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Transfer
functions

Transfer Functions:
A Quick Review

Consider a transfer function

(s +2)
&) = K(s + o)

Zeros: —z;; Poles: —p;
Note that s+ z; = s — (— z),
This is the vector from —z; to s

Magnitude:
o IIiIs+z| | prod. dist’s from zeros to s
|Gls)l = |K|H/. Is+p| IK] prod. dist’s from poles to s
Phase:

ZG(s) = ZK + sum angles from zeros to s
— sum angles from poles to s
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Frequency
Response

Ex: RHP Z, P contr

Frequency Response

e For a stable, linear, time-invariant (LTI) system, the
steady state response to a sinusoidal input is
a sinusoid of the same frequency but possibly different
magnitude and different phase

¢ Sinusoids are the eigenfunctions of convolution

e Ifinput is Acos(wot + 6)
and steady-state output is B cos(wgt + ¢),
then the complex number B/Ag/(¢~?)
is called the frequency response of the system at
frequency wy.
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Frequency
Response

e If a stable LTI system has a transfer function G(s),
then the frequency response at wg is G(S)|s—jwy,

Ex: servo, P control

Ex: unst. ntrol

e What if the system is unstable?

Ex: RHP Z, P contr

Relative Stability

Relationship to
transient response
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Plotting the
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Plotting the frequency response

For each w, G(jw) is a complex number.
How should we plot it?

G(jw) = ’G(jw)|e’ZG(j“’)
Plot | G(jw)| versus w, and ZG(jw) versus w

Plot 20 Iog10(|G(jw)\) versus log;o(w), and
ZG(jw) versus logy(w)

G(jw) = Re(G(jw)) + jIm(G(jw))
Plot the curve (Re(G(jw)), Im(G(jw))) on an “x—y” plot
Equiv. to curve |G(jw)|e/“GU«) as w changes (polar plot)
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Plotting the
freq. resp.

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Polar plot, example 1

Let’s consider the example of an RC circuit

R
to AMA ot
Vi(s) C T~ V,(s)
—o o—

e G(jw) = 1+jw/w1 where wy = 1/(RC).

w /w1

. _ 1 .
* GUw) = Tmy I

1 efjatan(w/m)

") =
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criterion

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
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Polar plot, example 1

w /w1

— 1 —j
1+ (w/wy)? 1+ (w/wq)?

i) — 1 —jatan(w/wy)
o G(jw)= —1——¢/ 1
V) V1+H(w/wi)?
X(w)
Negative @
,/” \\\\
4 \
4 \
: \
| Y
= ] R(w)
/ 45° \
w=*® w=0
Gl
\ 0=

Positive w
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-~ Polar plot, example 2
Consider G(s) = S(TKH)
® Poles at originand s = —1/7.
¢ To use geometric insight to plot polar plot,
g, 105p. rewrite as G(s) = s(sK+7/1T/T)

i K/T
* Then |G(jw)| = moricrrm

and £G(jw) = —£(jw) = £(jw +1/7)
Ex: unst., P control
Ex: unst., PD contr.

Ex: RHP Z, P contr. .
Jjo

Relative Stability ;
jo,+p

Gain margin and

Phase margin

Relationship to
transient response o




EE 3CL4, §8
13/77

Tim Davidson

Plotting the
freq. resp.

X: servo, P control

nst., P control

Ex: unst., PD contr.

Ex: RHP Z, P contr

Relative Stability
Gain margin and
Phase margin

Relationship to
transient response

Polar plot, ex. 2, G(s) = %

Jjo

i o=

jo, + p, o

When w — 07, |G(jw)| — oo, ZG(jw) — —90° from below
Tricky
To get a better feel, write G(jw) = w;f:f; — K

Hence, as w — 07, G(jw) - —KT — joo

As w increases, distances from poles to jw increase.
Hence |G(jw)| decreases

As w increases, angle from pole at —1/7 increases.
Hence ZG(jw) becomes more negative
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Tim Davidson P0|ar plot, eX 2, G(S) — W

jo

-0 =

Plotting the
freq. resp. jo,+p o

1
s=——=-p

* Whenw = 1/7, G(jw) = (K/7)/((1/7)(vV2/7)) e7/(50°+45%)
0., GUi) i = (Kr/\/B)e 15

* As w approaches +oo, both distances from poles get large.
Hence |G(jw)| — 0

* As w approaches +oo, angle from —1/7 approaches —90°
from below. Hence ZG(jw) approaches —180° from below
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Plotting the
freq. resp.

x: servo, P control
o PEE Summary
unst., PD contr.
RHP Z, P contr.

momm

e Asw — 07, G(jw) = —KT — joo

® As w increases,
|G(jw)| decreases, £G(jw) becomes more negative

e Whenw = 1/7, G(jw) = (K/V2)e /13"

® As w approaches +oo,
G(jw) approaches zero from angle —180°

Relationship to
transient response
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Response

Plotting the
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Mapping
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Nyquist's
criterion
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.
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Polar plot, ex. 2, G(s) = G

Im[G]

K/

Positive w

1
- 27
w~>0

| 135°

oy @201 Parson Edvatonn.ouising s rass Hall

Re[G]
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Plotting the
freq. resp.

Bode Diagrams

Bode magnitude plot

20logqo |G(jw)| against logiow

Bode phase plot

ZG(jw) against logyqw

In 2CJ4 we developed rules to help sketch these plots

In this course we will use these sketches to design
controllers
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G(s) =

Sketching Bode Diagrams

Consider generic transfer function of LTI system

G(s)

sNTT;(s + py) T1,(82 + 2Ca kwna,rS + wiy )

where z; and p; are real.

Unfortunately, not in the form that we are used to for
Bode diagrams

Divide numerator by [T, z; [Ty w5 «
Similarly for denominator

Then if K = KT, zi [T, w2/ (IT; £ 11, w2.,)

KTTi(1 + 8/2) [T (1 + 2¢k(8/wn) + (S/wnk)?)

~ SNTL(1+8/p) 1, (1 + 2Cak(S/wnd.r) + (8/wna,r)?)
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Plotting the
freq. resp.

Sketching Bode Diagrams, Il

¢ Now, frequency response can be written as:
RH,‘U + jw/2i)
U)NTL (1 + jw/py)
TTx (1 + 2¢k (jw /wn k) + (jw/wnk)?)

G(jw) =

[T, (1 + 2Ca k(jw/wnd,r) + (jw/wnd,r)?)

e Four key components:
e Gain, K
Poles (or zeros) at origin
Poles and zeros on real axis
Poles and zeros in complex conjugate pairs

e Each contributes to the Bode Diagram
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oy KIL( + jw/2)
Plotting the Gl = (jw)N Hj(1 +jw/pj)

freq. resp.

TTx (1 + 28k (jw/wn k) + (jw/wnk)?)
[T, (1 + 2Ca k(jw/wnd,r) + (jw/wnd,r)?)

¢ Bode Magnitude diagram:

20 IOg-Io \G(jw)| against IOg-Io w

® 20logyq |G(jw)| is

Sum of 20 logyy of components of numerator
— sum of 20 log4y of components of denominator
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- Components for magnitude
. KTL,(1 + jw/z)
Gljw) = i :
Plotting the (]w) (.Iw)N H_/(1 +jw/pj)

freq. resp.

[Tk (1 + 28k (jw/wnk) + (jw/wnk)?)
Hr(1 + 2Cd,k(jw/wnd,r) + (jw/wnd,r)z)

Poles at origin: slope starts at —20N dB/dec
Gain |K| incorporated in position of that sloping line
First order component in numerator:

increase slope by 20 dB/dec at w = z;

First order component in denominator:
decrease slope by 20 dB/dec at w = p;

Second order components:
increase or decrease slope by 40 dB/dec at w = wp
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oy KIL( + jw/2)
Plotting the Gl = (jw)N Hj(1 +jw/pj)

freq. resp.

TTx (1 + 28k (jw/wn k) + (jw/wnk)?)
[T, (1 + 2Ca k(jw/wnd,r) + (jw/wnd,r)?)

¢ Bode Phase Diagram

ZG(jw) against logyqw

o /G(jw)is

Sum of phases of components of numerator
— sum of phases of components of denominator
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oy K ,‘(1 + jw/z;)
Ploting the Gliw) = (jw)N Hf(1 +IOJ/Pj)
% resp (1 + 26w /wnk) + (jo0/wni)?)
TT, (1 + 2¢a k(jw/wnd,r) + (jw/wnd,r)?)

Phase of K
Poles at origin: —N90°

First order component in numerator:
linear phase change of +90° over w € [z;/10,10Z]

First order component in denominator:

linear phase change of —90° over w € [p;/10,10p}]
Second order components:

phase change of +180° around w = wp
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Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
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Gain margin and
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Relationship to
transient response

Graphically

Table 8.3 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude 20 log|G| Phase ¢(w)
1. Gain, 40 90°
G(jw) = K
20 45°
20 log K
dB 0 d(w) [0}
-20 —45°
_40 —90°
w w
2.Zero, 40 90°
G(jow) =
1 + jofo, 20 450
dB 0 ¢(w) 0°
-20 —45°
—40 -90°
01w, o 100 0lo, @ 100,
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Plotting the
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Ex: servo, P control
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Ex: unst., PD contr.
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3. Pole,
G(jo) =
1+ jm/ml)_1
dB
4. Pole at the origin,
G(jo) = 1/jo
dB

5.Two complex poles,
0.1 < ¢ < 1,G(jo) =
(1 + j2¢u — u?)™!
u=wjw, aB

40

20

=20

—40

40

0.10,

en

100,

0.1

0

=20

—40

0.01

0.1

Graphically

01w, en

10w,

90°

45°

B(w) 0°
—45°

—90°

180°

90°
b

=90°

— 1807

0.01 0.1 1
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Plotting the
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Mapping
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Nyquist's
criterion
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
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Relationship to
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Accuracy of Bode Sketches

Isolated first order pole (analogous for zero)

Magnitude (dB)

Phase (deg)

Asymptotic
Exact o
curve

(a)

~45

-90

Exact
Linear
approximation

001

a2
al=
RIS

Frequency (rad/s)
(b)

100
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Transfer
functions

Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Accuracy of Bode Sketches

Isolated complex conjugate pair of poles

0 Ing|G|

a

0.5
0

{=0.05

0.10
0.15
0.20
0.25

04 0506 08 1.0

u = w/w, = Frequency ratio




EE 3CL4, §8
28/77

Tim Davidson

Transfer
functions

Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Accuracy of Bode Sketches

Isolated complex conjugate pair of poles

Phase angle, degrees

-20
—40
—60

—80
—100
—120
—140

—160

—180 =
0.1 0.2 03 04 0506 08 1.0 2 3 4 5 6 8 10

u = wl/w, = Frequency ratio
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Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Example

5(1 + jw/10)

~ jw(1 +jw/2)(1 + 0.6(jw/50) + (juw/50)2)

20 log|lG (jw)l. dB

Approximate curve —

— —40 dB/dec

/ Exact curve

~
~
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Transfer
functions ( 1 .
. 5(1 + jw/10)
Frequency G(jw) = - - - n >
Respons jw(1 + jw/2)(1 + 0.6(jw/50) + (jw/50)?)
Plotting the
freq. resp.
Mapping %
Contours
60

Nyquist's 30 Zeroat w = 10
criterion
Ex: servo, P control 0 11 Complex poles
Ex: unst., P control -30
Ex: unst., PD contr. 9 W

g —60
Ex: RHP Z, P contr. 13

S % ~—
Nyquist's 3 120 Pole at origin

S - 1 | [Poleatongin |
Stability o
Criterion as a —150
Design Tool ~180
Relative Stability —210 Approximate ¢(w)
Gain margin and
Phase margin —240
Relationship to —270
transient response 0.1 02 1.0 2.0 10 60 100
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Mapping
Contours

Introduction

We have seen techniques that determine stability of a
system:

® Routh-Hurwitz
® root locus

However, both of them require a model for the plant

Today: frequency response techniques

¢ Although they work best with a model
® For an open-loop stable plant, they also work with
measurements

Key result: Nyquist’s stability criterion

Design implications: Bode techniques based on gain
margin and phase margin
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Compensator Process
+
R(s) 4?—» G(s) | G > ¥(s)
H(s) I|:
Mapping

Contours

¢ To determine the stability of the system we need to
examine the characteristic equation:

F(s)=1+4+L(s)=0
where L(s) = G¢(s)G(s)H(s).

e The key result involves mapping a closed contour of
values of s to a closed contour of values of F(s).

e We will investigate the idea of mappings first
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Transfer
functions

Frequency A A
Response F(s)-plane

Plotting the
freq. resp.

D >t j1 A 4 jl
Mapping A A 4
Contours )

0 » o 0 1 » u
Nyquist's =2 |-l J‘ 2 -2 -1 1 2 3

o=

criterion

—jl
Ex: servo, P control

Ex: unst., P control

Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability

Gain margin and ® Set F(S) == 23 + 1

Phase margin

(a) (b)

Relationship to

e Map the square in the "s-plane" to the contour in the
"F(s)-plane”



EE 3CL4, §8
35/77

Tim Davidson

Mapping
Contours

Area enclosed

o
X
Fisyplane
) 1L A
J2 s-plane D 2
u* i l\ i
i
2 0 2 7 [S2 2

How might we define area enclosed by a closed contour?

We will be perfectly rigorous, but will go against
mathematical convention

Define area enclosed to be that to the right when the contour
is traversed clockwise

What you see when moving clockwise with eyes right

Sometimes we say that this area is the area “inside” the
clockwise contour

Notions of “enclosed” or “inside” will be applied to contours
in the s-plane
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Mapping
Contours

Encirclement

jo v
S
2 splane 2
D Lii— 4
{ 4
1

F(s)-plane.
R
jt

[

1 2
jt

B

0}

In the F(s)-plane, we will be interested in the notion of
encirclement of the origin

A contour is said to encircle the origin in the clockwise
direction, if the contour completes a 360° revolution around
the origin in the clockwise direction.

A contour is said to encircle the origin in the anti-clockwise
direction, if the contour completes a 360° revolution around
the origin in the anti-clockwise direction.

We will say that an anti-clockwise encirclement is a
“negative” clockwise encirclement



EE 3CL4, §8
37/77

Tim Davidson

Mapping
Contours

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Example with

rational F(s)

jo Jjv
A
D . N A D .
J1 > J
L
Y
A
» o » u
-2 -1 0 1 -1 , 1
B
c —j1 < B C

(a)

* A mapping for F(s) = 535
¢ Note that s-plane contour encloses the zero of F(s)
e How many times does the F(s)-plane contour encircle

the origin in the clockwise direction?
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e Nyquist’s Criterion is based on Cauchy’s Theorem:
® Consider a rational function F(s)

Mapping e If the clockwise traversal of a contour I's in the s-plane

Contours

encloses Z zeros and P poles of F(s)
and does not go through any poles or zeros

e then the corresponding contour in the F(s)-plane, I'r
encircles the origin N = Z — P times in the clockwise
direction

e A sketch of the proof later.
* First, some examples
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o

Mapping 0 1 0 b 1 2
Contours : d

Ex: servo, P control —j
Ex: unst., P control

Ex: unst., PD contr.
Ex: RHP Z, P contr.

(a) (b)

Relative Stability

* A mapping for F(s) = ﬁ

e s-plane contour encloses a zero and a pole

( e Theorem suggests no clockwise encirclements of origin
of F(s)-plane

This is what we have!
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Transfer
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Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P cont.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

LN

(a) (b)

® s-plane contour encloses 3 zeros and a pole

e Theorem suggests 2 clockwise encirclements of the
origin of the F(s)-plane
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Jjo jv
A A
I,
Mapping (‘/’\
Contours > > > u
0 0
I
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr. (a) (b)

® s-plane contour encloses one pole

e Theorem suggests -1 clockwise encirclements of the
origin of the F(s)-plane

e That is, one anti-clockwise encirclement
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Informal Justification of
Cauchy’s Theorem

/ .a / I’y contour
Mapping P 0
Contours

&
Ex: serv control

(a) (b)

Tim Davidson

e Consider the case of F(s) = 7((2153812))

° ZF(S1) = ¢Z1 + ¢Zz - ¢P1 - ¢P2

e As the contour is traversed the nett contribution from
¢z, is 360 degrees

e As contour is traversed, the nett contribution from other
angles is 0 degrees

* Hence, as contour is traversed, ZF(s) changes by 360
degrees. One encirclement!
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Mapping
Contours

Informal Justification

e Extending this to any number of poles and zeros inside
the contour

¢ For a closed contour, the change in ZF(s) is
360Z — 360P

® Hence F(s) encircles origin Z — P times
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¢ Consider a rational function F(s)

e [f the clockwise traversal of a contour I'g in the s-plane
Nyquists encloses Z zeros and P poles of F(s)
Ex o and does not go through any poles or zeros

cx 2 e ¢ then the corresponding contour in the F(s)-plane, I'r
encircles the origin N = Z — P times in the clockwise
direction




EE 3CL4, §8
46/77

Tim Davidson

Nyquist's
criterion

Nyquist’s goal

Nyquist was concerned about testing for stability
How might one use Cauchy Theorem to examine this?

Perhaps choose F(s) = 1 + L(s), as this determines
stability
Which contour should we use?
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Nyquist's
criterion

Ex: servo, P control

Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Nyquist’'s contour

I
e Radius = r
v
r== » o

0

Actually, we have to be careful regarding poles and zeros on
the jw-axis, including the origin.
Standard approach is to indent contour so that it goes to the
right of any such poles or zeros
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Transfer

functions Here’s an example for a model like that of the motor in the
Frequency lab.

Response

Plotting the Jjo
freq. resp. f

Mapping
Contours

Nyquist's
criterion s-plane
Ex: servo, P control

Ex: unst., P control Radius €
Ex: unst., PD contr.

C
Ex: RHP Z, P cont. ;\B

Nyquist's =1 A SO

Stability - S
Criterion as a Radius™~ _
Design Tool -
Relative Stability

Gain margin and
Phase margin

Nyquist contour

Relationship to
transient response T
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Nyquist's
criterion

Coarse Applic. of Cauchy

Recall that the zeros of F(s) = 1 + L(s) are the poles of
the closed loop

Let P denote the number of right half plane poles of
F(s)

The number of right half plane zeros of F(s) is N + P,
where N is the number of clockwise encirclements of
the origin made by the image of Nyquist’s contour in the
F(s) plane.

A little difficult to parse.

Perhaps we can apply Cauchy’s Theorem in a more
sophisticated way.
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Nyquist's
criterion

Towards Nyquist’s Criterion

F(s) =1+ L(s), where L(s) is the open loop transfer
function

Encirclement of the origin in F(s)-plane is the same as
encirclement of —1 in the L(s)-plane

This is more convenient, because L(s) is often
factorized, and hence we can easily determine P

Now that we are dealing with L(s), P is the number of
right-half plane poles of the open loop transfer function
If we handle the remainder of the components of
Cauchy’s theorem carefully we obtain:
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Nyquist's
criterion

2k 71
Ex: RHP Z, P contr

Nyquist’s Criterion: Simplified
statement

Consider a unity feedback system with an open loop transfer
function L(s) = G¢(s)G(s)H(s),with no z's or p’s on jw-axis

Let P, denote the number of poles of L(s) in RHP
Consider the Nyquist Contour in the s-plane
Let I'; denote image of Nyquist Contour under L(s)

Let N, denote the number of clockwise encirclements that I';
makes of the point (—1,0)

Nyquist’s Stability Criterion:
Number of closed-loop poles in RHP = N, + P,

Note that for a stable open loop, the closed-loop is stable if
the image of the Nyquist contour does not encircle (-1, 0).
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Nyquist's
criterion

Ex: L(S) = zr1yeo) (Stable)

® For0 < w < oo:
* No zeros, two poles.
® |L(0)|=1000/(1 x 10) =100; ZL(0)=-0-0=0
¢ Distances from poles to jw is increasing;
hence |L(jw)| is decreasing
® Angles from poles to jw are increasing;
hence ZL(jw) is decreasing
* Asw — oo, |[L(jw)| — 0, ZL(jw) — —180°

® Recall that L(—jw) = L(jw)*
e Remember to examine the r — oo part of the curve
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Transfer
functions

Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion
Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Ex: L(S) = zr1yeo) (Stable)

Jv .
A Negative frequency

o —©=—076
TI50_ -+ *<_ L(s)-plane
7 N
/ \\
—w=-32 /!—j25 \\
[ w = ®© w=0
\ \

—1 < | | W, > L
=10 100
®=32 \

Positive
T —j50 frequency
w=0.76

Note: No encirclements of (—1,0) = closed loop is stable
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Nyquist's
criterion

Nyquist’s Criterion: Refined
__ _ statement

Ris) = = Gl | G
[ o |

H(s)

Consider a unity feedback system with an open loop transfer
function L(s) = G:(s)G(s)H(s),

Let P, denote the number of poles of L(s) in open RHP

Consider the modified Nyquist Contour in the s-plane
looping to the right of any poles or zeros on the jw-axis

Let I'; denote image of mod. Nyquist Contour under L(s)

Let N, denote the number of clockwise encirclements that I';
makes of the point (—1,0)

Nyquist’s Stability Criterion:
Number of closed-loop poles in open RHP = N, + P,

Now we can handle open-loop poles and zeros on jw-axis
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Example: Pole of L(s) at origin

Consider K
M= 51y
Like in servomotor
Problem with the original Nyquist contour
It goes through a pole!
Cauchy’s Theorem does not apply
Must modify Nyquist Contour to go around pole
Then Nyquist Criterion can be applied
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Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Example: Pole of L(s) at origin

|
N

(a) (b)

Now three key aspects of the curve
¢ Around the origin

¢ Positive frequency axis;
remember negative freq. axis yields conjugate

e At oo
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Transfer
functions

Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

s-plane

| Radius
C
B

Around the origin

L(s) =

-1 AP

Radius ™~ _
N

r=o

Nyquist contour

(a)

K

s(rs+1)

(b)

Around the origin, s = ce®,
where ¢ goes from —90° to 90°

In the L(s) plane: lim_,q L(e&/®)
This is: lim._,o -5 = lim_,o X7/
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Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.

Ex: RHP Z, P contr.

Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Up positive jw-axis

jo
s-plane
| Radius €
C
i T
-1 A > Sso -1 45°
T PR
Radius™~_ w=1
r—>o
Nyquist contour
T,

For0 < w < o0, L(jw) =

K efj(90°+atan(w7'))
wy/ 1+w?r2

For small w, L(jw) is large with phase —90°
Actually, as we worked out in a previous lecture,
asw — 07", L(jw) = —K7 — joo

For large w, L(jw) is small with phase —180°
Forw = 1/7, L(jw) = K7/v/2 /135
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Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.

Ex: RHP Z, P contr

Relative Stability
Gain margin and
Phase margin

Relationship to
transient response

| Radius €

v

For s

s-plane

rel? for large r

A SN

l

(a)

Nyquist contour

(b)

For s = re/’ with large r, and 6 from +90° to —90°,

limysoo L(rei?) = K, @20

How many encirclements of —1 in L(s) plane? None
Implies that closed loop is stable for all positive K

Consistent with what we know from root locus (Lab. 2)
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pole, proportional control

Compensator Process
+
R(s) »(f—» G(s) > G Y(s)
[ ] |
H(s) [«
(5)

Ex: servo, P control

Ex: unst., P control [ ]

Ex: unst., PD contr. ConSIder G(S) S 1)

Ex: RHP Z, P contr.

Essentially the same as plant model for VTOL aircraft
example in root locus section

e sy ¢ Consider prop. control, G¢(s) = Ki, and H(s) = 1.
margin an ) Hence, L(S) = S(;{l1)
® Observe that L(s) has a pole in RHP; hence P, =1
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X: servo, P control

Ex: unst., P control
Ex D contr.

Ex. with open loop RHP pole

L(s) = ey Fors = jwand 0 < w < oo,

. _ _;(1 . K1 _ /(1 o
L(j )—1+w2+1w(1+w2) _wm490 + atan(w))

Forw — 0%, L(jw) — —Kj + joo

As w increases, real and imag. parts decrease,
imag. part decreases faster

Equiv. magnitude decreases, phase increases
For w — oo, L(jw) is small with angle +180°
Conjugate for —co < w < 0

What about when s = ee/? for —90° < 6 < 90°7?
L(s) =& £(-180° - 9)
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T Davideon Example with open loop RHP
pole
oo §
h L(s)-plane
I
1
1
|
1
: w =+
} 1 — » u
=il | W= —x
Ex: servo, P control 1
Ex: unst., P control :
Ex: unst., PD contr. K1—>
Ex: RHP Z, P contr. :
I
w=0"
Relative Stability
e ¢ Recall P, =1
o B e Number clockwise encirclements of (—1,0) is 1
® Hence there are two closed loop poles in the RHP for all
positive values of K;
[ ]

Consistent with root locus analysis



Root locus of L(s) = gz
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Ex: unst., PD contr.
Ex: RHP Z, P contr

Example with open loop RHP
pole PD control

Compensator | | Process

+
4?—0 G(s) —»(,‘mT;

H(s)

G(s) = 7y and H(s) = 1. L(s) = Gc(s)G(s).

s(s
In the VTOL aircraft example, showed that closed-loop can

be stabilized by lead compensation, G¢(s) = K(Céj;)z)

It can also be stabilized by PD comp., G¢(s) = Ki(1 + KzS).
(Under the presumption that this can be realized. It can be
realized when we have “velocity” feedback.)

Using the root locus, we can show that when K> > 0 there is
a K; > 0 that stabilizes the closed loop (see next page)

Can we see that in the Nyquist diagram?

Plot the Nyquist diagram of L(s) = G¢(s)G(s), where
G(S) = 5qy and Go(s) = 1 + Kes



EE 3CL4, §8

65/77 .
Root locus analysis

Tim Davidson

Root locus of (1 + K2$) ggy for a given Kz > 0
e Poles, zero and active sections of real axis

}
|
Y 1
S e Complete root locus
Ex: unst., PD contr. A

Ex: RHP Z, P contr

Conclusion: For any given K; > 0 there is a Ki >0 such
that closed loop is stable for all K; > K;. We can find K;
using Routh-Hurwitz
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Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr

Relative Stability

Relationship to
transient response

Nyquist diagram of
(1 + KoS) 56y

Jv

w=0" A
L(s)-plane
w —®
T » u
/' =1l w= t®
—KiK;
w=0_

Recall that P, = 1

If KiK> > 1, there is one anti-clockwise encirc. of —1
In that case, humber closed-loop poles in RHP is
—1 41 =0 and the closed loop is stable

Consistent with root locus analysis;

but gives Ky = 1/K> directly
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_ K(s-2)
HO = sy
Open loop is stable, but has non-minimum phase (RHP) zero
N
L(jw) = Mz(moo — atan(w/2) — 2atan(w))

w2 +1

e For small positive w, L(jw) ~ 2K£180°

* For large positive w, L(jw) ~ X2 —90°

* In between, phase decreases monotonically, 180° — —90°.
magnitude decreases monotonically (Bode mag dia.)

2K (202 —1+jw(5-w?) )
(1+w?)?
e When s = re/? with r — oo and 6 : 90° — —90°,
L(s) — (K/r)e*le

e [(jw)= ; When w = /5, L(jw) = K/2
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Positive »

Imaginary axis

Negative o

Ex: servo, P control

o o -2
Ex: unst., P control 25 s 05 0 05 1

Ex: unst., PD contr. Real axis

Ex: RHP Z, P contr.

e Number of open loop RHP poles: 0

Relaive Stabilty * Number of clockwise encirclements of —1:
Presematgn if K<1/2:0; if K >1/2:1

Relationship to
transient response

® Hence closed loop is
stable for K < 1/2; unstable for K > 1/2

e This is what we would expect from root locus



Root locus of L(s) = (55;12)2

W

|
»O
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2k 71
Ex: RHP Z, P contr

Nyquist's
Stability
Criterion as a
Design Tool

Nyquist’s Criterion (Review)

Compensator Process
+
l\’m—b?—k G(s) > G Y(s)
[ o | |
H(s) |
|

Consider a unity feedback system with an open loop transfer
function L(s) = G¢(s)G(s)H(s),

Let P, denote the number of poles of L(s) in open RHP

Consider the modified Nyquist Contour in the s-plane
(looping to the right of any poles or zeros on the jw-axis)

Let ', denote image of mod. Nyquist Contour under L(s)

Let N, denote the number of clockwise encirclements that ',
makes of the point (—1,0)

Nyquist’s Stability Criterion:

Number of closed-loop poles in open RHP = N, + P,
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Transfer
functions

Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Relative Stability: Introductory
Example

Consider
K

(T1S+1)(7'2$+1)

L(s) = S

Nyquist Diagram:

Jjv
A
| Sa
| \«
Kr7m A| \\
Tt T | \ L(s)-plane
| \
0=+ 1
N« |
-1 //
//
w+
/
/)
//
w=0,
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Zoom in
Since L(s) is minimum phase (no RHP zeros), we can zoom in

Tim Davidson

Ky> Ky > K,

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

L(jw)

Relative Stability For a g iven K
Gain margin and ’
Phase margin

e e how much extra gain would result in instability?
transient response . . . .
p we will call this the gain margin

¢ how much extra phase lag would result in instability ?
we will call this the phase margin
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st., P!
Ex: RHP Z, P contr

Relative Stability
Gain margin and
Phase margin
Relationship to

ransient response

Formal definitions

e Gain margin: m

where wy is the frequency at which ZL(jw) reaches —180°

amplifying the open-loop transfer function by this amount
would result in a marginally stable closed loop

¢ Phase margin: 180° + ZL(jwc),
where w, is the frequency at which |L(jw)| equals 1

adding this much phase lag would result in a marginally
stable closed loop

® These margins can be read from the Bode diagram
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20 =—

Transfer =~a \A\syfptotic curve

functions =

201loglL(jw).dB 0 Actualm\
Frequency

Response

Plotting the —20
freq. resp.

Mapping
Contours
Nyquist's %
criterion
Ex: servo, P control d(w), deg
Ex: unst., P control -

|
1
|
|
|
|
|
1
|
|
|
|
1
|
!
Phase margin I
180

Ex: unst., PD contr.
Ex: RHP Z, P contr.

—270
Nyquist's 0.1 0.5 1 2 5 10
Stability w, (rad/s)
Criterion as a
Design Tool
Relative Stability

Gain margin and 1

Phase margin L 1 — = A .
U= o+ T + 7o)

Relationship to
transient response

e Gain margin =~ 15 dB
¢ Phase margin ~ 43°
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e Consider a second order open loop of the form

e Closed-loop poles s1, So = —Cwp = jwny/1 — €2

® Let w, be the frequency at which |L(jw)| = 1

e Square and rearrange: wé + 4¢%ww? — wi = 0;
Equivalently, <5 = \/4¢4 +1 — 2¢?

* By definition, ¢pm = 180° + ZL(jwc)

* Hence

2
¢pm:atan<\/(4+1/§4)1/2 _2)

¢ Phase margin is an explicit function of damping ratio!

® Approximation: for { < 0.7, { = 0.01¢pm, Where ¢pm is
measured in degrees
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Transfer
functions

Frequency
Response

Plotting the
freq. resp.

Mapping
Contours

Nyquist's
criterion

Ex: servo, P control
Ex: unst., P control
Ex: unst., PD contr.
Ex: RHP Z, P contr.

Nyquist's
Stability
Criterion as a
Design Tool
Relative Stability
Gain margin and
Phase margin
Relationship to
transient response

Previous example

20 =—
T~ _Asymptotic curve
20 log|L(jw).dB 0 Actualm\
1
1
[
I
—20 :
|
1
I
1
[
I
=90 :
!
de Phase margin I
$(w), deg 180
—270
0.1 0.5 1 2 5 10

w, (rad/s)

’
(1 +jw)( +jw/5)

L(jw) = i

Phase margin ~ 43°
Damping ratio ~ 0.43

Q
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