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Brain Machine Interfaces (BMIs)

BMI

Processes signals
from the brain

ﬁ

e.g., 1 second delay
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Brain Machine Interfaces (BMIs)

BMI

Processes signals
from the brain

Busacth
B WA
robotic arm
e.g., 1 second delay
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Brain Machine Interfaces (BMIs)

BMI

Processes signals
from the brain

PR
robotic arm
e.g., 1 second delay
moves
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BMls at the edge

What if we can detect patterns of neuron activity in real-time?

Detect, in real-time, memories, decisions, emotions, and experiences

Applications

Repair brain function

Interface brain regions which no
longer connect, e.g. Alzheimer’s

HIPPOCAMPUS CHIP

DAMAGED
HIPPOCAMPUS
TISSUE

RN,

RAT HIPPOCAMPUS

Replacement of damaged
hippocampus with a chip [1]

[1] https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/ (Hippocampus repair)
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https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/

BMls at the edge

What if we can detect patterns of neuron activity in real-time?

Detect, in real-time, memories, decisions, emotions, and experiences

Applications

Repair brain function _
Drive effectors

Interface brain regions which no
longer connect, e.g. Alzheimer’s

HIPPOCAMPUS CHIP

Greater accuracy and
dexterity, e.g. robotic limbs

DAMAGED
HIPPOCAMPUS
TISSUE

Y-

— )\

Woman controls robotic arm
with 100-channel Utah array [2]

RAT HIPPOCAMPUS

Replacement of damaged
hippocampus with a chip [1]

[1] https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/ (Hippocampus repair)
[2] https://continuum.utah.edu/web-exclusives/the-bionics-man/ (Utah Array)
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https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/
https://continuum.utah.edu/web-exclusives/the-bionics-man/

BMls at the edge

What if we can detect patterns of neuron activity in real-time?

Detect, in real-time, memories, decisions, emotions, and experiences

Applications

Repair brain function Drive effectors Anticipate and prevent
IV - -
Interface brain regions which no harmful neu.ral activity
longer connect, e.g. Alzheimer’s Greater accuracy and e.g. epilepsy

T dexterity, e.g. robotic limbs

DAMAGED
HIPPOCAMPUS
TISSUE

=7

/N
Woman controls robotic arm

Replacement of damaged with 100-channel Utah array [2] Responsive neurostimulator
hippocampus with a chip [1] system for epilepsy [3]

RAT HIPPOCAMPUS

[1] https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/ (Hippocampus repair)
[2] https://continuum.utah.edu/web-exclusives/the-bionics-man/ (Utah Array)
[3] Critical review of the responsive neurostimulator system for epilepsy (Thomas and Jobst, 2015)

@8 The Edward S. Rogers Sr. Department
[ & | of Electrical & Computer Engineering

\g’ rrrrrrrrrrrrrrrrrrererrrrrrreroerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T I T T T T T 3

¥’ UNIVERSITY OF TORONTO C HI P S



https://www.newscientist.com/article/dn3488-worlds-first-brain-prosthesis-revealed/
https://continuum.utah.edu/web-exclusives/the-bionics-man/

The Challenge and Opportunity
Capture Capability Growing Exponentially

Doubling Time: 6.3 £ 0.2 years (n=92) o .O

Simultaneously Recorded
500—3 Neurons
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Simultaneously Recorded Neurons
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Constraints for a portable implanted device
1. Fast (real-time, <5ms detection latency)
2. Low-power & low-area

3. Scalable
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Data quickly outpacing analysis techniques

1 Uaptuic L apabmty STUWITTY CAUUTICTTUCTY
Existing solutions can’t cope

Simultaneously Recordec

w
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Constraints for a portable implanted device
1. Fast (real-time, <5ms detection latency)

2. Low-power & low-area
3 Scalable
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Data quickly outpacing analysis techniques

EX|st|ng solutions can’t cope

Simultaneously Recorded

L|m|ted number of neurons
Not real-time
High power
Physically large

Constraints for a
1. Fast (real-time, <5ms detection latency)

2. Low-power & low-area
3. Scalable




Data quickly outpacing analysis techniques

Existing solutions can’t cope

Simultaneously Recordec

Limited number of neurons
Not real-time
High power
Physically large

Brain activity decoding is
memory intensive &
computationally expensive




J\(Roadmap to NOEMA

* Input to the system
* Template matching
* Baseline design & Noema

* Results
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The Raw Input Data

v
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The Raw Input Data

Waveforms

v
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The Raw Input Data

Waveforms

¥ VA
I 4

+1,000s
channels

v
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The Raw Input Data

Waveforms

A 4

4
V 4
+1,000s
channels
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Processing Pipeline

Indicator
bitstreams
Waveforms
neuron #1
,\ Spike : neuron #N
y 4 o
& 4 o
' A S0 430,000
+1,000s neurons
channels

0000100000
0010000000

0000000010
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Processing Pipeline

Indicator
bitstreams
Waveforms
) ‘ 7 Template Matching
7 > +30,000
+1’OOOS neurons
channels
0000100000
0010000000
0000000010
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Processing Pipeline

Indicator
bitstreams
Waveforms
o 'I - e |
! : earson
/L Spike 7 =I Temporal | Correlation I
Neural — e q sorter I Binning i . '
/ +30,000 Coefficient
+1,000s neurons I J_ I
channels T = -
0000100000 Template
0010000000 Matching

0000000010
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Temporal Binning
Data “smoothing”

Indicator neweniL
LRI 'r;euron #N : Temporal Binning
r — =
" o{1(1 0/1|0|0|1]2 :011 o[1/0| |0]1]1
Numberof<001001110,,, 0/0j2 00|12 1(1/0
neurons 1/1/0/{0/0|0j0|0|1 ||110 0/0/0] 0|0]1
klO]—lOlOlO 1 11/0]1 101 010
L _ _
Time g . L .
Divide incoming input into
groups of 3 (example bin size)
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Temporal Binning

Data “smoothing”

neuron #1
Indicator
bitstreams I K
neuron #N Temporal Binning
v [[CJEElofo|ofE)d h o[1]o] [o]2]a
Numberof<001001110,,, 0|01 0/0/12 (110
neurons 1/1/0/0|0|0|0|0]1 '|110 0|00/ (0|01
_1/0/1{1/0/1/0{1|0 1 11/0/1| (1|01, 0|10
L o e e e e e e e e - -
Time g Add the bits together
& 1t bt o Dy MW
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Temporal Binning
Data “smoothing”

. neuron #1
Indicator I
bitstreams | . k
neuron #N I Temporal Binning I
| 1 :
(N) I
Number of -I 1 I
neurons i 0 1 I
|
|

| 2 1
|

Time Done for all bins
in a template
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Temporal Binning
Data "smoothing”

. neuron #1
Indicator
bitstreams I -
neuron #N I Temporal Binning
' H:
(N) I
11
Number of -I
neurons |
- >
Time
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Template Matching

Indicator Template Matching
bitstreams
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J\Iemplate Matching

Binary input Binned input Templates
) ) -
| L L o |
#1 #2 #3

Which template does the input
most closely resemble?
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Template Matching

Binary input Binned input Templates

L)

#1 #3

How do neuroscientists determine this?
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J\fearson Correlation Coefficient (PCC)

Widely used metric to measure
the “closeness” of two matrices

L

> (xi = x)(yi — 1)

1=1

L L
\/El (i = f)z\/gl (yi —y)*
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PCC Example

Binned input Templates

L= .

#1 #H2 #3

Move Move Move
right arm left arm left leg
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PCC Example

Binned input Templates

e

#1 #2 #3
Move Move Move
right arm left arm left leg

0.135 0.857 0.196

PCC scores (r)
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PCC Example

Binned input Templates

1o

#1

Move
right arm

0.135

#3

Move
left leg

0.196

PCC scores (r)
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Template Matching Overview

Indicator Template Matching
bitstreams

ST

0.135 0.857  0.196
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Costs of baseline template

matching design

-

Entire input buffer fills
before compute begins
- High latency

Most difficult
requirement

5ms for real-time
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Costs of baseline template
matching design

-

Entire input buffer fills
before compute begins
- High latency

Most difficult
requirement

5ms for real-time

@8 The Edward S. Rogers Sr. Department
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On-chip template memory

£h K

Storage of input +
templates
- Large memory
cost
e.g. +1.24 Gb each
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Costs of baseline template
matching design

Storage of input +
templates

On-chip template memory

v I

Entire input buffer fills
before compute begins
- High latency

Most difficult
requirement

5ms for real-time
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e.g. +1.24 Gb each

!

+100k parallel PEs

PE PE PE PE PE PE PE Many processing

elements

PE PE PE PE PE PE PE > Large area cost

PE PE PE PE PE PE PE

Ll L

&
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Storage of input +

How can we do better?

13



NOEMA [MICRO’21, Patented]:

Brain Interfaces at the Edge

A multidisciplinary collaboration effort in analyzing and developing

a custom hardware platform to decipher the brain neural activity
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NOEMA [MICRO’21, Patented]:

Brain Interfaces at the Edge

A multidisciplinary collaboration effort in analyzing and developing
a custom hardware platform to decipher the brain neural activity

Enabling truly portable systems for processing high-resolution brain
activity signals for treatment, augmentation, and repair of brain functions
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NOEMA [MICRO'21, Patented]:

Brain Interfaces at the Edge

A multidisciplinary collaboration effort in analyzing and developing
a custom hardware platform to decipher the brain neural activity

Enabling truly portable systems for processing high-resolution brain
activity signals for treatment, augmentation, and repair of brain functions

N O E M A'’s Prototype Chip

 Fabricated with TSMC 65nm GP technology
* Only 24psec latency!

* 5 sec experience, 1K neurons @ 0.73 mW
* Scales to 30K neurons, 10x more than have ever been recorded
* Scales to meet future demand!
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Input Serialization & PCC
Reformulation

(N) O I

Number of <
neurons
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Input Serialization & PCC
Reformulation

(N) O I

Number of <
neurons

Serialize

m) 0011102021011
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Input Serialization & PCC
Reformulation

p

Number of et bd

neurons<i£9000001 - CORRSORMOEENOR.
10/1/0/1|0

Reformulation

rX.Y) = 2] - e = (CaSilt] = CaSalt])”

i3
> (i — X))y —vy)

Cs (C1S3[t] — S2[t]?)

L
\/El(" x)Z\/z (vi — )

ﬁThLd dSRg prt nt
%FH ]&Cm[_ r Engineering
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NOEMA's innovations |- Sall-ctil

Bit-serial input
* No buffering overhead
* Compute immediately when received

o0l Ta0T0aT0l. -1

0
I
Ehk $
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NOEMA's innovations |- Sall-ctil

Bit-serial input
* No buffering overhead
* Compute immediately when received

001110101101 -1
Near-memory bit-serial PEs

0
On-chip |
template $

e Based on reformulated PCC
e Tiny, easy to scale
Post Processing

memory
@8 The Edward S. Rogers Sr. Department
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J\(N OEMA's innovations |- Sal-culd,

Bit-serial input
* No buffering overhead
* Compute immediately when received

Simple memory
compression (~2.8x)

001110101101___-1 [ .
. [] # "
Near-memory bit-serial PEs

0
On-chip |
template $

e Based on reformulated PCC
e Tiny, easy to scale
Post Processing

memory
Fits well with existing probe interfaces (time-multiplexed ADC out)

@8 The Edward S. Rogers Sr. Department
@ | of Electrical & Compurer Engineering

o o 16
) rrrrrrrrrrrrrrrrrrererrrrrrreroerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T I T T T T T

A

)

% UNIVERSITY OF TORONTO C HI P S




Baseline to NOEMA Overview

Baseline

+100k parallel PEs

PE PE PE PE PE PE PE
PE PE PE PE PE PE PE

PE PE PE PE PE PE PE
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On-chip template memory

£ K

NOEMA

001110101101 -1

On-chip
template
memory

Post Processing
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Performance Results

Comparison of latency across platforms

1000000
100000 112952
10000
8605
— 1000
S
— 100
>
=
S 10 21
s 5
-~ 1
CPU CPU GPU PCC Noema
0.1 (RPi3B) (i57000) (GTX1080) baseline
0.01
0.001
0.001

* For the most demanding configuration tested (9 sec experience, 30K neurons)
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Performance Results

Comparison of latency across platforms

1000000
100000 112952
10000
8605
% 1000 Real-time constraint
=
— 100 5ms
>
8 10 21
O o i e — — e e e e e e e e
g I [
— 1 —
CPU CPU GPU PCC Noema
0.1 (RPi3B) (i57000) (GTX1080) baseline
0.01
0.001
0.001
* For the most demanding configuration tested (9 sec experience, 30K neurons)
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Performance Results

Comparison of latency across platforms

1000000
100000 112952
10000
8605
w1000 Real-time constraint
&
— 100 5ms
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< I [
— 1 —
CPU CPU GPU PCC Noema
0.1 (RPi3B) (i57000) (GTX1080) baseline
0.01 :
Can continue 0.001
0.001 to scale up
* For the most demanding configuration tested (9 sec experience, 30K neurons)
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Power & Area Results

Power Area
consumption 600
20 532.9
18 17.3 500
16 =
1 £ 400
£ ~2.6Xx
N 12 8 300 d t
E 10 = reauction
; 8 § 205.4
= 200
6 ~14x g
4 reduction 100
2 1.2
0 e 0
PCC Noema PCC Noema
baseline baseline

* For the most demanding configuration tested (9 sec experience, 30K neurons)
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The NOEMA Family

o ,| Requirements® |Implementation
Froax [NEUONS| o 1o tes| Duration Resolution
(MHz) | (thousands) (seconds) |(milliseconds) | Compute Memory ASIC®
(GOPs) )

NOEMAO1K1T05S250 30 1 1 5 250 03 vV

1. Duration of the decoded experience

2. Resolution window of the incoming activities.
Activities within this windows are binned (averaged).

3. If executed on commodity hardware.

Intel’s Stratix 10 FPGA

5. TSMC 65nm GP

o
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The NOEMA Family

. ,| Requirements® |Implementation
Froax [NEUONS| o 1o tes| Duration Resolution
(MHz) | (thousands) (seconds) [(milliseconds) | C€ompute | Memory ASIC5
(GOPs) (Mb)

NOEMAO1K1T055250 30 1 1 5 250 03 vV
NOEMA10K2T05S005 300 10 2 5 5 628.0 114.4 v Planned

1. Duration of the decoded experience

2. Resolution window of the incoming activities.
Activities within this windows are binned (averaged).

3. If executed on commodity hardware.

4. Intel’s Stratix 10 FPGA

5. TSMC 65nm GP

@8 The Edward S. Rogers Sr. Department
[ & | of Electrical & Computer Engineering
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The NOEMA Family

o ,| Requirements® |Implementation
Froax [NEUONS| o 1o tes| Duration Resolution
(MHz) | (thousands) (seconds) [(milliseconds) | C€ompute | Memory ASIC5
(GOPs) (Mb)

NOEMAO1K1T05S250 30 1 1 5 250 03 v
NOEMA10K2T05S005300 10 2 5 5 628.0 1144 v Planned
NOEMA20K3T095250 600 20 3 9 250  064.8 33.0 «° Planned

1. Duration of the decoded experience

2. Resolution window of the incoming activities.

Activities within this windows are binned (averaged).

3. If executed on commodity hardware.

4. Intel’s Stratix 10 FPGA

5. TSMC 65nm GP

6. Not applicable; device can’t meet target frequency.
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rrrrrrrrrrrrrrrrrrrrrrrrrrrorererrrrrrrrrrrrrerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr T T T T T I T T T T T T T

(8]
LI
" UNIVERSITY OF TORONTO C HI P S

s

i€



The NOEMA Family

) > Requnrements3 Implementation
Frnax [NEUrONS|p. -t Duration Resolution
(MHz) | (thousands) (seconds) [(milliseconds) | C€ompute | Memory ASIC5
(GOPs) (Mb)

NOEMAO1K1T05S250 30 1 03 v

NOEMAIOK2T05S005 300 10 2 5 5 628.0 1144 v Planned
NOEMA20K3T095250 600 20 3 9 250  064.8 33.0 «° Planned
NOEMA30K4T09s005900 30 4 9 5 6786.41236.0 «° Planned

=

Duration of the decoded experience

Resolution window of the incoming activities.
Activities within this windows are binned (averaged).
. If executed on commodity hardware.

. Intel’s Stratix 10 FPGA

. TSMC 65nm GP

. Not applicable; device can’t meet target frequency.

The Edward S. Rogers Sr. Department
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NOENMA'’s ASIC Devices

)| s

NOEMAO1K1IT05S250 036 0.07 043" 0.30 0.43 0.73 239 In lab*#

* Core only; 2.1mm? total silicon area.
* Fabricated with TSMC 65nm GP
# Also tested on Intel’s Stratix 10 FPGA

@8 The Edward S. Rogers Sr. Department
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J\(NOEME’S ASIC Devices

Silicon Area (mmz) Latency Chip
(k) | status

NOEMAO1K1IT05S250 036 0.07 043" 0.30 0.43 0.73 239 In lab*#

NOEMA10K2T05S005 2846 135 2981 89.78 84.28 174.06 2.8  Simulated”

* Core only; 2.1mm? total silicon area.
* Fabricated with TSMC 65nm GP
# Also tested on Intel’s Stratix 10 FPGA

@8 The Edward S. Rogers Sr. Department
[ & | of Electrical & Computer Engineering
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J\(NOEME’S ASIC Devices

Silicon Area (mmz) Latency Chip
) | stotus
NOEMAO1K1TO055250 036 0.07 043" 0.30

NOEMA10K2T05S005 2846 135 29.81 89.78
NOEMA20K3T09S250 6.26 0.09 6.25 18.55

0.43 0.73 23.9 In lab*#
84.28 174.06 2.8 Simulated”

9.68 28.23 1.5 Simulated

* Core only; 2.1mm? total silicon area.
* Fabricated with TSMC 65nm GP
# Also tested on Intel’s Stratix 10 FPGA
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J\(NOEME’S ASIC Devices

Silicon Area (mmz) Latency Chip
(k) | status

NOEMAO1K1IT05S250 036 0.07 043" 0.30 0.43 0.73 239 In lab*#

NOEMA10K2T05S005 2846 135 2981 89.78 84.28 174.06 2.8  Simulated”
NOEMA20K3T09S250 6.26 0.09 6.25 18.55 9.68  28.23 1.5 Simulated
NOEMASOK4ATO9S0O05  202.00 3.42 20542 68270 522.76 1205.46 1.0 Simulated

* Core only; 2.1mm? total silicon area.
* Fabricated with TSMC 65nm GP
# Also tested on Intel’s Stratix 10 FPGA

@ The Edward S. Rogers Sr. Department
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NOEMAO1K05S5250MS

* TSMC 65nm GP
24psec latency
1K neurons
(scales to 30K)
5sec experience
Consumes 0.73mW \.
Equivalent of '
600MOPs 32bit-FP

&% The Edward S. Rogers Sr. Department
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NOEMAO1K05S5250MS
TSMC 65nm GP
24psec latency
1K neurons
(scales to 30K)
5sec experience
Consumes 0.73mW \.
Equivalent of :
600MOPs 32bit-FP

By Comparison:
* Nvidia Jetson Nano
* Consumes 10W
* Barely meets 5ms
real-time latency
Intel i5-7000
* 63ms latency
* Fails to meet
real-time latency

# The Edward S. Rogers Sr. Department

+ | of Electrical & Compurer Engineering
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NOEMAO1KO5S250MS
TSMC 65nm GP
24psec latency

1K neurons

(scales to 30K)
5sec experience
Consumes 0.73mW
Equivalent of
600MOPs 32bit-FP

By Comparison:

* Nvidia Jetson Nano
* Consumes 10W
* Barely meets 5ms

real-time latency

* Intel i5-7000 ]
* 63ms latency -
* Fails to meet Ep—

real-time latency q

A ibis
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NOEMAO1KO5S250MS
TSMC 65nm GP
24psec latency

1K neurons

(scales to 30K)
5sec experience
Consumes 0.73mW .
Equivalent of e

T

600MOPs 32bit-FP =~ | 3‘???"3“1‘

By Comparison:
* Nvidia Jetson Nano
* Consumes 10W
* Barely meets 5ms
real-time latency | ; :
* Intel i5-7000 j| S s : . §#| Compute
* 63ms latency : s
* Fails to meet
real-time latency

Compute
RAM

@8 The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
BERASEREESSRREEASSSREESERRERREARRSREREREEESEERRREEREREASSRREREAEEEEREEARRRREEEERRRAREREAEESRREERRRRRERRE 24

=z UNIVERSITY OF TORONTO C HI P S




NOEMAO1KO5S250MS
TSMC 65nm GP
24psec latency
1K neurons
(scales to 30K)
5sec experience
Consumes 0.73mW
Equivalent of
600MOPs 32bit-FP

By Comparison:
* Nvidia Jetson Nano
* Consumes 10W
* Barely meets 5ms
real-time latency
Intel i5-7000
* 63ms latency
* Fails to meet
real-time latency
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NOEMA

Key Takeaways

Brain machine interfaces:
X Exponential growth in data
X Current solutions are not sufficient

NOEMA’s key innovation:

v Uses simple, low-cost, area- and energy efficient bit-
serial and integer arithmetic units

v Enables computations to proceed progressively as
data is received

v" Scales to meet future demand
* 14x less power, 2.6x smaller, order of usec latency

% The Edward S. Rogers Sr. Department
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Thank you!



