MESH CURRENT ANALYSIS WITH CURRENT SOURCES
When there are only independent voltage sources, mesh current analysis boils down to

* identifying the meshes
* writing the KVL equation for each mesh if there are N_{m} meshes $\Rightarrow N_{m}$ equations in N_{m} unknowns

The presence of current sources

- sometimes makes things easier
- sometimes makes things a bit more complicated

This depends on where the current source is located

CURRENT SOURCES ON AN "EDGE" OF THE CIRCUIT
Make things easier

- Current source affects only one mesh
- Hence we immediately know the current in the mesh
- We do not need to do KVL for that mesh
- Solve the KV'Ls for the other meshes

EXAMPLE

$$
\begin{aligned}
& I_{2}=-I_{s} \\
& \text { KVL Loop 1: } \quad-V_{s}+R_{1} I_{1}+R_{2}\left(I_{1}-I_{2}\right)=0 \\
& \Rightarrow I_{1}=\frac{V_{s}-R_{2} I_{s}}{R_{1}+R_{2}}
\end{aligned}
$$

CURRENT SOURCE INA BRANCH THAT IS SHARED BY TWO MESHES

- Makes things a little more complicated
- Just writing KVLs around each mesh yields an undetermined linear system
- We need an additional equation

$$
I_{2}=I_{S}
$$

- Can become cumbersome
- Can we streamline the procedure?

SUPER MESH
(A) Construct a supermesh by fusing the meshes that share the current source
(B) write KVL around the supermesh
(C) Use the source to relate mesh currents

EXAMPLE

KVL around supermesh $-10+1\left(I_{1}-I_{3}\right)+3\left(I_{2}-I_{3}\right)+2 I_{2}=0$
Use source

$$
I_{1}-I_{2}=5
$$

KVL for other mesh

$$
1\left(I_{3}-I_{1}\right)+2 I_{3}+3\left(I_{3}-I_{2}\right)=0
$$

3 equations, 3unknowns
Rewrite

$$
\begin{aligned}
I_{1}+5 I_{2}-4 I_{3} & =10 \\
-I_{1}-3 I_{2}+6 I_{3} & =0 \\
I_{1}-I_{2} & =5
\end{aligned}
$$

Solve

$$
\begin{aligned}
& I_{1}=7.5 \mathrm{~A} \\
& I_{2}=2.5 \mathrm{~A} \\
& I_{3}=2.5 \mathrm{~A}
\end{aligned}
$$

NODE OR MESH?

- Depends on circuit and question
- Question:
- if required answer is current, tempting touse mesh
- if required answer is voltage, tempting to use node
- However, the circuit is the key factor
(i) Count number of nodes, N_{n}
(2) Count number of meshes, Nm
(3) Count number of voltage sources connected to reference node, Nr_{r}
Remember you can choose the referencenode Try to make Nv_{r} large
(4) Count number of current sources that affect only one mesh current, $N_{\text {Ie }}$
(5) Node requires $N_{n}-N_{V_{r}-1}$ equations

MESH requires $N_{m}-N_{I e}$ equations

EXAMPLE

Number of nodes

$$
N_{n}=7
$$

Number of meshes $\quad N m=8$

Chooserefnode to be the bottom node
Number of indep. voltage sources connected to ref. node $N v_{r}=4$
Number of indep current sources on an edge $N_{I_{e}}=0$

Number of equations for meshanalysis: $N m-N I_{e}=8$
Number of equations for node analysis: $N_{n}-N_{V_{r}-1}=2$

