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Frequency domain design

• Analyze closed loop using open loop transfer function
L(s) = Gc(s)G(s)H(s).

• We would like closed loop to be stable:

• Use Nyquist’s stability criterion (on L(s))

• We might like to make sure that the closed loop remains stable
even if there is an increase in the gain

• Require a particular gain margin (of L(s))

• We might like to make sure that the closed loop remains stable
even if there is additional phase lag

• Require a particular phase margin (of L(s))
• We might like to make sure that the closed loop remains stable even

if there is a combination of increased gain and additional phase lag
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Robust stability

• Let Ğ(s) denote the true plant and let G(s) denote our model

• ∆G(s) = Ğ(s)−G(s) denotes the uncertainty in our model

• If Ğ(s) has the same number of RHP poles as G(s), we need to
ensure that the Nyquist plot of

L̆(s) = Gc(s)Ğ(s) = L(s) + Gc(s)∆G(s)

has the same number of encirclements of −1 as the plot of L(s).

• This will give us a sufficient condition for robust stability
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Robust stability II
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Robust stability III

• Our sufficient condition is |1 + L(jω)| > |Gc(jω)∆G(jω)|.

• That is equivalent to | 1
L(jω) + 1| >

∣∣∣∆G(jω)
G(jω)

∣∣∣
• That is, we need |L(jω)| to be small at the frequencies

where the relative error in our model is large;
typically at higher frequencies
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Frequency domain design

• We might like to control the damping ratio of the dominant
pole pair

• Use the fact that φpm = f (ζ);

• We might like to control the steady-state error constants

• For step, ramp and parabolic inputs, these constants
are related to the behaviour of L(s) around zero; i.e.,
behaviour near DC. Recall Kposn = L(0) and
Kv = lims→0 sL(s).

• We might like to influence the settling time

• Roughly speaking, the settling time decreases with
increasing closed-loop bandwidth. How is this related to
bandwidth of L(s)?
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Bandwidth

• Let ωc be the (open-loop) cross-over frequency;
i.e., |L(jωc)| = 1

• Let T (s) = Y (s)
R(s) = L(s)

1+L(s) .

• Consider a low-pass open loop transfer function

• When ω � ωc , |L(jω)| � 1, =⇒ T (jω) ≈ 1

• When ω � ωc , |L(jω)| � 1, =⇒ T (jω) ≈ L(jω)

• Can we quantify things a bit more, and perhaps gain
some insight, for a standard second-order system
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Bandwidth, open loop
• For a standard second-order system, L(s) =

ω2
n

s(s+2ζωn)

• To sketch open loop Bode diagram, L(jω) = ωn/(2ζ)

jω
(

1+jω/(2ζωn)
)

• Low freq’s: slope of −20 dB/decade; Corner freq. at 2ζωn;
High freq’s: slope of −40dB/decade

• Crossover frequency: ωc = ωn
(√

1 + 4ζ4 − 2ζ2)1/2

Circles are the corner frequencies; Observe crossover frequencies
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Bandwith, closed loop
• To sketch closed-loop Bode diagram, T (jω) = 1

1+j2ζω/ωn−(ω/ωn)2

• Low freq’s: slope of zero; Double corner frequency at ωn;
High freq’s: slope of −40dB/decade

• For ζ < 1/
√

2, peak of 1

2ζ
√

1−ζ2
at ωr = ωn

√
1− 2ζ2 (Lab 2)

• 3dB bandwidth: ωB = ωn
(√

2− 4ζ2 + 4ζ4 + 1− 2ζ2)1/2,
≈ ωn(−1.19ζ + 1.85) for 0.3 ≤ ζ ≤ 0.8.

Asterisks are ωB



EE 3CL4, §9
12 / 56

Tim Davidson

Frequency
Domain
Approach to
Compensator
Design

Lead
Compensators

Lag
Compensators

Lead-Lag
Compensators

Bandwidth, open and closed
loops

• OL crossover freq.: ωc = ωn
(√

1 + 4ζ4 − 2ζ2)1/2

• CL 3dB BW: ωB = ωn
(√

2− 4ζ2 + 4ζ4 + 1− 2ζ2)1/2

• 2% settling time: Ts,2 ≈ 4
ζωn

• Rise time (0%→ 100%) of step response: π/2+sin−1(ζ)

ωn
√

1−ζ2

• Close relationship with ωc and ωB, esp. through ωn.
Care needed in dealing with damping effects.
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Loopshaping, again

E(s) =
1

1 + L(s)
R(s)− G(s)

1 + L(s)
Td (s) +

L(s)

1 + L(s)
N(s)

where, with H(s) = 1, L(s) = Gc(s)G(s)

What design insights are available in the frequency domain?
• Good tracking: =⇒ L(s) large where R(s) large
|L(jω)| large in the important frequency bands of r(t)

• Good dist. rejection: =⇒ L(s) large where Td (s) large
|L(jω)| large in the important frequency bands of td (t)

• Good noise suppr.: =⇒ L(s) small where N(s) large
|L(jω)| small in the important frequency bands of n(t)

• Robust stability: =⇒ L(s) small where ∆G(s)

G(s)
large

|L(jω)| small in freq. bands where relative error in model large

• Phase margin: ∠L(jω) away from −180◦ when |L(jω)| close to 1

Typically, L(jω) is a low-pass function,
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How can we visualize these
things?

• Interesting properties of L(s): encirclements, gain
margin, phase margin, general stability margin, gain at
low frequencies, bandwidth (ωc), gain at high
frequencies, phase around the cross-over frequency

• All this information is available from the Nyquist
diagram

• Not always easily accessible

• Once we have a general idea of the shape of the
Nyquist diagram, is some of this information available in
a more convenient form? at least for relatively simple
systems?
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Bode diagram

Seems to capture most issues, but

How fast can we transition from high open-loop gain to low
open-loop gain?

This is magnitude. What can we say about phase?
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Phase from magnitude?
• For systems with more poles than zeros and all the poles and zeros

in the left half plane, we can write a formal relationship between
gain and phase. That relationship is a little complicated, but we can
gain insight through a simplification.

• Assume that ωc is some distance from any of the corner
frequencies of the open-loop transfer function. That means that
around ωc , the Bode magnitude diagram is nearly a straight line

• Let the slope of that line be −20n dB/decade

• Then for these frequencies L(jω) ≈ K
(jω)n

• That means that for these frequencies ∠L(jω) ≈ −n90◦

• That suggests that at the crossover frequency the Bode magnitude
plot should have a slope around −20dB/decade in order to have a
good phase margin

• For more complicated systems we need more sophisticated results,
but the insight of shallow slope of the magnitude diagram around
the crossover frequency applies for large classes of practical
systems
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Compensators and Bode
diagram

• We have seen the importance of phase margin
• If G(s) does not have the desired margin,

how should we choose Gc(s) so that
L(s) = Gc(s)G(s) does?

• To begin, how does Gc(s) affect the Bode diagram
• Magnitude:

20 log10
(
|Gc(jω)G(jω)|

)
= 20 log10

(
(|Gc(jω)|

)
+ 20 log10

(
|G(jω)|

)
• Phase:

∠Gc(jω)G(jω) = ∠Gc(jω) + ∠G(jω)
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Lead Compensators

• Gc(s) = Kc(s+z)
s+p , with |z| < |p|, alternatively,

• Gc(s) = Kc
α

1+sαleadτ
1+sτ , where p = 1/τ and

αlead = p/z > 1
• Bode diagram (in the figure, K1 = Kc/αlead):
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Lead Compensation

• What will lead compensation, do?
• Phase is positive: might be able to increase phase

margin φpm

• Slope is positive: might be able to increase the
cross-over frequency, ωc , (and the bandwidth)
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Lead Compensation

• Gc(s) = Kc
αlead

1+sαleadτ
1+sτ

• By making the denom. real, can show that
∠Gc(jω) = atan

(
ωτ(αlead−1)
1+αlead(ωτ)2

)
• Max. occurs when ω = ωm = 1

τ
√
αlead

=
√

zp

• Max. phase angle satisfies tan(φm) = αlead−1
2
√
αlead

• Equivalently, sin(φm) = αlead−1
αlead+1

• At ω = ωm, we have |Gc(jωm)| = Kc/
√
αlead
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Bode Design Principles (lead)
• Select the desired (open loop) crossover frequency and

the desired phase margin based on loop shaping ideas
and the desired transient response
• Set the amplifier gain so that proportionally controlled

open loop has a gain of 1 at chosen crossover
frequency

• Evaluate the phase margin
• If the phase marking is insufficient, use the phase lead

characteristic of the lead compensator Gc(s) = Kc
s+z
s+p

with p = αleadz and αlead > 1 to improve this margin
• Do this by placing the peak of the phase of the lead

compensator at ωc and by ensuring that the value of the
peak is large enough for ∠L(jωc) to meet the phase
margin specification. That will give you z and p

• Choose Kc so that the loop gain at ωc is still one; i.e.,
|L(jωc)| = 1

• Evaluate other performance criteria
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Bode Design Practice (lead)

• If the phase margin is insufficient, use the phase lead
characteristic of the lead compensator Gc(s) = Kc

s+z
s+p

with p = αleadz and αlead > 1 to improve this margin

• Determine the additional phase lead required φadd

• Provide this additional phase lead with the peak phase
of the lead compensator; that is, choose
αlead = 1+sin(φadd)

1−sin(φadd)

• Place that peak of phase at the desired value of ωc ;
that is, select z and p with p = αleadz such that√

zp = ωc .

• Set Kc such that Kc
∣∣ jωc+z

jωc+p G(jωc)
∣∣ = 1.

• Evaluate other performance criteria
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Example, Lead

• Type 1 plant of order 2: G(s) = 0.2
s(s+1)

• Design goals:
• Open loop crossover frequency at ωc ≈ 3rads-1.
• Phase margin of 45◦ (implies a damping ratio)

• Try to achieve this with proportional control.

• |G(j3)| = 0.2
3
√

10
.

• To make L(j3) = 1 with a proportional controller we
choose Kamp = 15

√
10

• In that case,
φpm = 180 + ∠G(jωc) = 180◦ − 90◦ − arctan(3) ≈ 18◦

• Fails to meet specifications
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Lead compensator design

• Use a lead controller of the form Gc(s) = Kc
s+z
s+p

• Need to add at least φadd = 27◦ of phase at ωc = 3rads-1

Let’s add φadd = 30◦, to account for imperfect implementation

• Determine αlead using αlead = 1+sin(φadd)
1−sin(φadd) = 3. Thus, p = 3z.

• Need to put this phase at ωc = 3rads-1.
Thus need

√
zp =

√
3z2 = 3.

Therefore, z =
√

3 ≈ 1.73; p = 3
√

3 ≈ 5.20.

• Choose Kc such that with ωc = 3,
∣∣Kc

jωc+1.73
jωc+5.20

0.2
jωc(jωc+1)

∣∣ = 1

• Thus Kc ≈ 82.2.

• Thus lead controller is Gc(s) = 82.2 s+1.73
s+5.20 .

• Resulting crossover frequency is indeed ωc = 3;
phase margin is φpm = 48.5◦.
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Bode Mag Diagrams,
open loop

Black x: marks frequency of plant pole;
Green x and circle: frequencies of lead compensator pole and zero
Same cross over frequency; lead has shallower slope
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Bode Phase Diagrams,
open loop

Observe additional phase from lead compensator
and improved phase margin
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Bode Mag Diagrams,
closed loop

Note reduction in resonant peak (reflects larger damping
ratio)
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Step Responses

Note reduction in overshoot (larger damping ratio), and
shorter settling time (wider closed-loop bandwidth)
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Responses to step disturbance

Disturbance response of lead design is worse due to
smaller low-freq. open loop gain
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Lag Compensators
• Gc(s) = Kc (s+z)

s+p , with |p| < |z|, alternatively,

• Gc(s) =
Kcαlag(1+sτ)

1+sαlagτ
, where z = 1/τ and αlag = z/p > 1

• Low frequency gain: Kc
z
p = Kcαlag.

• High frequency Gain: Kc

• Bode diagrams of lag compensators for two different αlags, in the
case where Kc = 1/αlag
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What will lag compensation do?

• Larger gains at lower frequencies; have the potential to
improve steady-state error constants for step and ramp, and
to provide better rejection of low-frequency disturbances

• However, phase lag characteristic could reduce phase
margin

• Address this by ensuring that position of the zero is well
below the crossover frequency. That way the phase lag
added at ωc will be small.
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Bode Design Principles (lag)

For lag compensators:
• Add gain at low frequencies to improve steady state

error constants and low-frequency disturbance rejection
without changing (very much) the crossover frequency
nor the phase margin
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Design Guidelines

1 Select the desired (open loop) crossover frequency and
the desired phase margin based on loop shaping ideas
and the desired transient response.

2 Select the desired steady-state error coefficients

3 For uncompensated (i.e., proportionally controlled)
closed loop, set amplifier gain Kamp so that open loop
crossover frequency is in the desired position

4 Check that this uncompensated system achieves the
desired phase margin. If not, stop. We will need to lead
compensate the plant first.

5 If the specified phase margin is achieved, proceed with
the design of lag compensator Gc(s) = Kc(s+z)

s+p .
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Design Guidelines, cont.

6 Determine factor by which low-frequency gain needs to
be increased. This factor is αlag

7 Set the zero z so that it is factor of around 30 below the
crossover frequency to ensure that phase lag added by
lag compensator at that frequency is small.

8 Set the pole p = z/αlag.

9 Set Kc = Kamp.
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Example, lag

• Type 1 plant of order 2: G(s) = 0.2
s(s+1)

• Design goals:
• Open loop crossover frequency at ωc = 1rads-1

(recall lead design had ωc = 3)
• Phase margin at least 45◦

• Velocity error constant of Kv = 20.

• See if we can achieve this using proportional control.

• To achieve
∣∣KampG(j1)

∣∣ = 1 we choose Kamp = 10/
√

2.

• ∠G(j1)/
√

2 = −135◦. Hence, phase margin criterion is satisfied.

• With Kamp = 10/
√

2, Kv = lims→0 sKampG(s) =
√

2.

• Fails to meet specification
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Example

• To meet the requirement on Kv we need to increase low-frequency
gain by αlag = 20/

√
2 . 15

• To ensure that lag compensator does not reduce phase margin (by
very much), set z = ωc

30 = 1
30

• Set p = z/αlag = 1
450 .

• Set Kc = Kamp = 10
√

2

• Hence lag controller is Gc(s) = 7.07(s+1/30)
s+1/450 .
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Bode Mag Diagrams,
open loop

Black x: frequency of plant pole;
Red x and circle: frequencies of lag compensator pole and zero
Same cross over frequency; lag has larger low-frequency open-loop gain
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Bode Phase Diagrams,
open loop

Observe additional phase lag from compensator
but that it is very small near crossover frequency



EE 3CL4, §9
41 / 56

Tim Davidson

Frequency
Domain
Approach to
Compensator
Design

Lead
Compensators

Lag
Compensators

Lead-Lag
Compensators

Bode Mag Diagrams,
closed loop

Note similar closed loop frequency response (as we would
expect from design)
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Step Responses

Similar, by design
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Ramp Responses

Lag has reduced steady-state error, by design
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Responses to step disturbance

Larger low-frequency open-loop gain of lag design yields
better step disturbance rejection
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Lead-lag design

• If the design specifications include
• crossover frequency
• phase margin
• steady-state error constants or low frequency

disturbance rejection

• Then
• If first two goals cannot be achieved using proportional

control, design a phase-lead compensator for G(s) to
achieve them, then

• Design a phase-lag compensator for
G̃(s) = Gc,lead(s)G(s) to increase the low-frequency
gain without changing (very much) the crossover
frequency nor the phase margin.
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Example, Lead-Lag
• Type 1 plant of order 2: G(s) = 0.2

s(s+1)

• Design goals:
• Open loop crossover frequency at ωc ≈ 3rads-1.
• Phase margin of 45◦

• Low-frequency disturbances attenuated by a factor of at least
40dB

• Our lead controller for this plant (green) achieves the first two goals

• The third goal corresponds to the requirement that
lims→0

∣∣∣ G(s)
1+Gc (s)G(s)

∣∣∣ ≤ 10−40/20 = 1/100

• Since G(s) is type-1, at low frequencies G(s) is large and hence
lims→0

∣∣∣ G(s)
1+Gc (s)G(s)

∣∣∣ ≈ lims→0
1

Gc (s)

• For our lead design, lims→0
1

Gc (s)
≈ 5.2

82.2×1.73 ≈
1

27.3

• Fails to meet specifications.
• Need to design a lag controller for G̃(s) = Gc,lead(s)G(s) that

increases the low frequency gain by 100/27.3 ≈ 3.66
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Example, lead-lag

• Need αlag = 3.66.

• Place zero of lag compensator a factor of 30 below the
desired crossover frequency; z = 3/30 = 1/10.

• Place pole of lag compensator at p = z/α ≈ 0.027

• Lead-lag compensator: Gc(s) = 82.2 s+0.1
s+0.027

s+1.73
s+5.2
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Bode Mag Diagrams, open loop

Black x: frequency of plant pole;
Green x and circle: frequencies of lead compensator pole and zero
Magenta x’s and circles: freq’s of lead-lag compensator poles and zeros
Same cross over frequency; lead and lead-lag have shallower slope
Lead-lag has larger low-frequency open-loop gain
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Bode Phase Diagrams,
open loop

Observe additional phase from lead compensator
and improved phase margin. By design, lead-lag does not
reduce this much.
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By design, lead-lag is similar to lead
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By design, lead-lag is similar to lead
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Lead-lag has better performance than lead due to larger
low-frequency open-loop gain



EE 3CL4, §9
54 / 56

Tim Davidson

Frequency
Domain
Approach to
Compensator
Design

Lead
Compensators

Lag
Compensators

Lead-Lag
Compensators

Responses to step disturbance,
detail

Lead-lag meets the requirement on mitigating low frequency
disturbances
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Ramp Reponse, detail

Kv ,leadlag ≈ 20.3 > Kv ,prop ≈ 9.5 > Kv ,lead ≈ 5.5
Again, larger low-frequency open-loop gain plays the key
role here.


	Frequency Domain Approach to Compensator Design
	Lead  Compensators
	Lag  Compensators
	Lead-Lag  Compensators

