

Mokey

Enabling Narrow Fixed-Point Inference

for Out-of-the-Box Floating-Point Transformer Models

49th IEEE/ACM International Symposium on Computer Architecture (ISCA '22)

Transformers for Text Generation

9210 / 10000 InferKit DEMO Sign In weekly free characters **Generate Options** My name is Ali. I am a PhD candidate at UofT. Today I am presenting my Learn more in the docs. paper at the 49th IEEE/ACM International Symposium on Computer Architecture (ISCA '22). Length to generate ② 200 Start at beginning ② **Advanced Settings** » **Generate Text**

https://app.inferkit.com/demo 2 / 43

Transformers for Text Generation

9210 / 10000 InferKit DEMO Sign In weekly free characters **Generate Options** My name is Ali. I am a PhD candidate at UofT. Today I am presenting my Learn more in the docs. paper at the 49th IEEE/ACM International Symposium on Computer Architecture (ISCA '22). To tell you the truth, I'm nervous, but excited to Length to generate ② show off my ideas! 200 Start at beginning @ **Advanced Settings** » **Generate Text**

https://app.inferkit.com/demo
3 / 43

Challenges

Challenges

Weights

Activations

Memory:

Performance & Energy Bottleneck

Challenges

Mokey: BERT's Better Self

Floating point

0001 0101 1010 1100

*Not your typical 4b quantization;)

Mokey

IAI

Index

Value

$$W, A = f(idx)$$

...

. . .

 $+= A \times W. \rightarrow Count idx$

Fixed-point compute

Mokey HW Accelerator

Vs. Tensor Cores: 15x Faster + 100x Energy Efficient

Mokey Memory Compression

For Tensor Cores:

Off-chip Only: 4x Faster + 8x Energy Efficient

Off- and on-chip*: 10x Faster + 50x Energy Efficient

Roadmap

Computation on indices

Models' Accuracy

Hardware Evaluation

Conclusion

Quantization Dict.

Index	Value
I	0.02
II	0.07
III	0.12
IV	0.25
•••	•••

Dictionary-Based Quantization

Clustering: Iterative (3) Not Feasible for Activations

A Dictionary for All Layers

Golden Dict. (GD)

Index	Value
I	-2.7
II	-1.98
• • •	•••
VI	1.98
XVI	2.7

Scale and Shift is All You Need!

A Dictionary for All Layers

Reference Distribution

Weights & Embeddings: Offline Activation: Profiling

Scale and Shift is All You Need!

Original

$$A = 0.2$$
 $W = 0.7$

$$A \times W += 0.2 \times 0.7 = 0.14$$

Dictionary Quant.

$$A = I$$
 $W = II$

Index	Value	
I	0.2_	
II	0.7	
III	1.1	
IV	1.4	
$W += V \times II$		
$W += 0.2 \times 0.7 = 0.14$		

A×

A×

Mokey Quant.

$$A = I$$
 $W = II$

$$A \times W += I \times II = 0.14$$

Original

Dictionary Quant.

Mokey Quant.

Let's See in Practice!

$$A \times W += I \times II$$

$$A \times W += 0.2 \times 0.7 = 0.14$$

Original

$$A = 0.2$$
 $W = 0.7$

$$A \times W += 0.2 \times 0.7 = 0.14$$

Dictionary Quant.

$$A = I$$
 $W = II$

	Index	Value	
	I	0.2ــ	
	II	0.7-	
	III	1.1	
	IV	1.4	
		- - -	
A × '	W += [↓]	I × II	

$$A \times W += 0.2 \times 0.7 = 0.14$$

Dictionary Quantization

Dictionary Quant.

FP16

Chip

No on chip mem comp Limited performance/energy gain

$$A \times W += I \times II$$

 $A \times W += 0.2 \times 0.7 = 0.14$

Dictionary Quant.

$$A = I$$
 $W = II$

	Index	Value	
	I	0.2_	
	II	0.7-	
	III	1.1	
	IV	1.4	
	į	\ \	
A × Y	W += <mark>♥</mark>	I × II	

 $A \times W += 0.2 \times 0.7 = 0.14$

Dictionary Quantization

Dictionary Quant.

Chip

$$A \times W += I \times II$$

 $A \times W += 0.2 \times 0.7 = 0.14$

Mokey Quantization

"Simple" Relationship between Index and Value

Mokey Quantization

Index	Value
I	0.05
II	0.35
•••	
VI	1.97
VII	2.61

Index	Value
I	0.05
II	0.35
•••	
VI	1.97
VII	2.6

$$GD=q^i+b$$

Index	Value
I	0.05
II	0.35
•••	
VI	1.97
VII	2.6

Index	Value
I	0.05
II	0.35
•••	
VI	1.97
VII	2.6

$$A_0 = 01 + 0$$
 $W_0 = 02 + 0$
 $A_1 = 04 + 0$ $W_1 = 05 + 0$
...

$$A_0 = @^1 + b W_0 = @^2 + b$$
 $A_1 = @^4 + b W_1 = @^5 + b$

$$\sum_{N} AW = A_{0}W_{0} + A_{1}W_{1} + ...$$

$$= 0^{1+2} + 0^{1} + 0^{2}$$

$$A_{0} = \alpha^{1} + \beta \qquad W_{0} = \alpha^{2} + \beta$$

$$A_{1} = \alpha^{4} + \beta \qquad W_{1} = \alpha^{5} + \beta$$

$$\dots$$

$$\sum_{N} AW = A_{0}W_{0} + A_{1}W_{1} + \dots$$

$$= \alpha^{1+2} + \beta \alpha^{1} + \beta \alpha^{2} + \beta^{2} + \beta$$

$$\alpha^{4+5} + \beta \alpha^{4} + \beta \alpha^{5} + \beta^{2} + \beta$$

$$\dots$$

$$= \alpha^{3} + \alpha^{9} + \dots) + \beta(\alpha^{1} + \alpha^{4} + \dots) + \beta(\alpha^{2} + \alpha^{5} + \dots) + N\beta^{2}$$

Pre-computed

$$A_0 = @^1 + b W_0 = @^2 + b$$
 $A_1 = @^4 + b W_1 = @^5 + b$

$$\sum_{N} AW = A_0 W_0 + A_1 W_1 + \dots$$

$$= Q^{1+2} + Q^{1} + Q^{2} + Q^{2}$$

$$A_0 = a^1 + b$$
 $W_0 = a^2 + b$
 $A_1 = a^4 + b$ $W_1 = a^5 + b$

$$\sum_{N} AW = A_0 W_0 + A_1 W_1 + \dots$$

$$= Q^{1+2} + Q^{1} + Q^{2} + Q^{2}$$

Revisiting Computation

Histogram: Most of the computation => 3-bit INT Add

Reduction: Post processing => 16-bit Fixed-point

Range
$$[0,7]+[0,7]=[0,14]$$
 ...
$$= (@^3+@^9+...)+[b(@^1+@^4+...)+[b(@^2+@^5+...)+N[b^2$$

$$(1) \ Histogram \ (2) \ Weighted \ reduction$$
Computed during last layer's quantization

Computed $[ayer's \ quantization]$

Pre-computed

Evaluation

- > FP16 Tensor Cores baseline
- Wide range of on-chip buffers
- > 110M 750M parameter models

- Custom cycle accurate simulator.
 - o DRAMsim3: Dual Channel DDR4-3200
- On-chip Memory: CACTI
- Synthesis: Synopsis Design Compiler
 - o 65nm TSMC 1Ghz
- Layout: Cadence Innovus
- Signal Activity: Modelsim
- Power Estimation: Cadence Innovus

Compression: 16-bit to 4-bit => 4x

- BERT_Base_MNLI
- BERT_Large_MNLI
- BERT_Large_SQuAD
- RoBERTa_Large_MNLI
- RoBERTa_Large_SQuAD
- DeBERTa_XL_MNLI
- GEO MEAN

Compression: 16-bit to 4-bit => 4x

- BERT_Base_MNLI
- BERT_Large_MNLI
- BERT_Large_SQuAD
- RoBERTa_Large_MNLI
- RoBERTa_Large_SQuAD
- DeBERTa_XL_MNLI
- GEO MEAN

Compression: 16-bit to 4-bit => 4x

Memory Compression

Conclusion

Mokey Quantization:

- 4-bit Dictionary-based
- Focus on a subspace => closed-form representation
- Fixed-point compute
- No fine-tuning

➤ Mokey HW Accelerator:

- Compute directly on indices
- ➤ 1.6x Smaller tiles vs. Tensor Cores
- > 15x Faster and 100x Energy efficient
- Can be adapted to other accelerators

