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Cascade compensation

• Throughout this lecture we consider the case of H(s) = 1.

• We have looked at using

• lead compensators to improve the transient
performance of a closed loop

• lag compensators to improve the steady state error
responses without changing the closed loop transient
response too much.

• What if we wanted to do both? What did we do?
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Lead-lag compensation

• Apply lead design techniques to G(s) to adjust the closed loop
transient response

• Then apply lag design techniques to GC,lead(s)G(s) to improve
steady state error response without changing the closed loop
transient response too much

• Resulting compensator:

GC(s) = GC,lag(s)GC,lead(s)

=
KC,lagKC,lead(s + zlag)(s + zlead)

(s + plag)(s + plead)

• How can we gain insight into what the compensator is doing?
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Lead-lag approximation
• GC,lag(s)GC,lead(s) =

KC,lagKC,lead(s + zlag)(s + zlead)

(s + plag)(s + plead)

• Recall that

• for frequencies between zlead and plead,
lead compensator acts like a differentiator

• for frequencies between plag and zlag,
lag compensator acts like an integrator

• Rewrite:

GC,lag(s)GC,lead(s) =
K̃C,ll(s + zlag)(s + zlead)

(s + plag)(1 + s/plead)

• as plead gets big, and plag gets small this starts to look like

GC,lag(s)GC,lead(s) ≈
K̃C,ll(s + zlag)(s + zlead)

s
for the values of s that are of greatest interest.

• Not physically realizable (more zeros than poles),
but helpful approximation
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Lead-lag to PID

GC,lag(s)GC,lead(s) ≈
K̃C,ll(s + zlag)(s + zlead)

s

• Do a partial fraction on RHS and you get

GC,lag(s)GC,lead(s) ≈ KP +
KI

s
+ KDs

• With H(s) = 1, input to the compensator is e(t) = r(t)− y(t)

• Compensator output: u(t) = L−1{GC,lag(s)GC,lead(s)E(s)
}

=⇒ u(t) ≈ KPe(t) + KI

∫
e(t) dt + KD

de(t)
dt

• That is, (approximately) PID control
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Variants of PID control

PID: Gc(s) = KP + KI/s + KDs.

• With KD = 0 we have a PI controller,
GPI(s) = K̂P + K̂I/s.

• With KI = 0 we have a PD controller,
GPD(s) = K̄P + K̄Ds.

• As implicit in our derivation, a PID controller can be
realized as the cascade of a PI controller and a PD
controller; i.e., GPI(s)GPD(s) can be written as
KP + KI/s + KDs
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PID control and root locus

• Transfer function of idealized PID controller:

GC(s) = KP + KI/s + KDs =
KD(s + z1)(s + z2)

s

• That is, controller adds two zeros and a pole to the open
loop transfer function

• The pole is at the origin
• The zeros can be arbitrary real numbers,

or an arbitrary complex conjugate pair

• This provides considerable flexibility in re-shaping the root
locus
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PID Tuning

with Gc(s) = KP + KI/s + KDs.
• How should we choose KP , KI and KD?
• Can formulate as a optimization problem; e.g.,

Find KP , KI and KD that minimize the settling time,
subject to
• the damping ratio being greater than ζmin,
• the position and velocity error constants being greater

than Kposn,min and Kv ,min,
• the error constant for a step disturbance being greater

than Kdist,posn,min,
• and the loop being stable

• Typically difficult to find the optimal solution
• Many ad-hoc techniques that usually find “good”

solutions have been proposed.
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Zeigler–Nichols Tuning

• Two well established methods for finding a “good”
solution in some common scenarios

• Often useful in practice because they can be applied to
cases in which the model has to be measured (no
analytic transfer function)

• We will look at the “ultimate gain” method
• This is based on the step response of the system
• However, the method is only suitable for a certain class

of systems and a certain class of design goals
• You need to make sure that the system you wish to

control falls into an appropriate class.
• You also need to ensure that the ZN tuning goals match

your design goals. The ZN tuning scheme gives
considerable weight to the response to disturbances
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“Ultimate Gain” Zeigler–Nichols
Tuning

1 Set KI and KD to zero.
2 Increase KP until the system is marginally stable

(Poles on the jω-axis)
3 The value of this gain is the “ultimate gain”, KU

4 The period of the sustained oscillations is called the
“ultimate period”, TU (or PU ).
(The position of the poles on the jω-axis is 2π/TU )

5 The gains are then chosen using the following table
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“Ultimate Gain” Zeigler–Nichols
Tuning
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Manual refinement

• One way in which the design can be improved, is
searching for “nearby” gains that improve the
performance

• The following table provides guidelines for that local
search. These are appropriate for a broad class of
systems
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Example

G(s) = 1
s(s+b)(s+2ζωn)

, with b = 10, ζ = 1/
√

2 and ωn = 4.

• Step 2: Plot root locus of G(s) to find KU and TU

• Step 3: KU = 885.5,
• Step 4: marginally stable poles: ±j7.5; ⇒ TU = 0.83s
• Step 5: KP = 521.3, KI = 1280.2, KD = 55.1
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Example
Step response of ZN tuned closed loop,
KP = 521.3, KI = 1280.2, KD = 55.1
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Example
Step response with manually modified gains,
KP = 370, KI = 100, KD = 60
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