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Compensator Process
+
R(s) G(s) —>  G(s) > Y(s)
H(s) II:

e Throughout this lecture we consider the case of H(s) = 1.

e We have looked at using

¢ lead compensators to improve the transient
performance of a closed loop

e lag compensators to improve the steady state error
responses without changing the closed loop transient
response too much.

e What if we wanted to do both? What did we do?
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Lead-lag compensation

Compensator Process
+
Rm—b?—k G(s) =l G Y(s)
[ o | |
H(s) |«
]

Apply lead design techniques to G(s) to adjust the closed loop
transient response

Then apply lag design techniques to Gg jead(S) G(S) to improve
steady state error response without changing the closed loop
transient response too much

Resulting compensator:

Gc(s) = Ge lag(S) Ge lead(S)
_ KC,Iag KC,Iead(S + Zlag)(s + zlead)
(S + plag)(s + plead)

How can we gain insight into what the compensator is doing?
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Lead-lag approximation
K al K ea a ea

G ,lag(8) G jead(S) = e (scii— ;:)"(’Szf;(;;; )

Recall that

o for frequencies between Zigag and Peag,
lead compensator acts like a differentiator
o for frequencies between p.g and zg,
lag compensator acts like an integrator

Rewrite:

RC,II(S + Zlag)(s + Zlead)
(S + Piag)(1 + S/Preac)

Ge,lag(8) Ge lead(8) =

as Pead gets big, and pag gets small this starts to look like

Ken(s + Zag) (s + 2
Gc,lag(8) Ge lead(S) =~ ca Ia;)( lead)

for the values of s that are of greatest interest.

Not physically realizable (more zeros than poles),
but helpful approximation
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Compensator Process
PID Control +
Ris)=»{ >  G(s) > Gs)
I
H(s)
]

RC,II(S + zlag)(s + Zlead)

GC,Iag(S)GC,Iead(S) ~ s

Do a partial fraction on RHS and you get

Ki
Ge,lag(8) G lead(S) = Kp + ?I + Kps

With H(s) = 1, input to the compensator is e(t) = r(t) — y(t)
e Compensator output: u(t) = L' { Gc jag($) Gc,ead(S)E(S) }

= u(t)= KPe(f)+f(//e(t) dt + KDdﬁT(tt)

That is, (approximately) PID control
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Compensator Process
4?—0 G(s) | G T g

PID: G¢(s) = Kp + Ki/s + Kps.

e With Kp =0 weAhave a Pl controller,
GP/(S) =Kp+ K//S.

e With K; = 0 we have a PD controller,
Gpp(s) = R,D + RDS.

e As implicit in our derivation, a PID controller can be
realized as the cascade of a Pl controller and a PD
controller; i.e., Gp(S)Gpp(Ss) can be written as
Kp + K//S + Kps
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PID control and root locus

Compensator

Process

—LO—» G(s) >l

G(s)

1

.

H(s)

e Transfer function of idealized PID controller:

KD(S + Z4 )(S + Zg)

Ge(s) = Kp+ Ki/s+ Kps =

S

e That is, controller adds two zeros and a pole to the open

loop transfer function
e The pole is at the origin

e The zeros can be arbitrary real numbers,
or an arbitrary complex conjugate pair

e This provides considerable flexibility in re-shaping the root

locus
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ator roces
PID Control Q?_. G(s) | G(s) T
[ o |

with G¢(s) = Kp + Kj/s + Kps.

e How should we choose Kp, K; and Kp?
e Can formulate as a optimization problem; e.qg.,
Find Kp, K; and Kp that minimize the settling time,
subject to
e the damping ratio being greater than (min,
o the position and velocity error constants being greater
than Kposn,min and Kv,min;
e the error constant for a step disturbance being greater
than Kdist,posn,minf
e and the loop being stable
o Typically difficult to find the optimal solution
e Many ad-hoc techniques that usually find “good”
solutions have been proposed.
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Zeigler—Nichols Tuning

Two well established methods for finding a “good”
solution in some common scenarios

Often useful in practice because they can be applied to
cases in which the model has to be measured (no
analytic transfer function)

We will look at the “ultimate gain” method

This is based on the step response of the system

However, the method is only suitable for a certain class
of systems and a certain class of design goals

¢ You need to make sure that the system you wish to
control falls into an appropriate class.

¢ You also need to ensure that the ZN tuning goals match
your design goals. The ZN tuning scheme gives
considerable weight to the response to disturbances
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“Ultimate Gain” Zeigler—Nichols
Tuning

© Set K; and Kp to zero.

® Increase Kp until the system is marginally stable
(Poles on the jw-axis)

® The value of this gain is the “ultimate gain”, Ky

@ The period of the sustained oscillations is called the
“ultimate period”, Ty (or Py).
(The position of the poles on the jw-axis is 27/ Ty)

® The gains are then chosen using the following table
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Table 7.7 Ziegler-Nichols PID Tuning Using Ultimate Gain, Ky, and Oscillation Period, P,
Ziegler-Nichols PID Controller Gain Tuning Using Closed-loop Concepts

Controller Type Kp K, Kp
Proportional (P)
G.(s) = Kp 0.5Ky -
Proportional-plus-integral (PI)
7 - 0.54K

G.(s) = Kp + 5 045Ky Ty -
Proportional-plus-integral-plus-derivative (PID)
G —k,+ K g 06K 12Ky 0.6KyTy

o(8) = Kp +~ s 0Ky Ty 3

‘Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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Manual refinement

e One way in which the design can be improved, is
searching for “nearby” gains that improve the
performance

e The following table provides guidelines for that local
search. These are appropriate for a broad class of
systems

Table 7.6 Effect of Increasing the PID Gains K, Kj, and K, on the Step Response

Percent Steady-State
PID Gain Overshoot Settling Time Error
Increasing Kp Increases Minimal impact Decreases
Increasing K; Increases Increases Zero steady-state error

Increasing K, Decreases Decreases No impact

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall
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Example

Compensator|  [Process

+ ~
4><T>—> G | G T» 5
[l

H(s)

G(s) = m, with b =10, ¢ = 1/v2 and w, = 4.
o Step 2: Plot root locus of G(s) to find Ky and Ty

40

Kp = 885.5
20 P

Imaginary Axis
=]

—40 -30 —20 =10
Real Axis

e Step 3: Ky = 885.5,
e Step 4: marginally stable poles: +/7.5; = Ty =0.83s
e Step 5: Kp = 521.3, K; = 1280.2, Kp = 55.1
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Step response of ZN tuned closed loop,
Kp =521.3, K; = 1280.2, Kp = 55.1

PID Control
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Step response with manually modified gains,
Kp = 370, K; =100, Kp = 60
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