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Abstract—A key component of a cognitive radar system is
the method by which the transmitted waveform is adapted in
response to information regarding the radar environment. The
goal of such adaptation methods is to provide a exible frame-
work that can synthesize waveforms that provide different trade-
offs between a variety of performance objectives, and can do so
ef ciently. In this paper, we propose a waveform design method
that ef ciently synthesizes waveforms that provide a trade-off
between estimation performance for a Gaussian ensemble of tar-
gets and detection performance for a speci c target. In particular,
the method synthesizes ( nite length) waveforms that achieve an
inherent trade-off between the (Gaussian) mutual information
and the signal-to-noise ratio (SNR) for a particular target. In
addition, the method can accommodate a variety of constraints
on the transmitted spectrum. We show that the waveform design
problem can be formulated as a convex optimization problem in
the autocorrelation of the waveform, and we develop a customized
interior point method for ef ciently obtaining a globally optimal
waveform.
Index Terms—Waveform design; cognitive radar; convex op-

timization; spectral factorization; autocorrelation; interior-point
method (IPM).

I. INTRODUCTION

Much of the research effort devoted to radar signal pro-
cessing in the literature has focused on optimizing the design
of the receiver [1]. However, with advancements in the elds
of digital signal processing [2], neural networks and machine
learning [3], and optimization theory [4], and with the emer-
gence of a new discipline called cognitive dynamic systems
[5], the stage is set for an examination of the theory and design
of cognitive radar systems, in which both the receiver and the
transmitter are adapted to the environment. Indeed, there is
considerable evidence of such systems in nature, in particular
in the echolocation systems of bats and dolphins [6].
To establish what we mean by the term cognitive radar,

we will rst establish the notion of a cognitive cycle. Figure 1
summarizes the essence of the cognitive cycle in its most basic
form. The key aspects are

• Perception of the environment;
• Control exercised on the environment by virtue of feed-
back of the information that was learnt through percep-
tion.

In light of this simpli ed view of cognition, the notion of a
cognitive radar can be established [7] as a complex dynamic
system that

This work was supported by National Science and Engineering Research
Council of Canada (NSERC).

The
World

PerceptionControl

Feedback Channel 

Fig. 1. Cognitive Cycle in its most basic form

• continuously learns about the environment through ex-
perience gained from interactions with the environment,
and updates the receiver with relevant information on the
environment;

• adjusts transmitter’s illumination of the environment in
an effective and robust manner;

• coordinates the operation of the transmitter and receiver
through the use of global feedback.

As suggested by the second item, the development of ef cient
algorithms for the design (or selection) of the transmitter’s
waveform is a key enabling step in the construction of a
cognitive radar systems. Such algorithms should provide a
exible framework that can synthesize waveforms that provide
different trade-offs between a variety of performance objec-
tives. The objectives themselves may also be adapted to the
perceived nature of the environment. As we describe in more
detail below, the goal of this paper is to develop one such
framework, and to illustrate its performance.

A. Problem Statement

The design of radar waveforms has been a topic of consider-
able research interest for several decades. Generally speaking,
the approach to the design of an optimal radar waveform
has been task-dependent; e.g., [8]. For example, for the task
of detecting a particular target, the output signal-to-noise-
ratio (SNR) should be maximized, and the optimal waveform
puts all the available energy into the largest mode of the
target [8]. For the task of estimating the parameters of a
target from a given ensemble, the radar waveform should
distribute energy among different modes of the target in such
a way as to maximize the mutual information between the
received signal and the target ensemble [8]; see also [9].
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However, for the purposes of cognitive radar systems a more
exible design framework is required. Rather than optimizing
waveforms for a single design criterion, that framework should
be able to synthesize waveforms that provide a smooth trade-
off between competing design criteria. The development of
one such framework is the focus of this paper.
In this paper, we develop an ef cient design framework

that synthesizes waveforms that provide an optimal trade-off
between the detection and estimation criteria described above.
The proposed framework can also accommodate a variety
of constraints on the transmitted spectrum. In particular, we
seek to maximize the mutual information between a Gaussian
ensemble of targets and the received signal, subject to a
lower bound on the SNR for a speci ed target, an energy
normalization, and bandwidth constraints. Unfortunately, the
direct formulation of this problem is not convex, and can be
dif cult to solve. However, we show that the problem can
be transformed into a convex optimization problem in the
autocorrelation of the waveform, and we develop a customized
interior point algorithm that solves this problem ef ciently.
The problem transformation was inspired by the successful
application of related transformations in the areas of FIR
lter design [10], [11], and waveform design for digital
communication systems [12], [13], but the objective of the
radar waveform design problem is quite different from those
considered in that related work.

II. SYSTEM MODEL

For simplicity, we will develop our design algorithm for a
baseband equivalent model in which all the terms are real-
valued. The extension to more general models is straightfor-
ward. The waveform transmitted by the radar will be denoted
by x(t) and the signal received by the radar can be written
as [8]

y(t) =
∫

h(τ)x(t − τ) dτ + n(t), (1)

where h(t) is the impulse response of the target and n(t)
denotes additive Gaussian noise. To simplify the development
we will assume that the Gaussian noise has zero mean and is
white, with variance σ2

n, but the extension to colored Gaussian
noise is straightforward.
The proposed waveform design algorithm will provide a

mechanism for obtaining a smooth trade-off between two com-
peting design criteria, namely the output SNR for a particular
target impulse response, and the mutual information between
the received signal and a Gaussian ensemble of targets.
To de ne the target-speci c SNR, we rst let h̄(t) denote

the impulse response of the particular target. If the receiver
employs a “target matched” lter (i.e., a lter matched to h̄(t)∗
x(t), where ∗ denotes convolution), then the target-speci c
SNR can be written as [14]

SNRh̄ =
1
σ2

n

∫ ∣∣h̄(t) ∗ x(t)
∣∣2 dt, (2)

where the signal power can be expressed as [15]∫
h(τ1)

∫
h(τ2)Rx(τ2 − τ1) dτ2 dτ1, (3)

in which Rx(τ) =
∫

x(t)x(t + τ) dt is the autocorrelation
function of x(t).
To de ne the mutual information criterion, we let h̆(t)

denote a random process that characterizes an ensemble of
target impulse responses. Given the transmitted signal, x(t),
the (conditional) mutual information between the target and
the received signal is [8]

I
(
y(t); h̆(t)|x(t)

)
. (4)

We will consider the case in which the receiver is bandlimited
to [−W/2, W/2] and has an interval of duration Ty over which
the received signal can be observed. In that case, if h̆(t) is
a zero-mean Gaussian process, then the (conditional) mutual
information can be written as [8]

JMI = Ty

∫ W/2

−W/2

log
(
1 + β(f)|X(f)|2) df, (5)

where X(f) is the Fourier Transform of x(t) and

β(f) =
2Sh̆(f)
σ2

nTy
, (6)

where Sh̆(f) is the power spectral density of the process h̆(t).
For a given speci c target response, h̄(t), and a given

Gaussian ensemble of targets characterized by h̆(t), our goal
is to design the waveform x(t) so as to maximize JMI in
(5), subject to SNRh̄ in (2) begin greater than some threshold
SNRTh, and to constraints on the energy and the power
spectrum of x(t). In the absence of the SNR constraint
and the additional power spectrum (bandwidth) constraints,
the optimal solution can be obtained using a “water lling”
procedure [8], but that procedure is not optimal in the presence
of the additional constraints. In order for our design problem to
be feasible, SNRTh must be less than the maximum achievable
SNRh̄ in the presence of the energy and power spectrum
constraints on x(t), but as we will mention towards the end
of the next section, that quantity can be ef ciently computed
before the waveform design process is initiated.
In the next section we will show that for a class of

waveforms that can be easily implemented, the waveform
design problem can be formulated as a convex optimization
problem that can be ef ciently solved.

III. CONVEX DESIGN FORMULATION

We will consider waveforms of the form

x(t) =
L−1∑
�=0

g[�]p(t− �T ), (7)

where p(t) is a unit-energy waveform, and the parameters
g[�] are the design variables. Good approximations of such
waveforms can be synthesized in a straightforward manner
using digital-to-analog conversion of the sequence g[�] at a
rate 1/T using a smoothing lter with impulse response p(t).
Typically, T will be chosen to be less than 1/(2W ), where W
is the receiver bandwidth, but that is not necessary. Consistent
with the discussion in the previous section, given the speci c
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target response h̄(t) and the ensemble of targets characterized
by h̆(t), our goal is to design a sequence g[�] of energy Eg

that maximizes JMI, subject to SNRh̄ ≥ SNRTh and the
100γ% energy bandwidth of x(t) being at most W . (We will
also show how other bounds on the power spectrum of x(t)
can be incorporated into the formulation.) Unfortunately, that
optimization problem is not convex is g[�], and can be quite
dif cult to solve. In this section we will show how the problem
can be reformulated as a convex optimization problem in the
autocorrelation sequence of g[�], rg[m] =

∑
� g[�]g[� + m].

To derive that reformulation, we rst observe that the
(deterministic) autocrorrelation of a waveform of the form in
(7) can be written as

Rx(τ) =
∫

x(t)x(t + τ) dt =
∑
m

rg[m]Rp(τ −mT ). (8)

We will normalize the energy of g[�] to Eg , i.e.,

rg[0] = Eg, (9)

and hence the energy of the transmitted waveform is

Ex = Rx(0) = Eg + 2
L−1∑
m=1

rg[m]Rp(mT ). (10)

If the waveform p(t) is self-orthogonal at shifts of integer
multiples of T , then Rp(mT ) = δm, where δm is the
Kronecker delta, and Ex = Eg . Examples of such self-
orthogonal waveforms include the rectangular waveforms of
duration ≤ T , the ‘sinc’ pulse, sincT (t) = sin(πt/T )/(πt/T )
for t �= 0, and the associated family of pulses with ‘root raised
cosine’ spectra.
The power spectrum of x(t) in (7) can be written as

|X(f)|2 = |G(ej2πfT )|2 |P (f)|2, (11)

where G(ej2πF ) is the Discrete-Time Fourier Transform of
g[�] and P (f) is the Fourier Transform of p(t). If T is
signi cantly smaller than 1/(2W ) and if p(t) is a low-pass
lter that is close to being self-orthogonal at shifts of integer
multiples of T , then |P (f)| can often be approximated as
being at across the band [−W/2, W/2] (see, e.g., [13]),
and this approximation will signi cantly simplify some of the
expressions below.
In order to concisely formulate the design problem, we will

use the fact that rg[0] = Eg and the symmetry of rg[m], and
will collect the design variables in the vector

r̃T
g =

[
rg[1], rg[2], . . . , rg[N − 1]

]
. (12)

Since |G(ej2πF )|2 = Eg + 2
∑L−1

m=1 rg[m] cos(2πmF ), we
will nd it convenient to de ne the vector

ṽ(F )T = 2
[
cos(2πF ), cos(2π2F ), . . . , cos(2π(L− 1)F )

]
,

(13)
so that we can write

|X(f)|2 = |P (f)|2 (
Eg + ṽ(fT )T r̃g

)
. (14)

In order to obtain a convenient expression for the objective
of the design problem, we will use the symmetry of the inte-
grand in (5), and will approximate the integral over [0, W/2]
by its its K-point Riemann sum. That is, we will maximize

ĴMI
K = 2ΔfTy

K−1∑
k=0

log
(
α(fk) + ζ(fk) ṽ(fkT )T r̃g

)
, (15)

where Δf = W/(2K), fk = kΔf , α(f) = 1 +
Egβ(f)|P (f)|2, and ζ(f) = β(f)|P (f)|2. Since the argument
of each logarithm in (15) is an af ne function of r̃g , ĴMI

K is a
concave function of r̃g .
Using the expressions in (2) and (3), for waveforms of the

form in (7), the SNR of the response to the speci ed target
h̄(t) can be written as

SNRh̄ =
L−1∑

m=−(L−1)

rg[m]zm (16)

where1

zm =
1
σ2

n

∫
Rh̄(λ)Rp(λ−mT ) dλ. (17)

Therefore, by de ning the elements of the vector w̃ as [w̃]m =
zm +z−m, the constraint that SNRh̄ ≥ SNRTh can be written
as

Egz0 + w̃T r̃g ≥ SNRTh, (18)

which is an af ne constraint in r̃g , and hence is convex.
The constraint that 100γ% of the energy of the transmitted

waveform lies in the band [−W/2, W/2] can be written as∫ W/2

−W/2
|X(f)|2 df ≥ γEx. Using the above expressions, this

constraint can be rewritten as

EgEp,W + 2
L−1∑
m=1

rg[m]
∫ W/2

−W/2

|P (f)|2 cos(2πmfT ) df

≥ γEg + 2γ

L−1∑
m=1

rg[m]Rp(mT ), (19)

where Ep,W =
∫ W/2

−W/2
|P (f)|2 df . This expression can be

written more concisely as

ũT r̃g ≥ Eg(γ − Ep,W ), (20)

where [ũ]m = 2
∫ W/2

−W/2
|P (f)|2 cos(2πmfT ) df−2γRp(mT ),

which is clearly linear in r̃g , and hence convex. If p(t) is self-
orthogonal at shifts of integer multiples of T and if P (f) can
be approximated as being at across the band [−W/2, W/2],
then the expression for the elements of ũ can be simpli ed to
[ũ]m = 2|P (0)|2 sin(πmWT )/(πmT ).
In this paper, we will only enforce spectral constraints of

the form in (20), but many more general spectral constraints
can be incorporated into our formulation. For instance, using
the expression in (14) any constraint of the form L(fk) ≤
|X(fk)|2 ≤ U(fk) can be written in terms of af ne constraints

1If Rh̄(λ) is approximately constant over the (essential) support of Rp(λ−
mT ), then zm can be approximated by |P (0)|2Rh̄(mT )/σ2

n .
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on r̃g , and can be easily incorporated into the formulation; see,
e.g., [16] for additional discussion.
To complete the formulation, we need to ensure that rg[m]

is a valid autocorrelation sequence. That is, that it can be
(spectrally) factorized to obtain a corresponding sequence g[�].
A necessary and suf cient condition for that to be true is that
Rg(ej2πF ) = rg[0] + 2

∑L−1
m=1 rg[m] cos(2πmF ) ≥ 0 for all

F ∈ [0, 0.5]. This semi-in nite constraint can be precisely
represented by a ( nite) linear matrix inequality (e.g., [16]),
but in this paper we will adopt a simple heuristic approach and
will approximate the constraint by discretization; e.g., [11].
That is, given an integer N , which is typically of the order of
15L, we de ne Fn = n/(2N), n = 0, 1, . . . , N , and enforce

Rg(ej2πFn) ≥ εN , (21)

where εN is a small positive number that provides some
control over the behaviour of Rg(ej2πF ) between the dis-
cretization points.
Summarizing the above development, the waveform design

problem can be written as

min
r̃g∈RL−1

−
K∑

k=0

log
(
α(fk) + ζ(fk)ṽ(fkT )T r̃g

)
(22a)

subject to w̃T r̃g ≥ SNRTh − Egz0, (22b)

ũT r̃g ≥ Eg(γ − Ep,W ), (22c)

ṽ(Fn)T r̃g ≤ Eg − εN , ∀n ∈ [0, N ]. (22d)

Since the objective is a convex function of r̃g and the con-
straints are linear, this is a convex optimization problem, and
an ef cient algorithm for nding a globally optimal solution
can be developed using interior point methods. We have
developed a customized primal potential reduction method
(cf. [4]) that employs a damped Newton method with back
tracking line search in the re-centering step, and includes an
auxiliary phase in which a feasible initial point is found.
Once the optimal autocorrelation sequence has been found,
an optimal waveform can be constructed by using a standard
spectral factorization technique (e.g., [2], [11], [17]) to nd a
sequence g[�] that is a spectral factor of the optimal rg[m], and
then synthesizing the waveform x(t) using (7). As mentioned
towards the end of Section II, there is an upper bound on
SNRTh beyond which the problem in (22) is infeasible. That
value is Egz0 + w̃T r̃�

g , where r̃�
g is the optimal solution to the

linear program maxr̃g∈RL−1 w̃T r̃g, subject to (22c) and (22d).
In the development of the design problem in (22) we con-

sidered the case in which there is only one speci c target for
which an SNR constraint is to be satis ed. However, it is clear
from the development that enforcing an SNR constraint for an
additional speci c target h̄i(t) simply involves the addition of
a single linear constraint of the form w̃ir̃g ≥ SNRTh,i−Egz0,i

to the formulation in (22).

IV. NUMERICAL EXAMPLES

In this section we provide some examples of the waveforms
that can be obtained using the proposed design method. We

consider waveforms x(t) of the form in (7) with T = 1/2,
N = 31, Eg = 1, and p(t) being the unit energy rectangular
function of duration T . We consider two choices for the
speci c target waveform, h̄(t), both of which are of the form
in (7) with the same parameters as x(t). In the rst case,
the coef cients are chosen independently from a standard
Gaussian distribution and then scaled so that the sequence has
unit energy, and in the second the coef cients are samples from
a weighted sum of three sinusoids. As be ts such a scenario,
the observation window of the receiver is Ty = 2LT . The
receiver bandwidth is [−1, 1], and hence W = 2, the energy
containment factor, γ, is 0.95, and the power spectral density
of the noise is such that the receiver noise variance is 0.1.
The power spectral density of the Gaussian target ensemble
was chosen to be a windowed, and hence spectrally dispersed,
version of |H̄(f)|2.
For the case in which the SNR threshold, SNRTh, is chosen

to be -5 dB, we plot in Figures 2 and 3, the power spectra of
the designed waveforms (dashed lines) and compare them with
the power spectra of the speci c target waveforms, |H̄(f)|2
(solid curves). As can be seen from the gures, the designed
waveforms allocate a portion of their energy to the dominant
spectral features of the speci c target, while also dispersing
energy in order to optimize the information obtained about
targets from the Gaussian ensemble.

V. CONCLUSION

In cognitive radar systems, the operation of the transmitter
and receiver is coordinated through the use of global feedback.
The transmitter should be able to adjust the illumination of the
environment in an response to the information obtained form
the environment. In this paper, we have considered one such
adaptation scheme, and we developed an ef cient algorithm for
obtaining waveforms of nite (essential) support that provide
a smooth trade-off between the SNR of a particular target (or
several particular targets) and the mutual information between
a Gaussian ensemble of targets and the received signal. The
key step in the development of the ef cient algorithm was to
formulate the design criterion and the constraints as convex
functions of the autocorrelation of the parameters that de ne
the waveform. This enabled the development of a customized
interior point method for ef ciently obtaining an optimal
waveform.
In a non-stationary radar environment, the transmitted wave-

form should be redesigned whenever the speci ed target or the
power spectral density of the Gaussian ensemble change sig-
ni cantly, and in that context the importance of the ef ciency
with which our formulation can be solved becomes clear. In
our development, we assumed the presence of a radar scene
analyzer (RSA) [7] that informs the design algorithm of the
impulse response of the speci ed target and the power spectral
density of the Gaussian ensemble. In practice, these terms
may not be known precisely, and in on-going work we are
using insight from [9], [13] to develop design techniques for
waveforms that provide robust performance in the presence
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Fig. 2. Power spectrum of the designed radar waveform (dashed) and that
of the randomly generated speci c target signature (solid).
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Fig. 3. Power spectrum of the designed radar waveform (dashed) and that
of the sinusoidal speci c target signature (solid).

of imperfect estimates of the speci c target and the power
spectral density of the Gaussian ensemble.
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