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We consider the problem of decision fusion in a distributed
detection system. In this system, each detector makes a binary
decision based on its own observation, and then communicates
its binary decision to a fusion center. The objective of the
fusion center is to optimally fuse the local decisions in order
to minimize the final error probability. To implement such
an optimal fusion center, the performance parameters of each
detector (i.e., its probabilities of false alarm and missed detection)
as well as the a priori probabilities of the hypotheses must be
known. However, in practical applications these statistics may
be unknown or may vary with time. We develop a recursive
algorithm that approximates these unknown values on-line. We
then use these approximations to adapt the fusion center. Our
algorithm is based on an explicit analytic relation between the
unknown probabilities and the joint probabilities of the local
decisions. Under the assumption that the local observations are
conditionally independent, the estimates given by our algorithm
are shown to be asymptotically unbiased and converge to their
true values at the rate of O(1=k1=2) in the rms error sense, where
k is the number of iterations. Simulation results indicate that
our algorithm is substantially more reliable than two existing
(asymptotically biased) algorithms, and performs at least as well
as those algorithms when they work.

Manuscript received April 1, 2000; revised May 16, 2002; released
for publication August 29, 2002.

IEEE Log No. T-AES/39/1/808660.

Refereeing was handled by X. R. Li.

This research is supported by a research grant from the Natural
Sciences and Engineering Research Council of Canada and by a
grant from the Defense Research Establishment Valcartier (DREV),
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I. INTRODUCTION

The problem of distributed detection has been
the subject of several recent studies [4, 14]. It
is well known that the deployment of multiple
sensors for signal detection in a military surveillance
application may substantially enhance system
survivability and result in improved detection
performance, shorter decision time, and other
benefits [14]. Although many organizational
structures for distributed detection systems can
be constructed, the most popular choice has been
the parallel topology as shown in Fig. 1. In this
topology each local detector LDi makes a decision
ui based on its own observation Yi and then transmits
this decision to the final decision-maker (fusion
center). Based on the received local decisions,
the fusion center makes the final decision u0 by
employing the optimal fusion rule (discussed
below). Throughout this work, we consider binary
hypothesis testing, therefore ui will be binary. We
adopt the convention that ui = 1 (respectively, ui = 0)
if the ith local detector favors the hypothesis H1
(respectively, the hypothesis H0). The a priori
probabilities of the two hypotheses are denoted
by P(H0) = P0 and P(H1) = P1 such that P0 +P1
= 1.

Fig. 1. Parallel distributed detection system.

The general problem of determining the optimal
local decision rules and optimal fusion rule for
the system in Fig. 1 is known to be NP-hard [13].
Thus, to efficiently design an optimal distributed
detection system, it is necessary to assume that the
local observations are structured in some way. The
standard assumption that we employ here is that the
local observations are conditionally independent in
the sense that P(Yi,Yj jHk) = P(Yi jHk)P(Yj jHk),
for all i 6= j and all k. Chair and Varshney [4] showed
that for N conditionally independent local
detectors, the optimal fusion rule based on the
minimum probability of error criterion can be
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written as

u0 =

8
><

>:

1, if w0 +
NX

i=1

wi > 0

0, otherwise

(1)

where
w0 = log

µ
P1
P0

¶
(2)

and for i= 1, : : : ,N,

wi =

(
log((1¡Pmi )=P

f
i ), if ui = 1

log(Pmi =(1¡P
f
i )), if ui = 0:

(3)

Here Pfi and Pmi represent the probabilities of false
alarm and missed detection at the ith local detector:

Pfi = Pr(ui = 1 jH0), Pmi = Pr(ui = 0 jH1): (4)

As can be seen, each weight wi is a function of the
probabilities of false alarm and missed detection
errors at the corresponding detector. So to implement
the optimal fusion rule (1), we need to know the a
priori probability of the hypothesis P1 (recall that P0 =
1¡P1), and the probabilities of false alarm and missed
detection fPfi ,Pmi g. Unfortunately these parameters
are not always available in practice or may be time
varying [1, 9]. The primary objective of the work
presented here is to develop an on-line blind adaptive
algorithm for estimating these parameters at the
fusion center. By “blind” we mean that the adaptive
algorithm does not have access to any training signals.
A few early works have been reported on the

on-line blind estimation of error probabilities. Naim
and Kam [9] proposed an on-line adaptive algorithm
to estimate the values of fP1,P

f
i ,P

m
i g for the Bayesian

hypothesis testing problem. The local detectors are
assumed to be conditionally independent and to
perform local hypothesis tests based on their own
observations. However, the estimator given in Naim
and Kam’s algorithm [9] is statistically biased and
requires bias-correction to reduce the estimation
error, thus making the algorithm computationally
complex. Ansari and his coauthors presented, in a
series of papers [1, 2, 5], a learning algorithm which
estimates the weights of the fusion center directly
without estimating error probabilities. Similar to [9],
the estimator of Ansari et al. lacks certain desirable
statistical properties such as unbiasedness. To reduce
the error in the estimation of the weights for each
sensor, they perform a threshold test to determine
the extent to which the central decision is “reliable”
in the absence of that sensor. Only central decisions
which are reliable without that sensor’s local decision
are used to update that sensor’s weight. However,
dropping such decisions may compromise the
convergence behavior of the algorithm. Furthermore,
a proper procedure for the selection of the (optimal)
reliability threshold remains unresolved in the
aforementioned studies.

In this work, we propose an on-line algorithm
which, like that in [9], estimates the a priori
probability P1, and the probabilities P

f
i and Pmi and

then uses them to implement the fusion rule (1)—(3).
Our algorithm is based on an explicit analytic relation
between the unknown a priori probabilities and the
joint probabilities of the local decisions. The latter
can be estimated via a simple averaging algorithm
and then be used to calculate the unknown a priori
probabilities P1 and P

f
i , P

m
i . Our method allows us to

estimate the performance of each detector efficiently.
Unlike Naim and Kam’s estimators [9], our estimators
of the unknown probabilities fP1,P

f
i ,P

m
i g are shown

to be asymptotically unbiased, provided that the local
observations are conditionally independent. Moreover,
we prove that the estimates converge to their true
values at a rate of O(1=k1=2) in the rms sense, where
k is the number of iterations. Our simulation studies
indicate that our algorithm is substantially more
reliable than the (asymptotically biased) algorithms of
Naim and Kam [9] and Ansari et al. [2], and performs
at least as well as those algorithms when they work.
We also suggest modifications to the algorithms of
Naim and Kam [9] and Ansari et al. [2] which make
them more reliable (see Appendix C), however the
resulting algorithms are still asymptotically biased and
the modified version of Naim and Kam’s algorithm is
still much more computationally expensive than our
method.
The remainder of this paper is organized as

follows. In Section II we explain our approach
and present the algorithm for the case of three
detectors. (Note that our algorithm is not applicable
in systems with two detectors.) The main results on
the three-detector case are established, and some
simulation results are presented. Also, several simple
methods which enable the algorithm to track changes
faster are proposed. In Section III we generalize
our algorithm to the case of more than three local
detectors. Performance comparisons with two existing
methods are given in Section IV and some concluding
remarks and suggestions are given in Section V.

II. ADAPTIVE DECISION FUSION FOR THE
THREE-DETECTOR CASE

In this section we introduce an adaptive fusion
algorithm for a distributed detection system with
exactly three detectors. In Section III, this algorithm
is generalized for systems with more than three
detectors.

A. An Invertibility Result

Consider a distributed detection system with
exactly three detectors and a fusion center arranged
in a parallel structure (c.f., Fig. 1). Each detector
employs a predetermined local decision rule, and
we assume that conditioned on each hypothesis, the
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local binary decisions are statistically independent.
Our purpose is to estimate the unknown probabilities
P1, P

f
i , and P

m
i , i = 1,2,3, by using the local binary

decisions u1, u2, and u3. We accomplish this goal
indirectly by estimating the unconditional probability
of each decision and their joint probabilities. Note that
in this case we have three binary decisions, giving a
total of eight different combined outcomes. Let us
use the short notation Pijk to denote the probability
of u1 = i, u2 = j and u3 = k, where i,j,k = 0 or 1.
Using Bayes rule and conditional independence, we
have

Pijk = Pr(u1 = i, u2 = j, u3 = k)

= P(u1 = i jH1)P(u2 = j jH1)P(u3 = k jH1)P1
+P(u1 = i jH0)P(u2 = j jH0)P(u3 = k jH0)(1¡P1):

(5)
Notice that

P(uj = i jH1) =
½
1¡Pmj , if i= 1

Pmj , if i= 0
(6)

and

P(uj = i jH0) =
(
Pfj , if i= 1

1¡Pfj , if i= 0:
(7)

Rewriting (5) in terms of Pfi , P
m
i (i= 1,2,3) yields a

nonlinear system of equations

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

P000 = P
m
1 P

m
2 P

m
3 P1 + (1¡P

f
1 )(1¡P

f
2 )(1¡P

f
3 )(1¡P1)

P001 = P
m
1 P

m
2 (1¡Pm3 )P1 + (1¡P

f
1 )(1¡P

f
2 )P

f
3 (1¡P1)

P010 = P
m
1 (1¡Pm2 )Pm3 P1 + (1¡P

f
1 )P

f
2 (1¡P

f
3 )(1¡P1)

P100 = (1¡Pm1 )Pm2 Pm3 P1 +P
f
1 (1¡P

f
2 )(1¡P

f
3 )(1¡P1)

P111 = (1¡Pm1 )(1¡Pm2 )(1¡Pm3 )P1 +P
f
1 P

f
2 P

f
3 (1¡P1)

P011 = P
m
1 (1¡Pm2 )(1¡Pm3 )P1 + (1¡P

f
1 )P

f
2 P

f
3 (1¡P1)

P110 = (1¡Pm1 )(1¡Pm2 )Pm3 P1 +P
f
1 P

f
2 (1¡P

f
3 )(1¡P1)

P101 = (1¡Pm1 )Pm2 (1¡Pm3 )P1 +P
f
1 (1¡P

f
2 )P

f
3 (1¡P1):

(8)
Notice that the system of nonlinear equations

(8) provides a link between the values of Pijk and
the unknown parameters P1, P

f
i , P

m
i (i= 1,2,3).

Clearly, the values of Pijk can be estimated easily by
using the local observations fui, i= 1,2,3g. Once the
values of Pijk are estimated, we can use the nonlinear
system (5) to infer the unknown parameters P1, P

f
i ,

Pmi (i= 1,2,3). As a result, it becomes necessary
to solve the nonlinear system (8) by representing
P1, P

f
i , P

m
i (i= 1,2,3) in terms of the values of

Pijk. It is well known that in general a numerical
procedure is required to solve a nonlinear system.
However, the rather surprising main result of this
section is that the nonlinear system (8) has some
special algebraic structure which affords it an analytic
solution. Needless to say, it is much more desirable to

invert the nonlinear system (8) analytically, rather than
numerically.
As can be seen from (8), the probability

values fPijkg depend on a total of seven unknown
(independent) parameters P1, P

f
i and Pmi , i= 1,2,3.

Notice that only seven out of the eight equalities
in (8) are algebraically independent because of the
normalizing condition

1X

i=0

1X

j=0

1X

k=0

Pijk = 1:

In other words, we have a total of seven nonlinear
algebraic equations relating the joint probabilities of
local decisions to the seven unknown parameters that
we wish to estimate. In principle, we should be able
to represent the unknown parameters in terms of the
probabilities Pijk (thus, inverting the nonlinear system
(8)).
In what follows, we assume

0< P1 < 1, Pfi +P
m
i < 1, i= 1,2,3: (9)

Under this assumption, we can derive an explicit
representation of P1, P

f
i and Pmi (i= 1,2,3) in terms

of Pijk.

THEOREM 1 Consider a distributed system with
exactly three detectors. Let P1 denote the a priori
probability that the hypothesis H1 holds. Suppose P

f
i ,

Pmi are the probabilities of false alarm and missed
detection for the ith detector respectively, and assume
that they satisfy (9). Then the nonlinear system (8) can
be inverted analytically. In particular, let

X =
°¤ ¡ °1°2°3¡ (°1a2a3 + °2a1a3 + °3a1a2)p

(±12 ¡ °1°2)(±13¡ °1°3)(±23¡ °2°3)

=
°¤ ¡ °1°2°3¡ (°1j±23¡ °2°3j+ °2j±13¡ °1°3j+ °3j±12¡ °1°2j)p

(±12 ¡ °1°2)(±13¡ °1°3)(±23¡ °2°3)

(10)
where

°1 =
X

j,k

P1jk, °2 =
X

i,k

Pi1k,

°3 =
X

i,j

Pij1, °¤ = P111

±12 = P110 +P111, ±13 = P111 +P101,

±23 = P111 +P011

(11)

and 8
>>>>>>>>>><

>>>>>>>>>>:

a1 =

s
(±12¡ °1°2)(±13¡ °1°3)

±23¡ °2°3

a2 =

s
(±12¡ °1°2)(±23¡ °2°3)

±13¡ °1°3

a3 =

s
(±13¡ °1°3)(±23¡ °2°3)

±12¡ °1°2
:

(12)

36 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 39, NO. 1 JANUARY 2003

Authorized licensed use limited to: McMaster University. Downloaded on July 18,2010 at 20:04:50 UTC from IEEE Xplore.  Restrictions apply. 



Then, P1, P0 can be computed as

P1 = 0:5¡
X

2
p
X2 +4

, P0 = 1¡P1: (13)

Furthermore, we have

Pfi = °i¡ ai

s
P1

1¡P1
, Pmi = 1¡ °i¡ ai

s
1¡P1
P1

,

i= 1,2,3: (14)

The proof of Theorem 1 involves straightforward,
but tedious, algebraic manipulation and has been
relegated to Appendix A. Theorem 1 suggests that
the unknown probabilities P0, P1 and P

m
i , P

f
i can be

calculated uniquely from the joint (unconditional)
probabilities °i, ±ij and °¤ (or equivalently, from the
joint probabilities Pijk, i,j,k = 0,1), provided that the
(reasonable) assumption (9) is satisfied.
It should be pointed out that Theorem 1 assumes

the presence of (at least) three detectors (or sensors)
in the distributed system. Although this assumption
seems restrictive, it is actually necessary, as we
explain below. Suppose there are N detectors in the
system, then there will be 2N +1 unknown parameters
to be estimated (P1, plus P

f
i , P

m
i , i= 1,2, : : : ,N). At

the same time, we have 2N ¡ 1 independent joint
probabilities (of local decisions) in the form of
(8). This is because there are exactly 2N different
combinations of N local decisions and there is
one normalizing condition. In order to be able to
estimate the 2N +1 unknowns from the 2N ¡ 1
joint probabilities of local decisions, one must have
2N ¡ 1¸ 2N +1, implying N ¸ 3. For N = 2, there
are 2N +1 = 5 unknown parameters (P1, P

f
1 , P

f
2 , P

m
1 ,

Pm2 ) to be estimated, and there are only 2
N ¡ 1 = 3

algebraic relations in the form of (8). Therefore, we
cannot expect to estimate the unknown parameters
from the local decisions. Of course, if two of the 5
unknowns are given or if additional side information
is available, then we may still be able to recover
the unknown parameters when there are only two
detectors.

B. An Adaptive Decision Fusion Algorithm

Notice that the values of the (unconditional)
joint probabilities °i (i= 1,2,3), ±ij (i,j = 1,2,3,
j 6= i) and °¤ can be conveniently approximated via
time-averaging [10]; e.g.,

°̂ki =
1
k

kX

j=1

uji

where uji is the decision of ith detector at the jth time
step. The above equation can be written recursively as

°̂ki =
1
k
uki +

k¡ 1
k
°̂k¡1i = °̂k¡1i +

1
k
(uki ¡ °̂

k¡1
i ) (15)

with an arbitrary initial guess. Similar to (15), we
have

±̂kij =
1
k
uki u

k
j +

k¡ 1
k
±̂k¡1ij (16)

°̂k¤ =
1
k
uk1u

k
2u
k
3 +

k¡ 1
k
°̂k¡1¤ : (17)

Once the estimated values °̂ki , ±̂
k
ij and °̂

k
¤ are obtained,

all of the unknown probabilities P0, P1 and P
m
i , P

f
i can

be estimated by substituting these estimated values for
°i, ±ij and °¤ in equations (10)—(14).
Equations (15)—(17) are stochastic approximations

[as emphasized in (15)] which are convergent with
probability 1 if the sequence of local decisions
f(uk1,uk2,uk3)g is ergodic [3]. These estimations are also
unbiased with variance decaying to zero at the rate
1=k, as k increases [10]. From the above discussions,
we propose the following adaptive fusion algorithm.

Adaptive Fusion Algorithm
Initial Step: Select initial values: °̂0i (i= 1,2,3), ±̂

0
ij

(i,j = 1,2,3, j 6= i) and °̂0¤ .
Iterations:
a) Update the values of unconditional probabilities °̂ki ,
±̂kij and °̂

k
¤ by observing local decisions u

k
1, u

k
2 and

uk3 and using (15)—(17).

b) Use the updated values °̂ki , ±̂
k
ij and °̂

k
¤ obtained

from (a) to calculate âi (i= 1,2,3) and X̂ according
to (12) and (10). Then compute P̂1, P̂

f
i and P̂mi

(i= 1,2,3) according to
8
>>>><

>>>>:

P̂1 = [0:5¡ 0:5X̂(X̂2 +4)¡1=2]+
P̂0 = [1¡ P̂1]+ = 1¡ P̂1
P̂fi = [°̂i¡ P̂

1=2
1 P̂

¡1=2
0 âi]+, i= 1,2,3

P̂mi = [1¡ °̂i¡ P̂
1=2
0 P̂

¡1=2
1 âi]+, i= 1,2,3

(18)

where [¢]+ denotes the projection operator onto the
unit interval, that is, [z]+ =maxfminf1,Refzgg,0g,
for all z 2 C. Geometrically, [z]+ denotes the
point in [0,1] that is closest to z. (For notational
simplicity, we have dropped the index k from the
notations X̂, âi, P̂

f
i , P̂

m
i , etc. It should be clear from

the context that these estimates are updated at each
iteration and thus vary with k.)

c) Use the estimated values of P̂0, P̂1, P̂
f
i and P̂mi

(i= 1,2,3), and (2) and (3) to form estimates, ŵ0
and ŵi, of the optimal fusion weights.

Due to the recursive nature of the updating rules
(15)—(17), it can be easily checked that in the above
adaptive fusion algorithm only a fixed amount data
storage is required at all times. Furthermore, the
algorithm’s computational requirement per iteration is
constant; that is, it does not increase with the number
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of iterations. Clearly, these are important features for
an adaptive fusion algorithm.
As another remark, we note that the estimators

(18) are exactly as prescribed by Theorem 1 except
for the inclusion of the projection operator [¢]+.
The use of this projection operator ensures that the
estimators will always remain real and bounded (even
in the case when the denominators of (10)—(14) are
small). This boundedness property allows us to prove
the asymptotic unbiasedness of the estimators and
establish their rate of convergence (see Theorem 2
below).

THEOREM 2 Let P̂1, P̂
f
i , P̂

m
i (i= 1,2,3) be the

estimators given by (18). Assume that the local
observations f(uk1,uk2,uk3)g are ergodic and that

²· P1 · 1¡ ², 1¡Pfi ¡P
m
i ¸ ²,

i= 1,2,3, for some ² > 0: (19)

Then, with probability one,

lim
k!1

P̂1 = P1, lim
k!1

P̂fi = P
f
i ,

lim
k!1

P̂mi = P
m
i , i = 1,2,3,

which, by the Lebesgue Dominance Theorem, implies
the asymptotic unbiasedness of the estimators:

lim
k!1

E(P̂1) = P1, lim
k!1

E(P̂fi ) = P
f
i ,

lim
k!1

E(P̂mi ) = P
m
i , i = 1,2,3:

Moreover, there holds

EjP̂1¡P1j2 =O(1=k), EjP̂fi ¡P
f
i j
2 =O(1=k),

EjP̂mi ¡Pmi j2 =O(1=k), i = 1,2,3

where O(1=k) denotes a nonnegative function such that
limsupk!1O(1=k)k <1.

The proof of Theorem 2 is quite complicated
and has been relegated to Appendix B. Theorem 2
shows that the probability estimates P̂1, P̂

f
i , P̂

m
i

(i= 1,2,3) will eventually converge to their true
values as k (the number of iterations) increases. An
important corollary of this result is that the estimated
fusion weights ŵ0, ŵi (i= 1,2,3) will also converge
eventually converge to their optimal values. This
further implies the resulting final error rate will
converge to its minimum value as k!1.
Finally, we remark that in practice the assumption

(19) is almost always satisfied. However, from a
theoretical standpoint, it will be desirable to develop
an analysis of the estimators (18) in the absence of
this assumption.

Fig. 2. Adaptation of P̂1 for the example in Section IIC1.
Legend—solid: average over 1000 realizations; dashed: average plus
and minus one standard deviation; dotted: typical realization;

circle: true value of P1.

C. Simulation Results

1) Convergence: To examine the effectiveness
of the proposed algorithm, we have performed some
computer simulations for a distributed detection
system consisting of three detectors. In these
simulations, the target and local detectors are
simulated as binary sources with probabilities:

P1 = 0:7, Pf1 = 0:05,

Pf2 = 0:09, Pf3 = 0:15,

Pm1 = 0:03, Pm2 = 0:07, Pm3 = 0:12:

(20)

The initial values for °̂i, ±̂ij and °̂¤ are selected to be
0:5. Figs. 2 and 3 show the convergence behavior
of P̂1, and P̂

f
i and P̂mi (i= 1,2,3), respectively. Each

figure contains the average estimate (over 1000
realizations), the average plus and minus one standard
deviation, and the behavior of a typical realization.
Note that the estimates converge to their true values
in (20). (The true values are denoted by the circles
in the figures.) The detail of the typical realizations
of P̂fi and P̂mi in Fig. 4 shows that the projection
operator in (18) is highly active in the initial stages
of the algorithm. However, Figs. 2 and 3 indicate that
the projection operator is inactive once the algorithm
has obtained reasonable estimates of the probabilities.
Fig. 5 shows how the error probability of the fusion
center,

Pe = Pr(u0 = 1 jH0)P0 +Pr(u0 = 0 jH1)P1 (21)

converges to its minimum value as system reaches
its steady state. [The minimum value is obtained
using (21), the optimal fusion rule (1) and the optimal
weights, (2) and (3).]
2) Tracking: To illustrate the fusion algorithm’s

ability to adaptively fuse the local decisions, we
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Fig. 3. Adaptation of P̂fi and P̂mi (i= 1,2,3) for the example in Section IIC1. Legend is same as Fig. 2, except circles denote true

values of probabilities being estimated. (a) Adaptation of P̂fi . (b) Adaptation of P̂
m
i .

Fig. 4. Detail of adaption of P̂f
i
and P̂mi for typical realization of example in Section IIC1. Legend—solid: i = 1; dash-dot: i= 2;

dashed: i = 3. Note that time scales of parts (a) and (b) are different. (a) Adaptation of P̂fi . (b) Adaptation of P̂
m
i .

have considered a situation where the underlying a
priori probability P1 is changed in the middle of the
simulation. Fig. 6(a) shows how P̂1 adapts when P1 is
changed from 0:7 to 0:85 at the 20,000th decision.
Once again, the figures contain the average of the
estimates (over 1000 realizations), the average plus
and minus one standard deviation, and the behavior of
a typical realization. Notice that our estimate P̂1 can
still track the change in P1, but that the convergence
is rather slow. In addition, Fig. 7(a) indicates that
the estimates of Pfi are essentially unaffected by
the change in P1. (The corresponding plot for the
estimates of Pmi is similar, but has been omitted for
space reasons.) The slow tracking of P1 is due to
the “long memory” of the time averaging process
(15)—(17). As a result, the role of the old data fades
too slowly. To circumvent this shortcoming, we
may use an exponentially weighted time-averaging
process in which the contribution from the old data is

Fig. 5. Error rate of fusion center, on logarithmic scale, for
example in Section IIC1. Legend—solid: error rate over previous

200 decisions, averaged over 1000 realizations;
circle: minimum Pe.
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Fig. 6. Adaptation of P̂1 for example in Section IIC2. Legend is same as in Fig. 2, except circles denote true values of P1 before and
after step change at 20,000th decision. (a) Direct form. (b) Exp. weighted, ¸= 0:9995. (c) Slope detection.

Fig. 7. Adaptation of P̂f
i
(i = 1,2,3) for example in Section IIC2. Legend is same as Fig. 3. (a) Direct form. (b) Exp. weighted,

¸= 0:9995. (c) Slope detection.

Fig. 8. Adaptation of °̂¤ (i= 1,2,3) for example in Section IIC2. Legend is analogous to Fig. 6. (a) Direct form. (b) Exp. weighted,
¸= 0:9995. (c) Slope detection.

reduced exponentially (rather than just O(1=k1=2)). For
example, we might replace (15) by °̂ki = (1¡¸)uki +
¸°̂k¡1i , where ¸ is a positive constant just less than
one. Although this exponentially weighted scheme is
able to track changes more quickly than our original
algorithm, the variance of the estimates does not
decay to zero (see part (b) of Figs. 6—8). This results
in sub-optimal asymptotic error rate performance (see
Fig. 9).
An alternative to the exponentially weighted

scheme, and other window-based schemes, is to use
the “slope detection” procedure described below to

detect changes in the environment and then restart the
algorithm to take advantage of the fast convergence of
the direct form of the algorithm.
3) Fast Adaptation by Slope Detection: According

to (28) in Appendix A, °¤ is a function of all
unknown probabilities: P1, the P

m
i s and the P

f
i s.

Therefore, any change in one of these a priori
probabilities will affect the value of °¤ and its
estimated value °̂¤. For example, Fig. 8(a) shows
how °̂¤ changes when P1 is increased. Observe the
slow adaptation of the algorithm as P1 is changed.
This slow convergence is in contrast to the relatively
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Fig. 9. Error rate of the fusion center over previous 2000
decisions for example in Section IIC2, averaged over 997 out of
1000 realizations for which slope detector produced no false
alarms nor missed detections. Legend—dashed: direct form;

dash-dot: exponentially weighted, ¸= 0:9995; solid: direct form
with slope detection; circle: minimum Pe on each side of step

change in P1.

fast convergence in the initial transient phase of the
algorithm; see Fig. 8(a). This suggests that we can
increase the speed of adaptation by “restarting” the
algorithm when a change in °̂¤ is detected and using
the fast initial transient convergence to track the
changes in °¤. The “restart” entails reinitialization of
the stochastic time-averaging processes (15)—(17). The
slow adaptation produces a non-zero slope as shown
in Fig. 8(a). Therefore, the change of parameters
can be detected by observing the behavior of °̂¤ and
detecting a non-zero slope. To do so, we observe
°̂¤ over a (sliding) window of K decisions. If the
absolute value of ¢°̂¤ = °̂¤

k ¡ °̂¤k¡K+1 is greater than
a predetermined fraction ½, of the average value of °̂¤

k

over the window, then the slope over the window is
deemed to be significant, and a counter is incremented
or decremented according to the sign of ¢°̂¤ . When
the absolute value of the counter exceeds a given
threshold T, then we recognize a non-zero slope.
Since we expect °̂¤

k to change during the transient
phases of the algorithm, so the counter is disabled for
a predetermined “settling period” after a restart. The
details of the procedure are described below.

Slope Detection Method
Initial Step: Set counter to zero, and select
appropriate values for K, ½, T and the settling time.
Execute the following steps after each iteration of
the adaptive fusion algorithm once the number of
decisions since the last restart is greater than the
settling time.
Main Steps:
a) Compute (recursively) the average value of °̂¤

k

over the window; i.e., ¹°̂¤ = 1=K
Pk

m=k¡K+1 °̂¤
m.

b) Compute ¢°̂¤ = °̂¤
k ¡ °̂¤k¡K+1.

c) If j¢°̂¤ j> ½¹°̂¤ , set counter := counter+ sgn(¢°̂¤).
d) If the absolute value of counter is greater than T,
report a non-zero slope, restart the adaptive fusion
algorithm (i.e., reinitialize the time-averaging
processes (15)—(17)) and reset counter.

Part (c) of Figs. 6—8 and Fig. 9 illustrate the
performance of our algorithm equipped with this
slope detection method. The parameters of the slope
detector are K = 100, ½= 10¡5, T = 750 and the
settling time was 10,000 decisions. The improved
tracking of the scheme with the slope detector is clear
from these figures. Of course, the performance of the
slope-detection-based scheme is sensitive to the false
alarm and missed detection probabilities of the slope
detector. In our 1000 trials, there were 3 trials with a
single false alarm and no trials with missed detection.
These trials were removed before Fig. 9 and part (c)
of Figs. 6—8 were generated.

III. ADAPTIVE DECISION FUSION FOR N
DETECTOR CASE

Let us now consider the problem of adaptive
decision fusion for a distributed detection system with
N detectors (N > 3). In this case, we have 2N +1
unknown parameters to be estimated: P1, and P

f
i

and Pmi (i= 1, : : : ,N). In what follows, we propose a
method which is a generalized version of the adaptive
fusion algorithm developed for the three detector case
(Section II).

A. N-Detector Adaptive Fusion Method

Using (26) and (27) in Appendix A, we have

Pfj =

P1±ij ¡ °i°j
1¡P1

+ °jP
f
i

¡°i+P
f
i

(22)

and

Pmj = 1+

°i°j ¡ (1¡P1)±ij
P1

¡ °j(1¡Pmi )

1¡ °i¡Pmi
: (23)

Equations (22) and (23) show a relationship between
the probabilities Pfi , P

m
i of detector i and the

probabilities Pfj , P
m
j of detector j, for each pair of

i,j. Thus, if we have estimated the probabilities
Pfi , P

m
i for detector i, we can use (22) and (23) to

obtain estimates of probabilities Pfj , P
m
j for any other

detector j. This observation suggests that we can
arbitrarily select any set of three detectors, say LD1,
LD2, LD3, and use the adaptive fusion algorithm in
Section IIB on these three detectors. As a result, we
obtain estimates for P1, and P

f
i , P

m
i for these three

detectors. Next, we select one of the three detectors as
the “reference detector,” say LD1. Then by using (22)
and the estimated probability of false alarm of the
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Fig. 10. Adaptation of P̂1 for example of Section IIIB. Legend is same as Fig. 2. (a) Reference detector is detector 1. (b) Reference
detector is detector 5.

reference detector P̂f1 , we can calculate the estimates
for Pfj (j = 4, : : : ,N). Similarly, we can use (23) and
P̂m1 to calculate P̂mj (j = 4, : : : ,N). In this estimation
process, we need to estimate 2N +1 unconditional
joint probabilities: °i (i= 1, : : : ,N), ±1j (j = 2, : : : ,N),
±23 and °¤. The details of the N-detector adaptive
fusion method are summarized below.

N-Detector Adaptive Fusion Method
Initial Step: Select a set of three arbitary detectors,
say, LD1, LD2, and LD3. Let LD1 be the reference
detector. Select initial values: °̂0i (i= 1, : : : ,N), ±̂

0
1j

(j = 2, : : : ,N), ±̂023 and °̂
0
¤ .

Iterations:
a) Use the adaptive fusion algorithm described in
Section IIB to update P̂fi , P̂

m
i (i= 1,2,3) and P̂1.

b) Use time-averaging of local decisions ui to update
the values of °̂i (i= 4, : : : ,N) and ±̂1i (i= 4, : : : ,N);
c.f., (15) and (16).

c) Use (22) and (23) and the updated values of P̂fi ,
P̂mi (i = 1,2,3) and P̂1 (see Step (b)) to calculate
P̂fi and P̂mi (i= 4, : : : ,N). Note that the projection
operator [¢]+ in (18) will also be required here, but
that it can be simplified because its argument is
always real.

d) Use (2) and (3) to calculate estimates of the
optimal fusion weights, w0, wi, i= 1,2,3, : : : ,N.

We point out that an analysis similar to Theorem 2
can be performed on the above N-Detector adaptive
fusion method. However, we do not provide the
details here as they are largely the same as those
in Theorem 2. Essentially, we can prove that the
estimators provided by the above N-detector adaptive
fusion method are asymptotically unbiased, and that
the estimators converge to their final true values at
the rate O(1=k1=2) (measured in the rms error sense),
where k is the iteration number.

B. Simulation Results

We now present some computer simulations to
examine the effectiveness of the N-detector adaptive
fusion method. In these simulations, we considered a
distributed detection system with five local detectors
and set:

8
>>>><

>>>>:

P1 = 0:7, Pf1 = 0:05, Pf2 = 0:1,

Pf3 = 0:08, Pf4 = 0:03, Pf5 = 0:12,

Pm1 = 0:02, Pm2 = 0:05, Pm3 = 0:1,

Pm4 = 0:12, Pm5 = 0:2:

(24)

The initial values for °̂i, ±̂ij and °̂¤ are selected to be
0:5. We ran the N-detector adaptive fusion method for
the case where detector 1 was the reference detector,
and detectors 2 and 3 were the other detectors used
in part (a) of the algorithm. The results are shown in
Figs. 10(a) and 11(a). It can be seen that P̂1, and the
P̂fi s converge to their true values. (The convergence
plot of the P̂mi s is similar to that of the P̂

f
i s, but has

been omitted for space reasons.) In that scenario, the
reference detector was the most reliable detector. A
useful property of our algorithm is that the quality
of the estimates of P1 and the P̂

f
i s and P̂

m
i s depends

(only) on the accuracy of the estimates of the false
alarm and missed detection probabilities of the
reference detector. As a result, our algorithm is rather
insensitive to the error rate of the reference detector
itself. This property is illustrated in Figs. 10(b) and
11(b), where detector 5, the most error prone detector,
is chosen as the reference detector. (Detectors 2 and
3 are retained as the other detectors in part (a) of the
algorithm. The simulations which generated parts (a)
and (b) of Figs. 10 and 11 contained exactly the same
sequences of local decisions.) The solid and dotted
curves in Fig. 12 show how the error probability of
the fusion center Pe converges to its minimum value
when the system reaches to its steady state. Although
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Fig. 11. Adaptation of P̂fi (i = 1, : : : ,5) for example of Section IIIB. Legend is same as Fig. 3. (a) Reference detector is detector 1.
(b) Reference detector is detector 5.

Fig. 12. Error rate of fusion center over previous 4000 decisions,
for example in Section IV, averaged over 795 out of 1000

realizations for which direct form of Naim and Kam’s algorithm
did not fail. Legend—solid: our algorithm (ref. detect.= 1); dotted:
our algorithm (ref. detect.= 5); dash-dot, ¦: Naim and Kam [9];
dash-dot: our modification of Naim and Kam; dashed: Ansari et

al. [2], with counters initialized to 10 and ®= 0:3; circle:
minimum Pe.

both choices of the reference detector provide good
performance, the slightly faster convergence of P̂1,
and the P̂fi s and P̂

m
i s when the reference detector is

detector 1 (see, e.g., the dashed curves in Fig. 11)
results in a tangible improvement in the convergence
speed of the error rate of the fusion center.

IV. COMPARISON WITH EXISTING METHODS

In this section, we compare the performance
of our algorithm with those of Naim and Kam [9]
and Ansari et al. [2]. Like our algorithm, Naim and
Kam’s algorithm [9] estimates P1, P

f
i , and P

m
i and

then uses these values to calculate estimates of the
weights wi in (1). In contrast, Ansari’s algorithm [2]
estimates the weights directly. As mentioned in the
Introduction, our algorithm has the desirable property
that the estimates are asymptotically unbiased (see
Theorem 2), whereas the estimates generated by the
existing algorithms in [2, 9] are biased. This bias

arises because both existing algorithms are based on
the assumption that the decision of the fusion center is
correct. Naim and Kam [9] employ a bias estimation
and compensation technique which reduces the bias of
their method, but greatly increases its computational
cost. Ansari et al. [2] attempt to reduce the bias of
their algorithm by using a threshold test to determine
whether the fusion center’s decision is reliable in the
absence of a given detector’s local decision. Those
central decisions which are not reliable in the absence
of that detector’s local decision are not used to update
the estimates of that detector’s weight. Unfortunately,
removing these decisions may compromise the
convergence behavior of the algorithm, as shown
below. Furthermore, optimal selection of the threshold
for determining reliability remains an unresolved
problem.
To compare the performance of these algorithms

in practice, we simulated them in the scenario of
Section IIIB. Each algorithm was exposed to 1000
identical realizations of 20,000 local decisions from
each detector. The implementation of our algorithm
followed the method outlined in Section IIIA, with
the initial values of °̂i, ±̂ij and °̂¤ each being 0.5. This
leads to reliable performance after 20,000 decisions,
as shown in Section IIIB and Table I. However, our
direct implementation of Naim and Kam’s algorithm
(described in Appendix C) provided rather unreliable
performance after 20,000 decisions in this scenario,
especially when the bias estimation and compensation
step was used, as shown in Table I. Our direct
implementation of Ansari’s algorithm (described
in Appendix C) required some fine tuning of the
initialization in order to obtain reliable performance
(see Table I). The results in Table I are discussed in
more detail below, but first we address the unreliable
performance of the existing algorithms.
The convergence failure of the existing algorithms

appears to be due to the bias induced by the premise
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TABLE I
Reliability and Offsets for Various Algorithms in Example in Section IV

that the fusion center’s decision is correct. Any
detector whose (local) decision agrees with that
of the fusion center has its weight increased. In
Ansari’s algorithm the weight is increased directly,
whereas in Naim and Kam’s algorithm it is increased
indirectly through a reduction of P̂fi or P̂mi . As a
result, the fusion center’s next decision is more
heavily influenced by that detector (if that detector
makes the same local decision at the next instant).
Hence, it is more likely that this detector’s next local
decision will agree with the fusion center’s next
decision. Consequently, the weight of a detector (or
detectors) may grow without bound, leading to central
decisions which are influenced by only that detector
(or detectors). Most of the “failures” in Table I were
caused in this way. In a small number of realizations,
the algorithms are able to “rein in” this “explosive”
weight growth, but the resulting convergence times
can be very long (see, e.g., Fig. 14(b), below). A few
of the failures in Table I occurred when the algorithm
was recovering from initially explosive weight growth,
but was unable to completely recover in under 20,000
decisions. In our experiments, we found that for both
existing algorithms, the occasional explosive weight
growth was exacerbated by the rather large updating
steps that the algorithms take for the first few updates
after the initialization.
In order to obtain fair comparisons between our

algorithm and Naim and Kam’s algorithm [9], we
modified their algorithm by bounding the false alarm
and missed detection probability estimates away from

zero and one, and by adjusting the initialization (see
Appendix C for the details). As indicated in Table I,
this leads to a reliable algorithm. However, it does
require prior knowledge of the performance ranges of
the detectors. This knowledge was not made available
to our algorithm. To obtain a fair comparison with
Ansari’s algorithm [2], we have provided results
for several settings of the initial counter values in
that algorithm (see Appendix C for the details).
Increasing these initial values reduces the step size
of the algorithm and hence increases convergence
times, but as can bee seen from Table I, doing so
leads to more reliable performance. We have included
several settings of the reliability threshold for Ansari’s
algorithm in the table in order to give an indication
of the achievable performance. When the threshold
is small (i.e., ® is small) almost all of the central
decisions are considered reliable and as the threshold
is increased (i.e., ® is increased) more of the central
decisions are considered unreliable and hence are
excluded from the weight updating process. As one
might expect, this can improve performance, but if the
threshold is too large, then convergence problems can
arise. We point out that the setting of the reliability
threshold involves some prior knowledge of the
performance of the detectors. This knowledge was not
made available to our algorithm.
In addition to the reliability information, we have

also included the weight estimation offsets at the
20,000th decision in Table I. Since our algorithm is
asymptotically unbiased and the existing algorithms
are biased, one might expect our algorithm to produce
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Fig. 13. Adaptation of ŵ0 for 795 out of 1000 realizations for which direct form of Naim and Kam’s algorithm did not fail in
example in Section IV. Legend is analogous to Fig. 2. (a) Our algorithm. (b) Naim and Kam [9]. (c) Modified Naim and Kam.

(d) Ansari et al. [2].

substantially lower offsets, and this is indeed the case.
It is interesting to note that Naim and Kam’s bias
estimation and compensation step reduces the weight
offset when ui = 1 at the expense of increasing the
weight offsets for ui = 0. This is probably because
in our scenario the probability that ui = 1 is greater
than 1=2; i.e., P1(1¡Pmi ) + (1¡P1)P

f
i > 1=2. Hence

the weights for ui = 1 are used more often than those
for ui = 0. Similarly, Ansari’s reliability threshold
trades an increase in the weight offsets for ui = 0 for
a reduction in the offsets for ui = 1.
The error rate performance of the fusion center

for five of the methods from Table I is provided in
Fig. 12. For our method we have plotted curves for
both choices of the reference detector in Table I.
For Naim and Kam’s algorithm we have plotted
curves for the direct implementation and the modified
version with bias estimation and compensation, and
for Ansari’s algorithm we have initialized the counters
to 10 and set ®= 0:3. These settings provided the
best performance at convergence of the instances
of Ansari’s algorithm in Table I. Note, however,
that the bias in Ansari’s algorithm is evident from
its slightly higher error rate at convergence. From
the figure, it can also be seen that our algorithm
(with detector 1 as the reference detector) provides

better performance than the direct implementation
of the existing algorithms and is competitive with
our modified version of Naim and Kam’s algorithm.
(Recall that our modified version of Naim and
Kam’s algorithm has information regarding the
range of sensor performance, whereas our algorithm
does not; see Appendix C for further details.) Our
algorithm achieves this performance reliably and at
a computational cost which is far lower than that of
Naim and Kam’s algorithm (with bias estimation
and compensation) and is competitive with Ansari’s
algorithm.
To further compare the performance of the

algorithms, we have plotted the convergence behavior
of the estimates of the weights in Figs. 13—15.
The methods considered are our method (with the
first detector as the reference detector), the direct
implementation and our modified version of Naim and
Kam’s algorithm, and Ansari’s method with counters
initialized to 10 and ®= 0:3. The plots have been
generated from the 795 out of 1000 realizations for
which the direct form of Naim and Kam’s algorithm
did not fail. It is clear from Fig. 13 and the first row
of Table I that our algorithm and both versions of
Naim and Kam’s algorithm obtain good estimates
of w0 after 20,000 decisions. The typical realization
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Fig. 14. Adaptation of ŵi when ui = 1 for 795 out of 1000 realizations for which direct form of Naim and Kam’s algorithm did not
fail in the example in Section IV. Legend is analogous to Fig. 3. (a) Our algorithm. (b) Naim and Kam [9]. (c) Modified Naim and

Kam. (d) Ansari et al. [2].

of Ansari’s algorithm in Fig. 13(d) also obtains a
good estimate of w0 after 20,000th decisions, but
on average, the bias in Ansari’s method is visible
at the scale of Fig. 13. The bias of the direct and
modified versions of Naim and Kam’s algorithm and
Ansari’s algorithm is apparent from the estimates of
wi for ui = 1 and ui = 0 plotted in Figs. 14 and 15,
respectively. In contrast, the offsets for our method
at the 20,000th decision are negligible at the scale
of the figures. Parts (b) and (c) of Figs. 14 and 15
also highlight the improved performance of our
modified version of Naim and Kam’s algorithm. The
apparent slow decay of the standard deviation of
three weight estimates (two in Fig. 14(b) and one in
Fig. 15(b)) for the direct implementation of Naim and
Kam’s algorithm is actually due to a small number
of realizations (less than 10) in which a weight
initially “exploded” but was eventually “reined in.”
(In another 205 realizations the direct implementation
of Naim and Kam’s algorithm was unable to rein
in an exploding weight by the 20,000th decision,
leading to the failure designation.) In contrast, weight
explosion is explicitly contained in our modified
version of Naim and Kam’s algorithm. This helps to
eliminate the failures (see Table I) and provides faster

convergence of the weights (see part (c) of Figs. 14
and 15).

V. CONCLUDING REMARKS

In real world fusion applications, the probability
of the hypothesis and the performance of local
detectors may be unknown or variable. Under such
circumstances, we need an adaptive fusion center in
order to obtain optimal performance. In this paper,
we have proposed a recursive algorithm based on the
time-averaging of local decisions and the use of these
time averages to estimate the error probabilities of the
local detectors and the a priori probabilities. The heart
of this algorithm is an explicit analytic solution of the
problem in the three-detector case. The algorithm
is suitable for a time-varying environment. The
estimators provided by our adaptive fusion algorithms
have been shown to be asymptotically unbiased, and
the rate at which the estimators converge to their
true values has been shown to be O(1=k1=2) (in the
rms error sense), where k is the iteration number.
Furthermore, our simulation studies suggest that our
algorithm is substantially more reliable than the two
existing (asymptotically biased) algorithms [2, 9] and
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Fig. 15. Adaptation of ŵi when ui = 0 for 795 out of 1000 realizations for which direct form of Naim and Kam’s algorithm did not
fail in the example in Section IV. Legend is analogous to Fig. 3. (a) Our algorithm. (b) Naim and Kam [9]. (c) Modified Naim and

Kam. (d) Ansari et al. [2].

performs at least as well as those methods when they
work.
In closing, we mention a few possible extensions

of our work.
1) Adaptive Decision Fusion for Neyman—Pearson

Distributed Detection: In this paper we used an
optimal fusion rule based on the minimum probability
of error. In some applications (e.g., radar) the goal
may be to minimize the probability of missed
detection induced by the final decision-maker, subject
to the constraint that the final false alarm rate does
not exceed a given constant value. This approach is
called the Neyman—Pearson approach; see [11, 12] for
a discussion on the optimal decision fusion rule for
the Neyman—Pearson criterion. It will be interesting to
see if our adaptive fusion rule can be modified to suit
the Neyman—Pearson criterion.
2) Adaptive Multilevel Decision Fusion: In this

paper, we considered binary decisions. It will be
interesting to see whether one can extend the results
to the case of multilevel decisions. The concept of
multilevel decision fusion is considered in [8].
3) Adaptive Detection at Local Detectors: Here

we assumed the local decision rules are fixed. Is it
possible to use the error probability estimates obtained

in this work to adjust detection thresholds at each
local detector? A related question was considered in
[9].

APPENDIX A: PROOF OF THEOREM 1

First of all, we notice that by definition

8
><

>:

°i = Pr(ui = 1),

±ij = Pr(ui = 1,uj = 1),

°¤ = Pr(u1 = 1,u2 = 1,u3 = 1),

i,j = 1,2,3, i 6= j: (25)

Using these definitions we can simplify (8)
algebraically to obtain

°i = (1¡Pmi )P1 +P
f
i (1¡P1), i= 1,2,3 (26)

±ij = (1¡Pmi )(1¡Pmj )P1 +P
f
i P

f
j (1¡P1),

i,j = 1,2,3, j 6= i (27)

°¤ = (1¡Pm1 )(1¡Pm2 )(1¡Pm3 )P1 +P
f
1 P

f
2 P

f
3 (1¡P1),

(28)
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To solve the above nonlinear equations, we first
use (26) and (27) to compute

±12¡ °1°2

= (1¡Pm1 )(1¡P
m
2 )P1 +P

f
1 P

f
2 (1¡P1)

¡ ((1¡Pm1 )P1 +P
f
1 (1¡P1))((1¡P

m
2 )P1 +P

f
2 (1¡P1))

= (1¡Pm1 )(1¡P
m
2 )P1 +P

f
1 P

f
2 (1¡P1)

¡ (1¡Pm1 )(1¡P
m
2 )P

2
1

¡Pf1 P
f
2 (1¡P1)

2¡Pf1 (1¡P
m
2 )P1(1¡P1)

¡ (1¡Pm1 )P
f
2 P1(1¡P1)

= P1(1¡P1)((1¡P
m
1 )(1¡P

m
2 ) +P

f
1 P

f
2 ¡P

f
1 (1¡P

m
2 )

¡ (1¡Pm1 )P
f
2 )

= P1(1¡P1)(1¡P
m
1 ¡P

f
1 )(1¡P

m
2 ¡P

f
2 ): (29)

Similarly, we have

(
±23¡ °2°3 = P1(1¡P1)(1¡Pm2 ¡P

f
2 )(1¡Pm3 ¡P

f
3 )

±13¡ °1°3 = P1(1¡P1)(1¡Pm1 ¡P
f
1 )(1¡Pm3 ¡P

f
3 ):

(30)
By assumption (9), we have

±12¡ °1°2 > 0, ±23¡ °2°3 > 0, ±13¡ °1°3 > 0:

Let us define

a1 =

s
(±12¡ °1°2)(±13¡ °1°3)

±23¡ °2°3

a2 =

s
(±12¡ °1°2)(±23¡ °2°3)

±13¡ °1°3

a3 =

s
(±13¡ °1°3)(±23¡ °2°3)

±12¡ °1°2
:

(31)

Then, the preceding relations (29)—(30) easily imply

ai =
p
P1(1¡P1)(1¡P

m
i ¡P

f
i ), i= 1,2,3:

Substituting this into (26) yields

Pfi = °i¡ ai

s
P1

1¡P1
, Pmi = 1¡ °i¡ ai

s
1¡P1
P1

,

i= 1,2,3: (32)

Thus, if P1 is known, then all the remaining
parameters Pfi , P

m
i (i= 1,2,3) can be readily

determined using (32).

It remains to determine P1. To this end, we
substitute (32) back into (28) to obtain

°¤ =
Y

i

Ã
°i+ ai

s
1¡Pi
P1

ai

!
P1

+
Y

i

Ã
°i¡ ai

s
Pi

1¡P1

!
(1¡P1)

= P1

Ã
°1°2°3 +

µ
1¡P1
P1

¶3=2
a1a2a3

+b

s
1¡P1
P1

+ c
1¡P1
P1

!

+(1¡P1)
Ã
°1°2°3¡

µ
P1

1¡P1

¶3=2
a1a2a3

¡b

s
P1

1¡P1
+ c

P1
1¡P1

!

= °1°2°3 + c

+ a1a2a3

Ã
(1¡P1)

s
1¡P1
P1

¡P1

s
P1

1¡P1

!

where

b := °1°2a3 + °1°3a2 + °2°3a1,

c := °1a2a3 + °2a1a3 + °3a1a2:

Therefore, if we define

X =
°¤ ¡ °1°2°3¡ c

a1a2a3

=
(°¤ ¡ °1°2°3)¡ (°1a2a3 + °2a1a3 + °3a1a2)p

(±12¡ °1°2)(±13¡ °1°3)(±23¡ °2°3)

(33)
then it follows from the above relation

(1¡P1)

s
1¡P1
P1

¡P1

s
P1

1¡P1
= X:

Multiplying both sides by
p
P1(1¡P1) and simplifying

yields
1¡ 2P1 = X

p
P1(1¡P1):

Consequently, X has an opposite sign from P1¡ 1
2 .

Squaring both sides of the above equality and after
some algebraic manipulation, we obtain

µ
P1¡

1
2

¶2
=
P1(1¡P1)

4
X2 =

X2

4

Ã
1
4
¡
µ
P1¡

1
2

¶2!
:

It follows that
µ
P1¡

1
2

¶2
=

X2

4(X2 +4)
:
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Since P1¡ 1
2 has an opposite sign from X, the above

equality implies a unique solution for P1 and P0:

P1 = 0:5¡
X

2
p
X2 +4

, P0 = 1¡P1 (34)

where X is defined by (33). This completes the
derivation for P1. The remaining six unknown
probabilities Pfi , P

m
i (i= 1,2,3) can also be calculated

explicitly using (32). This completes the proof of
Theorem 1.

APPENDIX B: PROOF OF THEOREM 2

Let °̂ki , ±̂
k
ij and °̂¤ be given by (15)—(17). Also, let

âi, X̂, P̂1, P̂
f
i and P̂mi (i= 1,2,3) be defined by the

adaptive fusion algorithm. (Again, for simplicity, we
have removed the index k from these notations.)
By the assumption (19) and (29)—(30), there exists

some ¹ > 0 such that

²· P1 · 1¡ ², ±ij ¡ °i°j ¸ ¹,

for 1· i,j · 3, i 6= j: (35)

By (10)—(13), P1 is a continuous function of ±ij , °i,
and °¤. Hence, there exists º > 0 such that

²

2
· P̄1 · 1¡

²

2
, ±̄ij ¡ °̄i°̄j ¸ ¹=2,

for 1· i,j · 3, i 6= j (36)

whenever

j°̄i¡ °ij · º, j°̄¤ ¡ °¤j · º, j±̄ij ¡ ±ij j · º (37)

where P̄1 denotes value of P1 calculated with (10)—(13)
using ±̄ij , °̄i, and °̄¤.
Since the local observations f(uk1,uk2,uk3)g are

ergodic, we know that

lim
k!1

°̂ki = °i, lim
k!1

°̂k¤ = °¤, lim
k!1

±̂kij = ±ij ,

i 6= j, 1· i,j · 3 (38)

with probability 1. In fact, if we let

Fk=the event that fj°̂
k
i ¡ °ij · º, j°̂

k
¤ ¡ °¤j · º, j±̂

k
ij ¡ ±ij j · ºg

and let Fck denote its complement, then there exists
some ® 2 (0,1) and some ½ > 0 such that

Pr(Fck )· ½®k, k ¸ 1:

Let Gk̄ =
T1
k̄
Fk. Clearly, there holds

Pr(Gc
k̄
) = Pr

0

@
1[

k=k̄

Fck

1

A·
1X

k=k̄

Pr(Fck )·
½®k̄

1¡®:

(39)

Moreover, on the set G
k̄
, we have from (36)

²

2
· P̂1 · 1¡

²

2
, ±̂kij ¡ °̂ki °̂kj ¸ ¹=2,

for 1· i,j · 3, i 6= j and for all k ¸ k̄:

(40)

This shows that the denominators in the definitions
of âi, X̂, P̂1, P̂

f
i and P̂mi (i= 1,2,3) (cf. (10), (12), and

(18)) are all bounded away from zero over G
k̄
. Also,

notice that the projection operator [¢]+ is a Lipschitz
continuous mapping. This, together with the property
that the denominators are bounded away from zero,
imply that âi, X̂, P̂1, P̂

f
i and P̂mi (i= 1,2,3) are all

Lipschitz continuous functions of °̂ki , °̂
k
¤ and ±̂

k
ij over

the set Gk̄. Thus, there exists some constant L > 0
(independent of k, but possibly dependent on k̄) such
that

8
>>>>>>><

>>>>>>>:

jP̂1¡P1j · L(j°̂ki ¡ °ij+ j°̂¤k ¡ °̂¤j+
X

i 6=j

j±̂kij ¡ ±ij j),

jP̂fi ¡P
f
i j · L(j°̂ki ¡ °ij+ j°̂¤k ¡ °̂¤j+

X

i 6=j

j±̂kij ¡ ±ij j),

jP̂fi ¡P
f
i j · L(j°̂ki ¡ °ij+ j°̂¤k ¡ °̂¤j+

X

i 6=j

j±̂kij ¡ ±ij j),

i= 1,2,3, 8 k ¸ k̄ (41)

holds over the set G
k̄
. Letting k!1 in the above

inequalities and using (38) shows that

lim
k!1

P̂1 = P1, lim
k!1

P̂fi = P
f
i , lim

k!1
P̂mi = P

m
i ,

i= 1,2,3 (42)

over the set Gk̄. Since (42) holds for all large k̄, it
follows that (42) holds on G1 := limk̄!1Gk̄. Since
lim

k̄!1Pr(G
c
k̄
) = 0 (cf. (39)), it follows Pr(G1) = 1. In

other words, (42) holds with probability 1, as desired.
Since P̂1, P̂

f
i and P̂mi (i= 1,2,3) are bounded

(thanks to the projection operator [¢]+ in (18)), the
almost sure convergence as given in (42) implies L1

convergence. In other words, we have the asymptotic
unbiasedness of the estimators:

lim
k!1

E(P̂1) = P1, lim
k!1

E(P̂fi ) = P
f
i ,

lim
k!1

E(P̂mi ) = P
m
i , i= 1,2,3:

It remains to establish the rate of convergence. It is
well known that

Ej°̂ki ¡ °ij
2 =O(1=k), Ej°̂k¤ ¡ °¤j

2 =O(1=k),

Ej±̂kij ¡ ±ij j2 =O(1=k), i 6= j, 1· i,j · 3:
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Fixing some large k̄ and combining the above
estimates with (41) yields

E[jP̂1¡P1j
2 jGk̄] P(Gk̄)

· L0
Ã
Ej°̂ki ¡ °ij

2 +Ej°̂¤
k ¡ °̂¤j

2 +
X

i 6=j

Ej±̂kij ¡ ±ij j
2

!

=O(1=k)

for some constant L0 > 0 (independent of k, but may
depend on k̄). Now we only need to note that

EjP̂1¡P1j2 = E[jP̂1¡P1j2 jGk̄]P(Gk̄)

+E[jP̂1¡P1j2 jGck̄] P(G
c
k̄
)

·O(1=k)+ ½®k

1¡®
where the last step follows (39) and the fact that
jP̂1¡P1j is bounded by 1 (again thanks to the
projection operator [¢]+ in (18)). The above inequality
shows EjP̂1¡P1j2 =O(1=k) as desired. The other two
inequalities

EjP̂fi ¡P
f
i j
2 =O(1=k), EjP̂mi ¡P

m
i j

2 =O(1=k),

i= 1,2,3

can be established in a similar fashion. This completes
the proof of the theorem.

APPENDIX C: IMPLEMENTATION AND
MODIFICATIONS OF THE EXISTING ALGORITHMS

Naim and Kam’s Algorithm [9]
Our direct implementation of Naim and Kam’s

algorithm followed [9, Table 2], with the correction
of a couple of minor typographical errors and the
addition of the projection operator [¢]+ in (18) to
ensure that the estimated probabilities remain in
[0,1]. (The estimated probabilities in Naim and
Kam’s published algorithm are always real, but can
stray outside [0,1].) The algorithm was initialized
at instant k = 1 and the initial estimate of P1 was
chosen to be 0.5. Given our prior knowledge of
the true detector performance, we chose the initial
estimates of Pfi and Pmi to be 0:1. (In the different
scenario in [9, Example 1], the initial estimates of
Pfi and Pmi were chosen to be 0.05, but that choice
lead to worse performance in our scenario.) As can
be seen from Table I, the performance of this direct
implementation was rather unreliable, and hence we
sought modifications of the algorithm to improve its
performance. The main modification of Naim and
Kam’s algorithm was to exploit some prior knowledge
of the performance of the detectors to choose an
² and constrain the estimates P̂fi and P̂mi so that
they lie in [²,1¡ ²]. This bounds the magnitudes of
the corresponding weights by log((1¡ ²)=²). If ² is

appropriately chosen, this bound not only contains the
weight explosion problem described in Section IV,
but may also reduce the convergence time. (For our
scenario we chose ²= 10¡3.) The projection operator
[¢]+ used in our algorithm [see (18)] could also be
modified in a similar way to improve the convergence
speed. However, since our algorithm is not based
on the assumption that the fusion center makes the
correct decision, we obtain reliable performance by
simply bounding the estimated probabilities to lie in
[0,1]. The initialization of Naim and Kam’s algorithm
was also modified to improve the algorithm’s
reliability. In the modified implementation we set
the initial estimates of Pfi and Pmi to be quite high
in order to ensure that the detectors’ initial weights
were quite small. We found that initial estimates of
0.35 performed the most reliably. In addition, we
initialized Naim and Kam’s algorithm at instant k = 9
rather than k = 1 in order to reduce the step size of
the probability estimates (particularly in the early
stages of the algorithm). Although this results in
slower convergence of the probability estimates, it
does lead to a more reliable algorithm (see Table I).
Slow convergence of this type is what we were trying
to avoid in the modified versions of our algorithm
discussed in Section IIC2, but for Naim and Kam’s
algorithm it provides a substantial improvement in
reliability.

Ansari et al.’s Algorithm [2]
Our direct implementation of Ansari’s algorithm

followed [2, Table 1], where in the second row of that
table it is understood that there are two weights for
each sensor; one for when ui = 1 and one for when
ui = 0. Our initial estimates for the weights wi were
chosen as log((1¡ 0:1)=0:1), which corresponds to the
initial estimates of Pfi and Pmi being 0.1, and hence
appears to be a natural choice. Our initial estimate
of w0 was chosen to be 0, which corresponds to
the initial estimate of P1 being 0.5. The reliability
threshold of Ansari’s algorithm was set using the
procedure described in [2, Sect. 4.2]. The absolute
value of the threshold was set to be ®ymax, where
ymax is a function of the detector performance, and
® is a coefficient of our choosing. When ®= 0 all
decisions are deemed reliable, and as ® is increased
the reliability threshold is raised. The calculation of
ymax requires prior knowledge of the performance
of the detectors. We have used this knowledge in
our simulations, but in practice accurate knowledge
of the performance of the detectors would not be
available. (A threshold can still be chosen in that
case, but determining an appropriate choice may
be more difficult.) The final initialization that is
required in Ansari’s algorithm is the initial values of
the counters m, m1,i and m0,i in [2, Sect. 3]. These
counters count the number of times u0 = 1, the
number of times ui = 1 and u0 = 1, and the number
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of times ui = 0 and u0 = 0, respectively [see (1)—(3)
for definitions]. The step sizes of the algorithm are
inversely proportional to these counters, and hence
their initial values must be chosen as a compromise
between large values which result in small step
sizes and hence long convergence times, and small
values which may reduce the convergence time, but
expose the algorithm to the weight explosion problem
discussed in Section IV. Appropriate initial values
for these counters were not suggested by Ansari et al.
[2], but our experiments have suggested that an initial
value of 10 for each of these counters provides good
performance in the scenario we are considering (see
Table I). As a final observation, we point out that
we could modify Ansari’s algorithm by choosing
an ² and bounding the magnitude of the weights by
log((1¡ ²)=²). However, we found that when the initial
values of the counters were set to 10 and ²= 10¡3,
the bound was only active for large ®. (That being
said, it did remove the three failures from the right
hand column of Table I.) When the counters were
initialized to 5, enforcing the bound reduced the
number of failures by 30—50%. For simplicity, we
have not implemented this bound in the simulations
reported in Section IV.
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