Chapter 7: Ordinary Differential Equations

Given ;ly = f(x,y), find y(x).

1 Analytical Method

Given & + ky = f(x) and initial condition (g,
dx

e Step 1: Find a particular solution, y,

—If f(x) =z, then y, = Ax + B.
—1If f(x) = 2%, then y, = Az* + Bx + C
—If f(x) = sinwx or coswz, then y, = Asinwz + B coswz.
—If f(x) =€"", r # —k, then y, = Ae’™.
- 1If f(x) = e_kx, then y, = Axe ",
e Step 2: Find the general solution of the homogeneous differential equation Z—i +
ky =
% = —dx, — dy = [ —dz, > lhy=—kx+ck — y= e Frek or
yp = Ce ™

e Find constant C' using initial condition (z, 3/)
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2 Euler’s Method

Basic idea of iterative methods: given (x;,v;), ;11 = x; + h, y;i11 = y; + ¢h, where
¢ 1s estimated function slope.

Yig1 =Y+ dh

]

Step size = h

Figure 1: Illustration of iterative methods

In Euler’s method, the first derivative is used to estimate the function slope, 1.e.,
§b = f(CIZZ, yi), and y;11 = vy; + f(:IZZ, y2> - h.



Using Taylor serious to analyze local truncation error

If y(x) is continuous and its derivatives are continuous too, its Taylor series can be

represented as

()
Y ptt R,
n!

where h = z, .1 — z; and R,, is the remainder term given by

it = Yot Y+ SR 4

(n+1)
Rn _ Y <a> hn—i—l _ O<hn+1)
(n+1)!
and « is a value between z; and z;,1. Since y = % = f(x,y), we have y; = f(x;, i),
v, = f(zi,y;), ..., and 4" = f@V(z; y;). Then
1 L L n
Yirr = Yi + [(wi, yi)h + if (i, yi)h?> + - + ﬁf( D(ws,y:) + O(R")

Using Eular’s method,
Yir1 = Yi + f(xi, yi)h
Therefore, the true local truncation error in using Euler’s method 1s
L

1
B = 5 f (@i & oo — f i) + O™

When £ is sufficiently small, the higher order terms can be neglected, and the approx-
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1mated local truncation error is
1

FEo = §f (i, y:)h?
e Local absolute truncation error, F,, is proportional to 42 and f /(azi, ;).
e Taylor series only provides the local truncation error.
e Global truncation error using Euler’s method is proportional to the step size, O(h).
e The truncation error can be reduced by decreasing the step size.

e Euler’s method provides error free prediction if the function y(x) is linear.

Example: Integrate the equation % = —22° +122% — 202 +8.5fromx =0tox = 1

(1) using analytical method, and (2) using Euler’s method with a step size of 0.5 and
0.25. The 1nitial condition atz = 0is y = 1.

Solution:

flx,y) = =223 + 122% — 202 + 8.5, 79 = 0, and yy = 1.

Using analytical method: The exact solution to the equation g—i = —22° + 1227 —
20x + 8.5 18

1
y = /(—2:1:3 +122% — 20z + 8.5)dx = —551;4 +42° — 102° + 8.52 + C



where C' 1s a constant. Using the initial condition y = 1 when « = 0, then 1 = C.

Thus, .
Y = —55134 + 42% — 102* 4+ 8.5z + 1
When z = 0.5, the true function value is

1 4 3 2
y(0.5) = =5 x 0.5 +4 % 0.5° = 10 x 0.5° + 8.5 x 0.5+ 1 = 3.21875

and when x = 1, the true function value 1s

1
y(l):—§><14—|—4><13—1O><12—|—8.5><1+1:3

Using Euler’s method with A = 0.5:

r1=x9+h =0.5and y; = yo+ f(xo,y0)h = 1+ f(0,1) x0.5 = 148.5x 0.5 = 5.25.
The percent relative error is
true value — approximate

[x100% = [(3.21875—5.25) /3.21875] x 100% = 63.1%

€t —
| true value

ro=x1+h=05+4+05=1,andys = y1 + f(x1,y1)h =525+ f(0.5,5.25) x 0.5 =
5.875.
The percent relative error is €, = [(3 — 5.875) /3] x 100% = 95.8%.



Using Euler’s method with h = 0.25:
vy =x9+h =025 and y; = yo+ f(zo,yo)h = 1+ f(0,1) x 0.25 = 1+ 85 x 0.25 =
3.1250.

Ty = 21+h = 0.254+0.25 = 0.5, and y» = y1+ f (21, Y1)k = 3.1250+ £(0.25, 3.1250) x
0.25 = 3.1250 + 4.2188 x 0.25 = 4.1797

The percent relative error is

true value — approximate 321875 — 4.1797

100% = 100% = 29.85
true value | % %=1 3.21875 % % %

r3 = x9+h =0.54+0.25 = 0.75, and y3 = yo+ f (2, yo)h = 4.1797+ £(0.5,4.1797) x
0.25 = 4.4922.

vy =25+ h = 0754025 =1, and gy = y3+ (3, y3)h = 4.4922 + £(0.75, 4.4922) x
0.25 = 4.3438.

The percent relative error is ¢; = [(3 — 4.3438) /3] x 100% = 44.79%.

Reducing step size can reduce the estimation error. Another approach to reducing the
estimation error 1s to use higher order Taylor series.
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h=0.5
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Figure 2: Euler’s method for % = —22°% + 1222 — 20z + 8.5



3 Higher-order Taylor Series Methods
Using the second-order Taylor series,
o / y;/ 9 1 9
Yir1 = Yi + y;h + gh = y; + f(@i, yi)h + §f (i, yi)h
where f (z,y) is found using the chain-rule as

Flay) = Of(w.y)  Of(x,y)dy

Ox Oy dx
Using this method, the approximate local truncation error 1s
1 2 1 2
By = gf (i, yi)h* = 6f (i, yi)h?
where / /
" of (x,y)  Of (x,y)dy
f(z,y) = Sl | O &)

Ox Oy dx

f(x,y)and f (x,y) may be difficult to evaluate for complicated functions.



4 Runge-Kutta Methods

Runge-Kutta (RK) methods can achieve the accuracy of higher order Taylor series
but avoid evaluating the higher order derivatives. The general form of RK methods 1s

Yir1 = Yi + O(zi, yi, h)h
where ¢(x;, y;, h) is called an increment function and is written in general form as
b = arky + asks + - - - + ank,
where
ki = f(zi,y:)
ko = f(zi + p1h, yi + qukih)
ks = f(xi + p2h, yi + quikih + qazkah)

kn = f(xi +pooih,yi + gn-1.1k1h + @1 2koh + - + gn_1n—1kn_1h)

Various types of RK methods can be devised by employing different numbers of terms
in ¢ and different values of the parameters a’s p’s and ¢’s. For lower order versions
of RK methods, the number of terms used is same as the order of the approach.

First-order RK methods
When n = 1, letting a; = 1, we have ¢(x;, y;, h) = a1k; = k1. Then
Yir1 = Yi + f(zi, yi)h
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1s Euler’s method. That is, Euler’s method is the first-order RK method.

Second-order RK methods
The second-order RK methods use

Yir1 = Yi + (a1ky + azka)h

where

ki = flxi,yi)
ko = f(z; + p1h,yi + quik1h)

How to find constants aq, as, p; and ¢11?
Using Taylor series:

/ 1 1
Yir1 = Yi +y;h+ iyz h*>  (ignore higher order terms)

1
= yi + f(zi, yi)h + §f <$z'>yz')h2

B lﬁf(xl,y@) 9 1af<x27yl> "2
— Y + f(aju yz>h + 9 Or h + 2 8y yzh

10
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Using 2nd-order RK method,

Yix1 = Yi + arkih + agkah
= y; + a1 f(xi, yi)h + askah (2)

where ks can be expanded in Taylor series as

Of (i, yi Of (i, i
ko = f(x; +pih,yi + qukih) = f(x, y:) + f<(9:c J >p1h + f<8y Y >C]11/€1h
(ignore higher order terms)
Of (i, yi Of (wi, yi
= fl@i,yi) + fleiy )p1h + fwiy >Q11f($z', yi)h (3)
ox oy
Substituting ks in (2) by (3), we have
0 i, Yi 9, Liy, Yi
Yir1 = Yi +arf (@i, yi)h +asf (2, yi)h + as f((?:z: Y >p1h2 + a2 f%y J )6111f(%’, y@-)h2
9, L, Yi 0 Liy, Yi
= i + (a1 + a2) f(zi, yi) b + a2 f(&z: Y >p1h2 + as f%y Y )Q11f($z'7 yi)h’ 4)
Comparing the like terms in (4) and (1), we have
ap + ag = 1
1
asP1 = 3

2
1
a2qi1 = 5
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There are three simultaneous equations containing four unkown constants. Therefore,
there are infinite sets of constants that satisfy the equations. By assuming a value for
one of the constants, we can determine the other three.

Heun method: a; = %, az = 3, and p; = q1; = 1. Then

1
Yir1 = Ui + (a1k1 + asko)h = y; + §(k1 + ka)h

ki = f(zi, y:)
ko = f(x; + h,y; + k1h)

Predictor: 4Y, | = v; + f(z;, yi)h

F@iyi)+f(@ig19) ) h
2

Corrector: y;.1 = y; +

,". i 'Il y
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llustration of Heun’s method (a) predictor (b) corrector
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The midpoint method a1 =0, as = 1, and p; = q11 = % Then
Yir1 = Yi + kah

ki = fl(xi, y)
h kih
k2=f<$i+§,yi+%>

L 3
) Slope = flx; , 12 ¥+ 172)

|

¥

(b)

Figure 3: Illustration of the midpoint method
Fourth-order Runge-Kutta methods
Fourth-order RK methods have the form
Yir1 = Ui + (a1k1 + asks + asks + askq)h
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Similar to the second-order RK methods, there are an infinite number of versions of
fourth-order RK methods. The most commonly used form is

1
Yir1 = Y; + 6<k1 + 2ko + 2k3 + k4>h

where
ki = f(zi,vi) |
1

1 1
ks = fxi + §h7 yi + §/€2h)
ky = f(JJZ + h,y; + kgh)
Example: Use the classical fourth-order RK method to integrate

f(z,y) = —22° + 122% — 202 + 8.5

using a step size of - = 0.5 and an initial condition of y = 1 at x = 0.

Solution: : =0, o =0, yp = 1.

]-Cl f(il?(), yo) f(O 1) = 8.5
flzo+2 20t 1k1h) £(0.25, 3. 125) — 4.21875
f(x To+3 Lh , Yo+ 3 kgh) £(0.25, 1+ x4.21875x0.5) = f(0.25,2.0547) = 4.21875
(:z:0+h yo+/<:3h) £(0.25, 1+421875 x 0.5) = 1.25
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Xi Xiv1/2

Figure 4: Illustration of slope estimates in the 4th order RK method

15



x1=x9+ h=0.5,

y1 = Yo+ e(ki+2ka+2ks+ki)h = 1+3(8.5+2 x 4.21875+3 x 4.21875+1.25) x 0.5 =
3.21875

This is exactly same as the true value (y(0.5) = 3.21875, see the previous example).

Because y(x) is a fourth-order polynomial, the fourth-order RK methods give exact
solution.

Example: Given &£ = 4¢*5" — 0.5y, and y(0) = 2, (1) find y(0.5) using analytical
method, and (2) find y(0.5) using the classical 4-th order RK method with step size
h =0.5.

Solution:

Analytical method:

(1) —+ 0.5y = 4087

Yp = Aeo 8 % — (0.84e%%7 then

A x 0.8e"5" +0.5A4e"" = 4e"% A = 1

40 ()8x
Yo = 3¢ -
(2) Wn 4 0.5h), = 0, then & = 0.5y, o% — —dw, or [ {2 = — [ dx. Then

ﬁln Ynh = _37”+ o Iny, = —0.52 + C, and

3y = hy+y,=Ce " + e with (g, y9) = (0,2),2=C+13,C =

and

13’ 13’

16



_ 14 —0.5x 4() 0.8£U
y=—n€ T3

(4) When z = 0. 5 y = —pe "%+ 56"t = 3.7515
Classical 4-th order RK method.

dy = 4e%% — 0.5y, f(z,y) = 4”5 — 0.5y, then

kl f(.on, yo> = f(O, 2) =4e' — 05 x2=3

ko = f(zo+2, yo+3kih) = f(0.25,2+1 x 3x0.5) = f(0.25,2.75) = 4 x 08x0-25 —
0.5 x 2.75 = 3.5106

ks = fzo+2 yo+ 5keh) = £(0.25,2+ 1 x 3.5106 x 0.5) = £(0.25,2.8777) = 3.4468
ky = flag+ h,yo + ksh) = £(0.5,2 + «3.4468 x 0. 5) = £(0.5,3.7234) = 4.1056

r1 =29+ h=0.5, 1 _y0+6<k1+2k2+2k3+k4)h_2+ (3+2 X 3.5106 + 2 x
3.4468 4+ 4.1056) x 0.5 = 3.75167

€t — 3.97 X 10_5

n-th order RK methods

e Accurate to n-th order polynomial
e Equivalent t n-th order Taylor series

e Does not require to evaluate derivatives
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5 Systems of ODEs

For a system of simultaneous ODEs like

dy
dx

dys
d :f2<x7y17y27”' 7yn)
X

— f1($7y17y27 e 7yn)

d%
o= fol@,y1, 90, - yn)

The solution of such a system requires that n initial conditions be known at the start-
ing value of x, 1.e., when © = x, the corresponding values of y;, forall: =1,2,--- | n
are all known.

All the numerical methods we have discussed for single equations can be extended to
solve a system of ODEs.

Example: Using Euler’s method to solve the following set of ODE:s:

dy;

— = —0.5

gx Y1

92 4 0.3y, — 019,
dx

assuming that x = 0, y; = 4, and y» = 6. Integrate to x = 2 with a step size of 0.5.
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Solution:

Yitr11 = Yi1 + fi(z;, Yi 1, %,2)
Yit12 = Yi2 + folz;, Yi 2, yz’,Q)

where fi(z,y1,y2) = —0.5y1, and fo(z, y1,y2) = 4 — 0.3y2 — 0.1y1.

When: =0, 21 =29+ h = 0.5,

Y1,1 = Yo,1 + f1<330, Yo,1, yojg)h =4 + f1<0, 4, 6) =4 —-05bx4x05=3

Y12 = Yoo+ fo(2o, Yo.1, Yoo )h = 64 f5(0,4,6) =6+ (4—0.3x6—0.1x4)x0.5=06.9
When: =1, 2o =21+ h =1

Yo1="Y11+ f1<331, Y11, yljg)h =3+ f1(0.5, 3, 6.9) = 2.25

Y22 = Y12 + f2<[l§1, Y11, y1’2>h — 0.9 + f2(05, 3, 69) = 7.715

Example: Using the classical fourth-order RK method to solve the ODEs from the
previous example.

Solution:

1
Yig11 = Yi1+ 6<k1,1 + 2k1 9+ 2k1 3+ k14)h
1

Yi+12 = Yi2 T é(kQ’l + 2k + 2ko 3 + /€2,4>h
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where

ki1 = filxi,vi1, ¥i2)

1 1 1

ko1 = filxi + §h, yi1+ 5761,171, Yio + §k1,2h)
1 1 1

ks1 = filx; + §h7 Yi1+ §k2,1h, Yi2 + §k2,2h)

kyp = filx; + hyyin + ksah, yio + ks2h)

and

kio= fa(@i, yi1, Vi2)

1 1 1

kyo = fo(zi + §h> Yi1+ §k1,1h, Yio + 5161,271)
1 1 1

kso = folx; + §h, Yi1+ 5762,1]% Yio + §k2,2h)

kyo = folwi+ h,yi1 + ksih, yi2+ ksoh)

6 Multistep Methods

All previous methods are one-step methods which utilize information at a single point
x; to predict a value of the dependent variable y;.; at a future point z; ;. The mul-
tistep methods are based on the insight that, once the computation has begun, infor-
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mation from previous points can be used to estimate the function values at a future
point.

The non-self-starting Heun method

This method a predictor and a corrector as
Predictor: !, =y, + f(x;,y")2h
Corrector: yz‘-j+1 =y + flwi yi") + 2f(513¢+1, y%'tll)
(for 7=1,2,...,m)
where the corrector 1s applied iteratively from 5 = 1 to m to obtain refined solutions.
The approximate percentage relative error 1s

h

vl — Y
o] = LY q00%
J
Yit1
The iterations are terminated if €, is less than a prespecified error tolerance €;. The
method is not self-starting because it involves a previous value of the dependent vari-
able Yi—1.
Example: Use the non-self-starting Heun method to integrate
y = 4" — 0.5y
using a step size of h = 1.0 and an 1nitial condition of y = 2 at x = 0. Additional
information 1s required for the multistep method: y = —0.3929953 at x = —1.
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Solution: z_; = —1, y_; = —0.3929953; 2y = 0, 1o = 2.

Step 1: x1 =29+ h = 1.
The predictor is used to extrapolate linearly from z_; to z:

W) = y_1 + flxo, yo)2h = —0.3929953 + (4™ — 0.5 x 2) x 2 x 1 = 5.607005

The corrector is then used to compute the value. When 5 = 1,

X, + (@1, Y
Yl = y0+f( 0, Yo) 2f( 1 yl)h
4e0-8%0 _ 0.5 x 2 4+ 4e98%0 _ 0.5 x 5.607005
i ol 62 . — 6.549331

The approximate percentage relative error 1s

1.0
.= 2= X 100% = 14.39%
Y1
When j = 2,
Ty, + J 1, 1
y% _ y0+f( 0 y0>2f( 1y1>h
40850 _ (05 % 2 + 4e08%0 _ (5 % 6.549331
= 14 f e a — 6.313749

2
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The approximate percentage relative error is

Y3 — Ui
Y3

The iteration can be repeated until €, 1s below a prespecified value of €,. The itera-
tions converge on a value of 6.3608635.

= | | % 100% = 3.73%

a

Step 2: 9 = x1 + h = 2.
The predictor 1s:

¥ = yo + f(z1,y1)2h = 2+ (4e™31 — 0.5 x 6.360865) x 2 x 1 = 13.44346

The correctors can be calculated similarly as in Step 1.
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