CoE4TN3
 Image Processing

Chapter 2: Digital Image
 Fundamentals

McMaster
University

The Human Visual System (HVS)

- Why study the HVS?
- A true measure of image processing quality is how well the image appears to the observer.
- The HVS is very complex and is not understood well in a complete sense. However, many of its properties can be identified and used to our advantage.

McMaster
University

Structure of Human Eye

- Lens:
- focuses light on retina
- Contains 60% to 70% water
- Absorbs 8\% of visible light
- High absorption in infrared and ultraviolet (can cause damage to eye)
- Retina: the inner most layer, covers the posteriori portion of eye
- When eye is properly focused, light of an object is imaged on the retina
- Light receptors are distributed over the surface of retina

Digital Image Fundamentals

- Elements of visual perception
- Image sensing and acquisition
- Sampling and quantization
- Relationship between pixels

McMaster
University

Structure of Human Eye

- Eye: Sphere, diameter of 20 mm
- Consists of 3 membranes:

1. Cornea and sclera
2. Choroid
3. Retina

- Cornea: transparent
- Sclera: opaque, connected to cornea
- Choroid: network of blood vessels
- In front choroid is connected to iris diaphragm
- Iris: contracts or expands to control amount of light
- Pupil: central opening of iris, 2 to 8 mm in diameter

- Retina contains light receptors: Cones \& rods
- Cones:
- 6 to 7 million,
- located mainly in central part of retina
(fovea)
- Sensitive to color,
- Can resolve fine details because each one is connected to its nerve
- Cone vision: photopic or bright-light
- Rods
- 75 to 150 million,
- No color vision, responsible for lowlight vision,
- Distributed a wide region on the retina
- Rod vision: scotopic or dim-light

Human Eye

- Blind spot: a region of retina without receptors, optic nerves go through this part
- Fovea: a circular area of about 1.5 mm in diameter
- A comparison between eye (fovea) and a CCD camera:
- Density of cones in fovea: $150,000 / \mathrm{mm}^{2}$
- Number of cones: 337,000
- A medium resolution CCD chip has the same number of elements in a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ area.

Brightness \& Intensity

- The dynamic range of light intensity to which eye can adapt is enormous - on the order of 10^{10} - from the scotopic threshold to the glare limit
- Brightness (intensity perceived by visual system) is a logarithmic function of light intensity.
- HVS can not operate over the entire range simultaneously. It accomplishes large variations due to brightness adaptation

Weber Experiment

- Small values of $\Delta I / I$: good discrimination
- Large values of $\Delta \mathrm{I} / \mathrm{I}$: poor discrimination
- Low levels of illumination: high Weber ratio: poor discrimination
- In high levels of illumination, discrimination improves.

```
liguRE 2.6
M
```


McMaster

Image formation in the eye

- Lens is flexible
- Refraction of lens is controlled by its thickness
- Thickness is controlled by the tension of muscles connected to the lens
- Focus on distance objects: lens is relatively flattened, refractive power is minimum
- Focus on near objects: lens is thicker, refractive power is maximum
- Perception takes place by excitation of receptors which transform radiant energy into electrical impulses that are decoded by the brain.

McMaster
Universily

Weber Experiment

- To characterize the intensity discrimination properties of eye
$\square \Delta \mathrm{I}$ starts at zero and is increased slowly
- The observer is asked to indicate when the circle on the constant background becomes visible (just noticeable difference).
- The ratio $\Delta \mathrm{I} / \mathrm{I}$ is called the Weber ratio.
- Procedure is repeated for different values of I.

McMaster

Intensity \& Brightness

- Relationship between brightness and intensity is not a simple function!

Intensity \& Brightness
- Mach Band
effect:

Although the
shades are
constant,
overshoot and
undershoot are
observed near
the transition
boundary.

McMaster

Image sensing and acquisition

- Three principle sensor arrangements:

1. Single imaging sensor
2. Line sensor
3. Array sensor

McMaster
University

Sensor strips

- Sensor elements are arranged in a line
- Strip provides imaging in one direction, and motion provides imaging in the other direction
- Used in scanners and airborne imaging
- Airborne imaging: imaging system is mounted on the aircraft which flies at a constant altitude over the area to be imaged

Image sensing and acquisition

- If a sensor can be developed that is capable of detecting energy radiated by a band of the EM spectrum, we can image events in that band.
- Image is generated by energy of the illumination source reflected (natural scenes) or transmitted through objects (Xray)
- A sensor detects the energy and converts it to electrical signals
- Sensor should have a material that is responsive to the particular type of energy being detected.

```
McMaster
University
```

14

Single sensor

- Most familiar sensor of this type is photodiode
- In order to generate a 2-D image using a single sensor, there has to be relative displacement in both x and y directions between the sensor and the area to be imaged

McMaster

Sensor strips

- Sensor strips mounted in a ring configuration are used in medical and industrial imaging to obtain cross-sectional images of 3-D objects (CAT)
- Output of the sensors must be processed by reconstruction algorithms to transform the sensed data into meaningful crosssectional images.

$\underset{\text { University }}{\text { Mon }}$
19

A simple image model

- The amount of light that enters the eye depends on:

1. The amount of source illumination incident on the scene, $\mathrm{i}(\mathrm{x}, \mathrm{y})$
2. The amount of illumination reflected by the objects in the scene, $\mathrm{r}(\mathrm{x}, \mathrm{y})$
$f(x, y)=i(x, y) \cdot r(x, y)$
(x, y): coordinates
Total absorption: $\mathrm{r}(\mathrm{x}, \mathrm{y})=0$
Total reflection: $\mathrm{r}(\mathrm{x}, \mathrm{y})=1$

McMaster

Sampling \& Quantization

Sensor arrays

- This is the arrangement used on digital cameras
- Typical sensor for these cameras is the CCD array (Charge Coupled Devices)
- Since the sensor is two dimensional a complete image can be obtained
- Motion is not necessary

McMaster
University 覆 20

Sampling \& Quantization

- Computer processing: image $f(x, y)$ must be digitized both spatially and in amplitude
- Digitization in spatial coordinates: sampling
- Digitization in amplitude: quantization
- Image: $[f(i, j)]_{\mathrm{NxM}}$
- What should be the values of N, M and the number of gray levels G?
- Normally: $\mathrm{N}=2^{\mathrm{n}}, \mathrm{M}=2^{\mathrm{m}}, \mathrm{G}=2^{\mathrm{k}}$

Sampling \& Quantization

- Number of bits required to store image: Nx Mxk
- The more the values of N,M and G: the better approximation of a continuous image
- Storage and processing requirements increase as well

Effects of Reducing Spatial Resolution

Effect of reducing spatial resolution: checkerboard pattern

Effects of Reducing Gray Levels

- Effects of Reducing Gray Levels:
- appearance of fine ridge-like structures in areas of smooth gray levels
- This effect is called false contouring

Zooming and Shrinkage

- Zooming: increasing the resolution (size) of an image
- Shrinkage: decreasing the resolution of an image
- Example of zooming: we have an image of 500×500 pixels and we want to enlarge it to 750×750
- Zooming has two steps: creation of new pixel locations and the assignment of gray levels to those locations

McMaster
 University

31

Zooming

- A more sophisticated way of accomplishing gray-level assignment is bilinear interpolation
- $\mathrm{v}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)=\mathrm{ax}{ }^{\prime}+\mathrm{by}{ }^{\prime}+\mathrm{cx} \mathrm{y}^{\prime} y^{\prime}+\mathrm{d}$
- The four coefficients are determined from the four equations in four known (four nearest neighbors of the point ($\left.\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$)

McMaster
 Universiy

Zooming

- A simple way of zooming which works for increasing the size of an image by integer numbers is pixel replication
- Visualize assignment in zooming: the enlarged image is placed on the original image
- Gray level of each pixel in the enlarged image is set to the gray-level of its nearest pixel in the original image

32

Shrinkage

- Shrinkage by an integer number can be done by deleting some of the rows and columns of the image
- Shrinkage by an noninteger factor can be done as the inverse of zooming

Relationship between pixels

McMaster

Relationship between pixels

- Neighbors
- Adjacency
- Path
- Connectivity
- Region
- Boundary
- Distance

McMaster
 University

Adjacency

- Two pixels are adjacent if they are neighbors and their gray levels are similar
- V: set of gray levels
- Similar gray level means that the gray levels of both pixels belong to set V
- Exp:
- Binary images: $\mathrm{V}=\{1\}$
- Gray level image: $\mathrm{V}=\{32,33, \ldots, 63,64\}$

McMaster

University

Adjacency

- m-adjacency: Two pixels p and q with values from V are m adjacent if:
q is in $\mathrm{N}_{4}(\mathrm{p})$ or
q is in $\mathrm{N}_{\mathrm{D}}(\mathrm{p})$ and the intersection of $\mathrm{N}_{4}(\mathrm{p})$ and $\mathrm{N}_{4}(\mathrm{q})$ has no pixels with values in V .

0 (1) 1	011	0 1-1
0 (1) 0	0 (1) 0	0 1 0
$0 \quad 0 \quad 1$	$0 \longdiv { 0 } 1$	$0 \quad 01$
p	p	

Basic relationships between pixels

- A pixel p at coordinates (x, y) has four horizontal and vertical neighbors: $\mathrm{N}_{4}(\mathrm{P})=\{(\mathrm{x}+1, \mathrm{y}),(\mathrm{x}-1, \mathrm{y}),(\mathrm{x}, \mathrm{y}+1),(\mathrm{x}, \mathrm{y}-1)\}$
- The four diagonal neighbors of P $N_{D}(P)=\{(x+1, y+1),(x-1, y-1),(x-1, y+1),(x+1, y-1)\}$
- The eight point neighbors of P $\mathrm{N}_{8}(\mathrm{P})=\mathrm{N}_{4}(\mathrm{P}) \mathrm{U} \mathrm{N}_{\mathrm{D}}(\mathrm{P})$

McMaster
University
38

> - 4-adjacency: Two pixels p and q with values from V are 4 adjacent if q is in $\mathrm{N}_{4}(\mathrm{p})$
> - 8-adjacency: Two pixels p and q with values from V are 8 adjacent if q is in $\mathrm{N}_{8}(\mathrm{p})$
> - 4-adjacency: broken paths
> - 8-adjacency: multiple paths

0	$1-1$	0	$1-1$	0	$1-1$
0	$1 \mid$	0	0	$1 \mid / 0$	0
0	0	1	0	$0 \backslash 1$	0
0	0	1			

McMaster
Universily
40

Path

- A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ where $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=(\mathrm{x}, \mathrm{y})$, $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)=(\mathrm{s}, \mathrm{t})$, and points $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ and $\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}-1}\right)$ are adjacent for $1 \leq i \leq n$
- n is the length of the path
- We can have 4 -, 8 -, or m-paths depending on the type of adjacency specified.

Connectivity

- S: a subset of pixels in an image
- Two pixels p and q are said to be connected in S if there exists a path between them consisting entirely of pixels in S
- We can have 4 -, 8 -, or m-connectivity depending on the type of path specified.

Distance measures

- For pixels p, q, and z with coordinates (x, y), (s, t) and ($\mathrm{v}, \mathrm{w})$, respectively, D is a distance functions if:

$$
\begin{aligned}
& D(p, q) \geq 0 \\
& D(p, q)=D(q, p) \\
& D(p, z) \leq D(p, q)+D(q, z) \\
& D_{e}=\left[(x-s)^{2}+(y-t)^{2}\right]^{1 / 2}
\end{aligned}
$$

McMaster

University

Distance measures

- D_{m} distance: length of the shortest m-path between two pixels
- $\mathrm{D}_{4}, \mathrm{D}_{8}$ distance between p and q are independent of the pixels along the path
- D_{m} depends on the value of the pixels between p and q
0 (1)
0 (1)
$\begin{array}{lll}1 & 1 & 0\end{array}$
$0 \quad 1 \quad 0$
(1) $0 \quad 0$
(1) $0 \quad 0$
$D_{m}=3$
$\mathrm{D}_{\mathrm{m}}=2$

Region

- R: a subset of pixels in an image
- R is called a region if every pixel in R is connected to any other pixel in R
- Boundary (border or contour) of a region: set of pixels in the region that have one or more neighbors that are not in R

| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

$\underset{\text { McMaster }}{\text { Univesiry }}$
University \square
44

Distance measures

- D_{4} distance
$D_{4}(p, q)=|x-s|+|y-t|$
- D_{8} distance
$D_{8}(p, q)=\max \{|x-s|,|y-t|\}$

Pixel values	D_{4} distances			D_{8} distances				
0	1	1	2	1	2	1	1	1
0	1	0	1	0	1	1	0	1
0	0	1	2	1	2	1	1	1

McMaster
University 䍜 \square 46

Linear \& Non-linear operations

- H: an operator whose inputs and outputs are images
- H is linear if for any two images f and g and any two scalars a and b

$$
\mathrm{H}(\mathrm{af}+\mathrm{bg})=\mathrm{aH}(\mathrm{~F})+\mathrm{bH}(\mathrm{~g})
$$

Line scan arrays

- A row of photosites forms the imaging device
- Charges of photosites are transferred to a readout register
- Readout register works similar to a shift register

$\underset{\text { University }}{\text { Mas }}$
49

Area scan arrays

- Composed of 2-D array of CCD elements.
- Different methods to read the accumulated charge:

Line scan arrays

- While register is read, image capturing should stop
- Readout speed can be increased using more than one register
- A 2-D image is formed by relative motion between the scene and sensor

50

Color imaging with CCD

- Light is separated into red, green and blue components.
- Color filters or prism can be used to break light
- Each component is recorded by CCD

McMaster
 52

