
h2 = yi + f (xi, yi)h +

1

2
f
′
(xi, yi)h

2

where f
′
(x, y) is found using the chain-rule as

f
′
(x, y) =

∂f (x, y)

∂x
+

∂f (x, y)

∂y

dy

dx

Using this method, the approximate local truncation error is

Ea =
1

3!
f
′′
(xi, yi)h

3 =
1

6
f
′′
(xi, yi)h

3

where

f
′′
(x, y) =

∂f
′
(x, y)

∂x
+

∂f
′
(x, y)

∂y

dy

dx

f
′
(x, y) and f

′′
(x, y) may be difficult to evaluate for complicated functions.

8



4 Runge-Kutta Methods

Runge-Kutta (RK) methods can achieve the accuracy of higher order Taylor series
but avoid evaluating the higher order derivatives. The general form of RK methods is

yi+1 = yi + φ(xi, yi, h)h

where φ(xi, yi, h) is called an increment function and is written in general form as
φ = a1k1 + a2k2 + · · · + ankn

where
k1 = f (xi, yi)

k2 = f (xi + p1h, yi + q11k1h)

k3 = f (xi + p2h, yi + q21k1h + q22k2h)

· · ·
kn = f (xi + pn−1h, yi + qn−1,1k1h + qn−1,2k2h + · · · + qn−1,n−1kn−1h)

Various types of RK methods can be devised by employing different numbers of terms
in φ and different values of the parameters a’s p’s and q’s. For lower order versions
of RK methods, the number of terms used is same as the order of the approach.
First-order RK methods
When n = 1, letting a1 = 1, we have φ(xi, yi, h) = a1k1 = k1. Then

yi+1 = yi + f (xi, yi)h
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is Euler’s method. That is, Euler’s method is the first-order RK method.
Second-order RK methods
The second-order RK methods use

yi+1 = yi + (a1k1 + a2k2)h

where

k1 = f (xi, yi)

k2 = f (xi + p1h, yi + q11k1h)

How to find constants a1, a2, p1 and q11?
Using Taylor series:

yi+1 = yi + y
′
ih +

1

2
y
′′
i h

2 (ignore higher order terms)

= yi + f (xi, yi)h +
1

2
f
′
(xi, yi)h

2

= yi + f (xi, yi)h +
1

2

[
∂f (xi, yi)

∂x
+

∂f (xi, yi)

∂y
y
′
i

]
h2

= yi + f (xi, yi)h +
1

2

∂f (xi, yi)

∂x
h2 +

1

2

∂f (xi, yi)

∂y
y
′
ih

2 (1)
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Using 2nd-order RK method,

yi+1 = yi + a1k1h + a2k2h

= yi + a1f (xi, yi)h + a2k2h (2)

where k2 can be expanded in Taylor series as

k2 = f (xi + p1h, yi + q11k1h) = f (xi, yi) +
∂f (xi, yi)

∂x
p1h +

∂f (xi, yi)

∂y
q11k1h

(ignore higher order terms)

= f (xi, yi) +
∂f (xi, yi)

∂x
p1h +

∂f (xi, yi)

∂y
q11f (xi, yi)h (3)

Substituting k2 in (2) by (3), we have

yi+1 = yi + a1f (xi, yi)h + a2f (xi, yi)h + a2
∂f (xi, yi)

∂x
p1h

2 + a2
∂f (xi, yi)

∂y
q11f (xi, yi)h

2

= yi + (a1 + a2)f (xi, yi)h + a2
∂f (xi, yi)

∂x
p1h

2 + a2
∂f (xi, yi)

∂y
q11f (xi, yi)h

2 (4)

Comparing the like terms in (4) and (1), we have

a1 + a2 = 1

a2p1 =
1

2

a2q11 =
1

2
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There are three simultaneous equations containing four unkown constants. Therefore,
there are infinite sets of constants that satisfy the equations. By assuming a value for
one of the constants, we can determine the other three.
Heun method: a1 = 1

2, a2 = 1
2, and p1 = q11 = 1. Then

yi+1 = yi + (a1k1 + a2k2)h = yi +
1

2
(k1 + k2)h

k1 = f (xi, yi)

k2 = f (xi + h, yi + k1h)

Predictor: y0
i+1 = yi + f (xi, yi)h

Corrector: yi+1 = yi +
f(xi,yi)+f(xi+1,y

0
i+1)

2 h

Illustration of Heun’s method (a) predictor (b) corrector
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The midpoint method a1 = 0, a2 = 1, and p1 = q11 = 1
2. Then

yi+1 = yi + k2h

k1 = f (xi, yi)

k2 = f (xi +
h

2
, yi +

k1h

2
)

Figure 3: Illustration of the midpoint method

Fourth-order Runge-Kutta methods
Fourth-order RK methods have the form

yi+1 = yi + (a1k1 + a2k2 + a3k3 + a4k4)h
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Similar to the second-order RK methods, there are an infinite number of versions of
fourth-order RK methods. The most commonly used form is

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)h

where

k1 = f (xi, yi)

k2 = f (xi +
1

2
h, yi +

1

2
k1h)

k3 = f (xi +
1

2
h, yi +

1

2
k2h)

k4 = f (xi + h, yi + k3h)

Example: Use the classical fourth-order RK method to integrate

f (x, y) = −2x3 + 12x2 − 20x + 8.5

using a step size of h = 0.5 and an initial condition of y = 1 at x = 0.
Solution: i = 0, x0 = 0, y0 = 1.
k1 = f (x0, y0) = f (0, 1) = 8.5
k2 = f (x0 + h

2 , y0 + 1
2k1h) = f (0.25, 3.125) = 4.21875

k3 = f (x0+
1
2h, y0+

1
2k2h) = f (0.25, 1+1

2×4.21875×0.5) = f (0.25, 2.0547) = 4.21875
k4 = f (x0 + h, y0 + k3h) = f (0.25, 1 + 4.21875× 0.5) = 1.25
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Figure 4: Illustration of slope estimates in the 4th order RK method
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x1 = x0 + h = 0.5,
y1 = y0+ 1

6(k1+2k2+2k3+k4)h = 1+ 1
6(8.5+2×4.21875+3×4.21875+1.25)×0.5 =

3.21875
This is exactly same as the true value (y(0.5) = 3.21875, see the previous example).
Because y(x) is a fourth-order polynomial, the fourth-order RK methods give exact
solution.
Example: Given dy

dx = 4e0.8x − 0.5y, and y(0) = 2, (1) find y(0.5) using analytical
method, and (2) find y(0.5) using the classical 4-th order RK method with step size
h = 0.5.
Solution:
Analytical method:
(1) dy

dx + 0.5y = 4e0.8x

yp = Ae0.8x, dyp

dx = 0.8Ae0.8x, then
A× 0.8e0.8x + 0.5Ae0.x = 4e0.8x, A = 40

13
yp = 40

13e
0.8x.

(2) dyh
dx + 0.5hh = 0, then dyh

dx = −0.5y, dyh
0.5yh

= −dx, or
∫ dyh

0.5yh
= − ∫

dx. Then
1

0.5 ln yh = −x + C
′
, ln yh = −0.5x + C

′′
, and

yh = e−0.5x+C
′′

= Ce−0.5x.
(3) y = hh + yp = Ce−0.5x + 40

13e
0.8x, with (x0, y0) = (0, 2), 2 = C + 40

13, C = −14
13, and
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y = −14
13e

−0.5x + 40
13e

0.8x

(4) When x = 0.5, y = −14
13e

−0.25 + 40
13e

0.4 = 3.7515

Classical 4-th order RK method:
dy
dx = 4e0.8x − 0.5y, f (x, y) = 4e0.8x − 0.5y, then
k1 = f (x0, y0) = f (0, 2) = 4e0 − 0.5× 2 = 3
k2 = f (x0 + h

2 , y0 + 1
2k1h) = f (0.25, 2 + 1

2× 3× 0.5) = f (0.25, 2.75) = 4× e0.8×0.25−
0.5× 2.75 = 3.5106
k3 = f (x0 + h

2 , y0 + 1
2k2h) = f (0.25, 2 + 1

2× 3.5106× 0.5) = f (0.25, 2.8777) = 3.4468
k4 = f (x0 + h, y0 + k3h) = f (0.5, 2 +×3.4468× 0.5) = f (0.5, 3.7234) = 4.1056
x1 = x0 + h = 0.5, y1 = y0 + 1

6(k1 + 2k2 + 2k3 + k4)h = 2 + 1
6(3 + 2× 3.5106 + 2×

3.4468 + 4.1056)× 0.5 = 3.75167
εt = 3.97× 10−5.
n-th order RK methods

• Accurate to n-th order polynomial

• Equivalent t n-th order Taylor series

• Does not require to evaluate derivatives
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5 Systems of ODEs

For a system of simultaneous ODEs like
dy1

dx
= f1(x, y1, y2, · · · , yn)

dy2

dx
= f2(x, y1, y2, · · · , yn)

...
dyn

dx
= fn(x, y1, y2, · · · , yn)

The solution of such a system requires that n initial conditions be known at the start-
ing value of x, i.e., when x = x0, the corresponding values of yi, for all i = 1, 2, · · · , n
are all known.
All the numerical methods we have discussed for single equations can be extended to
solve a system of ODEs.
Example: Using Euler’s method to solve the following set of ODEs:

dy1

dx
= −0.5y1

dy2

dx
= 4− 0.3y2 − 0.1y1

assuming that x = 0, y1 = 4, and y2 = 6. Integrate to x = 2 with a step size of 0.5.
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Solution:

yi+1,1 = yi,1 + f1(xi, yi,1, yi,2)

yi+1,2 = yi,2 + f2(xi, yi,2, yi,2)

where f1(x, y1, y2) = −0.5y1, and f2(x, y1, y2) = 4− 0.3y2 − 0.1y1.
When i = 0, x1 = x0 + h = 0.5,
y1,1 = y0,1 + f1(x0, y0,1, y0,2)h = 4 + f1(0, 4, 6) = 4− 0.5× 4× 0.5 = 3
y1,2 = y0,2+f2(x0, y0,1, y0,2)h = 6+f2(0, 4, 6) = 6+(4−0.3×6−0.1×4)×0.5 = 6.9

When i = 1, x2 = x1 + h = 1
y2,1 = y1,1 + f1(x1, y1,1, y1,2)h = 3 + f1(0.5, 3, 6.9) = 2.25
y2,2 = y1,2 + f2(x1, y1,1, y1,2)h = 6.9 + f2(0.5, 3, 6.9) = 7.715

Example: Using the classical fourth-order RK method to solve the ODEs from the
previous example.
Solution:

yi+1,1 = yi,1 +
1

6
(k1,1 + 2k1,2 + 2k1,3 + k1,4)h

yi+1,2 = yi,2 +
1

6
(k2,1 + 2k2,2 + 2k2,3 + k2,4)h
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where

k1,1 = f1(xi, yi,1, yi,2)

k2,1 = f1(xi +
1

2
h, yi,1 +

1

2
k1,1h, yi,2 +

1

2
k1,2h)

k3,1 = f1(xi +
1

2
h, yi,1 +

1

2
k2,1h, yi,2 +

1

2
k2,2h)

k4,1 = f1(xi + h, yi,1 + k3,1h, yi,2 + k3,2h)

and

k1,2 = f2(xi, yi,1, yi,2)

k2,2 = f2(xi +
1

2
h, yi,1 +

1

2
k1,1h, yi,2 +

1

2
k1,2h)

k3,2 = f2(xi +
1

2
h, yi,1 +

1

2
k2,1h, yi,2 +

1

2
k2,2h)

k4,2 = f2(xi + h, yi,1 + k3,1h, yi,2 + k3,2h)

6 Multistep Methods

All previous methods are one-step methods which utilize information at a single point
xi to predict a value of the dependent variable yi+1 at a future point xi+1. The mul-
tistep methods are based on the insight that, once the computation has begun, infor-
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mation from previous points can be used to estimate the function values at a future
point.
The non-self-starting Heun method
This method a predictor and a corrector as

Predictor: y0
i+1 = ym

i−1 + f (xi, y
m
i )2h

Corrector: yj
i+1 = ym

i +
f (xi, y

m
i ) + f (xi+1, y

j−1
i+1 )

2
h

(for j = 1, 2, . . . , m)

where the corrector is applied iteratively from j = 1 to m to obtain refined solutions.
The approximate percentage relative error is

|εa| = |y
j
i+1 − yj−1

i+1

yj
i+1

| × 100%

The iterations are terminated if εa is less than a prespecified error tolerance εs. The
method is not self-starting because it involves a previous value of the dependent vari-
able yi−1.
Example: Use the non-self-starting Heun method to integrate

y
′
= 4e0.8x − 0.5y

using a step size of h = 1.0 and an initial condition of y = 2 at x = 0. Additional
information is required for the multistep method: y = −0.3929953 at x = −1.
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Solution: x−1 = −1, y−1 = −0.3929953; x0 = 0, y0 = 2.

Step 1: x1 = x0 + h = 1.
The predictor is used to extrapolate linearly from x−1 to x1:

y0
1 = y−1 + f (x0, y0)2h = −0.3929953 + (4e0.8×0 − 0.5× 2)× 2× 1 = 5.607005

The corrector is then used to compute the value. When j = 1,

y1
1 = y0 +

f (x0, y0) + f (x1, y
0
1)

2
h

= 1 +
4e0.8×0 − 0.5× 2 + 4e0.8×0 − 0.5× 5.607005

2
= 6.549331

The approximate percentage relative error is

εa = |y
1
1 − y0

1

y1
1

| × 100% = 14.39%

When j = 2,

y1
2 = y0 +

f (x0, y0) + f (x1, y
1
1)

2
h

= 1 +
4e0.8×0 − 0.5× 2 + 4e0.8×0 − 0.5× 6.549331

2
= 6.313749
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The approximate percentage relative error is

εa = |y
1
2 − y1

1

y2
1

| × 100% = 3.73%

The iteration can be repeated until εa is below a prespecified value of εs. The itera-
tions converge on a value of 6.360865.

Step 2: x2 = x1 + h = 2.
The predictor is:

y0
2 = y0 + f (x1, y1)2h = 2 + (4e0.8×1 − 0.5× 6.360865)× 2× 1 = 13.44346

The correctors can be calculated similarly as in Step 1.
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