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Block Bialternate Sum and Associated Stability
Formulae*
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The block bialternate sum is defined, analysed and used to solve some

maximal stability problems.
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Abstract—A new block bialternate sum of a partitioned
square matrix with itself is defined and some basic properties
established. It has similar properties to the bialternate sum,
but it preserves the block structure of the summand. It is
used in place of the block Kronecker sum and the block
Lyapunov sum to solve maximal stability problems of stable
systems under low-gain integral control and of singularly
perturbed systems. It is also used to find the ‘critical gains’
for a first-order controller with a scalar plant from which all
stabilizing first-order controllers can be constructed. In each
stability problem the internal dimensions of the resulting
closed formulae are lower than those currently available.

1. INTRODUCTION

For stability analysis of systems in state space,
the Kronecker sum of the system dynamics
matrix with itself is a useful tool (see e.g. Fuller,
1968; Fu and Barmish, 1988; Genesio and Tesi,
1988; Saydy et al., 1990). A key property is that
the eigenvalues of the Kronecker sum of an
n X n matrix with itself are the n* pair-sums of
the eigenvalues of the matrix. This property
facilitates the identification of jw-axis eigen-
values of dynamics matrices parameterized by
real parameters. However, the Kronecker sum
can be rather large and unwieldy. It has
dimension n*Xn? and it destroys any block
structure that the dynamics matrix may possess.
As such, it is not particularly suited to the
stability analysis of systems with a structured
dynamics matrix. Examples of control problems
in which the structure of the dynamics matrix
can be used to advantage include calculation of
the ‘radius of integral controllability’ of a system
that is integral-controllable in the sense of
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Morari (1985), calculation of the maximal
stability range of a singularly perturbed system
and calculation of the ‘critical gains’ (Mustafa,
1994c) for the construction of all stabilizing
first-order controllers.

Fuller (1968) showed that there are matrices
of reduced dimension 3n(n + 1) X in(n + 1) (the
Lyapunov sum) and 3n(n—1) X jn(n—1) (the
bialternate sum) that can be used in place of the
Kronecker sum in many useful stability tests.
The Lyapunov sum of a matrix with itself has
only one copy of each pair-sum of eigenvalues of
the matrix, and the bialternate sum of a matrix
with itself has one copy of each pair-sum of
eigenvalues, excluding those n sums of an
eigenvalue with itself. However, these matrices
also destroy any block structure that the matrix
may possess.

Hyland and Collins (1989) and Mustafa (1995)
showed how to modify the Kronecker and
Lyapunov sums respectively so that they retain
the block structure of their summands without
losing their useful eigenvalue properties. Either
of the resulting block-structured matrices can be
used to find closed formulae that solve the
above-mentioned structured stability problems
(see Mustafa, 1994a—c, 1995). The purpose of the
present paper is to define a block bialternate
sum and to show that it can be used to reduce
the internal dimensions of the closed formulae of
Mustafa (1994a-c, 1995) for the stability prob-
lems described above.

The development closely follows that of the
block Lyapunov sum in Mustafa (1995). In
Section 2 we give a brief summary of the
Kronecker and block Kronecker sums and some
of the work in Chapters 3 and 6 of Magnus
(1988). We also review an algebraic realization
of the empty matrix concept that reduces the
complexity of the exposition. In Section 3 we
define the block bialternate sum using the work
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in Chapter 6 of Magnus (1988), paralleling the
definition of the block Lyapunov sum in Mustafa
(1995), and give some of its properties. In
Section 4 we use the block bialternate sum to
provide closed formulae of reduced complexity
for the three structured stability problems
discussed above.

2. PRELIMINARIES

Let R™™" denote the set of all real m Xn
matrices. For a matrix X € R™*" let XT denote
the transpose of X and let x;(1<i=<m,1<j=<
n) denote the (i, j)th scalar element of X. Let I,
denote the n Xn identity matrix. Let ni:=
(my,my,...,m;) and A:=(ny,n, ...,n) be
vectors of non-negative integers and let R™*”
denote the set of all real m X n matrices with
block structure (m; i), that is, all real matrices of
the form

Xy ... Xy
xX=\|: R
X, X,
where X, eR™ and 3I%_,m;=m and

2i-in;=n. If m = n then we say that the matrix
has block structure 7. Let S,, denote the set of all
skew-symmetric X € R”*" and let S; denote the
set of all skew-symmetric X € R**" That is,
define

S,i={X:X=-XTeR™Y,
Sai={X = X" e R™}.

2.1. Kronecker and block Kronecker sum

For a matrix X e R™*", let vec (X) denote the
vector formed by stacking the columns of X, and
for a matrix X e R™*" let vecb (X) denote the
vector formed by stacking the columns of X in
the block-structured manner suggested by
Hyland and Collins (1989). That is,

[ X117 - vec (Xp) 7]
X21 vec (X5;)
X1 vec (X))
X12 vec (X ;)

vec (X):= : , vecb(X):= )

Sy X2 ) vec (X,2)
Xin vec (Xy,)

B | vec (X,,) |

(1

Let ® and © denote the Kronecker product
and the Kronecker sum respectively (for a
survey, see Brewer, 1978) and let @ denote the
block Kronecker sum as defined by Hyland and
Collins (1989). The basic properties of the
Kronecker product, the Kronecker sum and the
block Kronecker sum (as given in Brewer, 1978;
Hyland and Collins, 1989) will be used freely,
but we draw attention to the following fact: if
A e R then

vec (AX + XA")
=(ADA)vec(X) for all X e R™", (2)
and if A € R™" then
vecb (AX + XAT)
= (ABA)vech (X) for all X e R™".

Furthermore, it is immediate from (1) that
vecb (X)) is just a rearrangement of elements of
vec (X). Therefore there exists an n®Xn?
permutation matrix P; such that

vec (X) = P;vecb (X) for all X e R™"
Thus, for any A € R,
vech (AX + XA") = PLvec (AX + XA")
= PHA® A) vec (X)
=PHABAP;vecb (X)) (3)

for all X e R™". Since X in (3) is an arbitrary
element of R™™", it follows that

ABA =PYAD AP,

Therefore ADA is similar to AD A, and hence
the eigenvalues of A®A are the same as the
eigenvalues of A@ A. They are the n* numbers
A+ A (1=i,j=n), where A; (1=si=<n) are the
eigenvalues of A.

Following the nomenclature of Chapter 3 of
Magnus (1988), we define the commutation
matrix K,,, to be the mn X mn matrix such that

vec (XT)=K,,, vec (X) for all X e R™".
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We note that K,,, = KJ,, =
p Xmand R is g X n then

K. and that if L is

L®R=K,,(RRL)K,,.

Brewer (1978) called the commutation matrix
the permutation matrix and denoted it by U, « ..

2.2. Empty matrices

The development of the block bialternate sum
is simplified by the use of an algebraic realization
of the concept of an empty matrix that is
compatible with the usual matrix addition and
multiplication operations. Such a realization has
been developed independently by several re-
searchers (see e.g. de Boor, 1990; Nett and
Haddad, 1993; and references therein). We shall
denote an empty matrix by [ ],x., where it is
implicit that at least one of the dimensions p or
m is zero. For a scalar ¢ and an m X p matrix
X,nxp» the following operations are defined (Nett
and Haddad, 1993):

[ Toxm=[ Joxm ¢ =[ lpxm

[ ]PXm + [ ]p><m = [ ]pva

[ ]Oxm : mep:[ ]()Xp-

XmXp : [ ]pXU: [ ]mxo,
[ ]pxo'l ]ﬂxm:O[JXm}

and hence fy=[ Joxo and ([ Joxo)™" ={ Joxo-
Furthermore, following de Boor (1990), we
define det ([ Joxo):=1. For a matrix X e R™*", if
m; =0 for some i (1=i=gq) then the ith block
row of X is of zero height. Similarly, if n; =0 for
some [ (1 =<i=r) then the ith block column is of
zero width.

2.3. Bialternate sum

Fuller (1968) introduced a matrix developed
from Stephanos’ bialternate product that he
called the bialternate sum of a matrix with itself.
The matrix was defined by labelling its scalar
elements but without specifying the arrangement
of the scalar elements to form the matrix. In this
section we review Chapter 6 of Magnus (1988)
and show that one of the matrices developed
there is a specific arrangement of Fuller’s
elements. The development of the block
bialternate sum in Section 3 will be based on the
matrix of Magnus (1988), using some of the
techniques of Mustafa (1995).

For any skew-symmetric matrix X € S,,, only

in(n —1) of the n® elements are independent
(say those below the diagonal). Define ¥ (X) to
be the in(n —1)-element vector formed by
stacking those parts of the columns of X that are
below the main diagonal. That is,

(’-XZI

X3
Xn1

X32

if n>1, 4)

Xnn—1
- =

[Joxi ifn=1

A comparison with (1) shows that vec(X)
consists of the elements of +V(X) and some
additional zeros. Thus, following Chapter 6 of
Magnus (1988), there exists a unique full-
column-rank n?X 3n(n — 1) matrix of 0Os and
+1s, denoted by D,, satisfying

vec(X)=D,v(X) forall XeS, (5

The matrix D, will be called the duplication
matrix for skew-symmetry or the skew duplica-
tion matrix for short. Theorem 6.1 of Magnus
(1988) gives a simple formula by which D, can
be calculated (see (A.S5) in the Appendix of the
present paper). However, for the moment it is
sufficient to note that since D, is of full column
rank, it has a left inverse D, =(DXD,)'D},
and

F(X)=D;vec(X) for all X €S,.
In fact, Theorem 6.2 of Magnus (1988) shows
that D} =iDT.
Given a matrix A e R"*", AX + XAT € S, for
all X € S,. Hence
Y(AX + XA =D} vec (AX + XA")
=D} (ABA)vec(X)

=DA®A)D,V(X)
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for all X € S,,. This motivates the definition of
the $n(n — 1) X tn(n — 1) matrix

A®A=D}(ADA)D,,
so that, in a similar way to (2),
T(AX + XA =(A9 A) ¥ (X).

Note that in the case where n=1, A®A=
[ Joxo

It is shown in Theorem 6.14 of Magnus (1988)
that the eigenvalues of A® A are the 3n(n — 1)
numbers A, + A; (1<j<i=n), where A, (1si=
n) are the eigenvalues of A. Hence A ¢ A has the
same eigenvalues as Fuller’s (1968) bialternate
sum. In fact, the connection with Fuller’s
bialternate sum is much stronger, as shown in
the following fact.
Fact 1. The matrix A¢A is a particular
arrangement of the labelled elements in Fuller’s
definition of the bialternate sum.
Proof. See the Appendix. O

In the light of Fact 1 we shall call the matrix
A @ A the bialternate sum of A (with itself).
It is useful to define the n? X n” matrix

N, =Y1,.—K,,).

For future reference, the following lemma
collects some useful properties of K,,, D,, N,
and their relationships. They are taken or easily
follow from Theorems 3.13, 6.2, 6.3, 6.11, 6.14
and 6.16 of Magnus (1988). (See Lemma 2.1 of
Mustafa (1995) for a similar collection of results
for the duplication matrix.)

Lemma 1. Given the definitions of D,, K., and
N, above,

(1) D+D = Ln(n- 1)/2»

If A and B are n X n matrices then

(v) (AeA)”!
nonsingular;
(vi) 2D (A®B)D, *ZD,,(B®A)D
=D}(A®B+B®A)D,;
(vii) (A—-B)®(A—-B)=
A®A-D;(,®B)D,:
(viii) (kA)®(kA)=k(A®A) for k e R.

=D(ABA)Y'D, if ABA is

(A®A) - (BeB)=

If M is an m X n matrix then

(ix) D (MOM)=D;(MSM)N,.

3. BLOCK BIALTERNATE SUM

3.1. Definition

Consider X € S; a skew-symmetric matrix
with block structure 7. Define ¥b (X) to be the
following n(n — 1) element vector with 37(r + 1)
block-rows:

E V(X)) ]
vec (X 21)
vec (Xrl)
V(X2)
vece (X32)

b (X):= vec ('sz) , (6)

¥ (X—1rm1)
vec (Xr,rfl)

c’ (XI'V)

which is a block structured version of ¥(X).
Recall from Section 2.3 that if n,=1 then
V(X;)=[ Jox1, s0 some of the block-rows in
¥b (X)) may be of zero height.

By comparison with (1) and recalling (5), it
can be seen that vecb(X) consists of the
elements of +¥b (X) and some additional zeros.
Hence there is a full-column-rank n* X jn(n — 1)
matrix of Os and +1s, denoted by Dj;, with r*
block rows and ir(r + 1) block-columns (some of
which may be of zero width) such that

vecb (X)=D; % (X) for all X eSz (7)
We shall call D; the block skew duplication
matrix. Details of how to calculate Dj; will be
given in Section 3.2, but for the moment it
suffices to note that since Dj; is of full column
rank, it has a left inverse D} =(DID;) DL,
and

b (X) =D} vecb (X) for all X € S5
Given a matrix A € R™*",

b (AX + XAT) =D vecb (AX + XA")

D (ABA) vecb (X)

DF(ABA)D; b (X)
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for all X € S; This motivates the definition of
the 3n(n —1) X 3n(n — 1) matrix with ir(r +1)
block-rows (some of which may be of zero
height) and 4r(r +1) block-columns (some of
which may be of zero width)

A®A:=D}(ABAD;,

which we call the block bialternate sum of A for
block structure i = (ny, n,, ..., n,).

By comparing (6) and (4), it can be seen that
for X € S5, Vb (X) is just a rearrangement of the
elements of ¥ (X), and vice versa. Hence there
exists an 3n(n—1)Xin(n—1) permutation
matrix Q5 such that

F(X)=0;%b(X) for all X €.
Hence, for any A € R"™",
¥ (AX + XA = Q19 (AX + XAD)
=0(A®A)(X)
=0i(A®A)0;%b(X) (8)

for all X € S;. Since X in (8) is an arbitrary
element of S;, it follows that

AsA=0NA+A)D,

Therefore A®A is similar to A¢ A, and in
particular the eigenvalues of A$A are the
n(n—1) numbers A +A  (1=j<i<n),
where A; (1 =i =n) are the eigenvalues of A.

3.2. Calculation of the block skew duplication
matrix
We now study the block skew duplication matrix
in more detail, and provide a conceptual
algorithm for its construction.

If X € S; then, using the definition of ¥b (X)
in (6), vec(X;) (1=i,j=<r) is related to the
block elements of ¥b (X) in the following way:

vec (X;) if i>],
vec (X;) = Dn, V(X ifi=j, (9
=K, vec (X)) if i<

Using the definitions of Dj in (7) and vecb (*) in
(1), and the relationships in (9), the following
procedure for the construction of Dj; can be
derived. It is a straightforward modification of
the procedure given by Mustafa (1995) for the
construction of the block duplication matrix.

Construction of D, for i=(n,, n,, ..., n,).
The block skew duplication matrix D; has r*
block-rows and 3r(r + 1) block-columns (some of
which may be of zero width). To find the pth
block-row, where 1=<p=r? use the following
procedure.

e Let (i, j) be the pth pair of integers in the
sequence

1,D,210,...,01%0,2),2,2),...,
r,2)...:(, ), 2,r),...,r=1,7),(r,r)

 If i =, define m(r, i, j) to be the position that
(i, j) takes in the sequence

(1,1),(2,1),...,(r,1);(2,2),3,2),.. .,
r,2);...;0r=14,r=1),(r,r—1);(r, r).

» If i <j, define m(r, i, j) to be the position that
(i, j) takes in the sequence

(1,1),(1,2),...,(,r);2,2),2,3),...,
). (r=Lr=10,0—-1,r);(r).

* The pth block row of Dj; has in the m(r, i, j)th
block-column the matrix M,,,, where

) L, i 0>,
M,,:=\D, ifi=}
—K,, ifi<j.

-

and zeros elsewhere.

Note that if i =j and n; = 1 then M,,, = [ ]ixo
and hence the m(r, i, j)th block-column of Dj
has zero width.

An alternative method for finding m(r, i, j) is
to use the following formula (Vetter, 1975):

r(j-1)+i—j—-%(G-3) if i=]j,

m(r’l']):{r(i~1)+jfif%i(i—3) if i <j.

In order to form A& A, we also need to
construct D3 =(DID;)"'D}. Since D; has only
one non-zero block in each block-row, DID; is
block-diagonal. Inspection of the procedure for
the calculation of D; above reveals that the
m(r, i, j)th element on the block-diagonal is

DD, if i=j,
T e
Lo+ KoK, 1 P #].

Using Lemma 1 and the properties of the
commutation matrix given in Section 2.1, it
follows that

Dy =(DYD,)"DE=1D5,

Ifn=(1,1,...,1), so that the block structure
is that of the individual elements, then Dj
reduces to the unstructured form D,. To show
this, observe that D,=[ ];x0 and K =1
Substitution of these quantities into the proce-
dure for the construction of D; above gives a
matrix with $n(n + 1) block-columns, exactly n
of which are of zero width. It is then a simple,
but tedious, matter of evaluating the pth rows
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(1=p =n®) of D, and D;, using the formula for
D, in Theorem 6.1 of Magnus (1988) and the
procedure for the construction of D above, and
showing that they are equal.

As an aside, we point out that the permutation
and skew duplication matrices P;, D D, and Q;
are related by

P, ﬁﬁﬁzﬁngﬁ-
This result follows by noting that for all

XeS, vec(X)=P,vech (X)=P;D;%b (X)
and vec (X)=D, % (X)=D,0;%b (X).

3.3. The 2 X 2-block case

As will be illustrated in Section 4, there are a
number of applications of the block bialternate
sum in which there is a 2 X 2-block structure.
That is, i =(n,, n,). We therefore provide the
details of that case here. Let

A A
A — [ 11 12]’
AZl AZZ
with A}, e R"™" and A,, e R?*™. Using the
procedure in Section 3.2, with 77 = (n,, n,), gives

D, 0 0
| O w0
" 0 K. O ’
0 0o b,
and hence
by 0 0 0
bi=| 0 .. -iK,. O
0 0 0 DY

The 2 X 2-block Kronecker sum is (Hyland and
Collins, 1989)

A DAL [, ®A,
In1®A21 A DAy,

ADA =
A21®In| 0
0 A, ®I,
Ap®lL, 0
0 A,QL,
An®A;, In2®A12
Inz®A21 A22®A22
Therefore, using the definition A®A=

D#(A®A)D; and Lemma 1, it follows that

AIIQ)AH
AeA=]| (I,®A,)D,,
0
D~I](In,®A12) 0
A DA,  (Ap®L,)D,,

DL(A21®In2) An®Apn

4. STABILITY FORMULAE

In this section we use the block bialternate
sum to derive closed-formula solutions of the
three stability problems discussed in Section 1.
In each case the the internal dimensions of the
derived formulae are lower than those currently
available. To state the results, we make the
following definitions. Given a square matrix M,
we define AL..(M) to be the largest positive real
eigenvalue of M, or 0" if there are no positive
real eigenvalues, and we define A..,(M) to be
any real eigenvalue of M. Given another square
matrix N of the same dimension, we define
Aea(M, N) to be any finite real generalized
eigenvalue of M (i.e. any finite real solution of
det (M — AN) =0). A matrix will be said to be
(asymptotically) stable if all its eigenvalues have
strictly negative real parts, and a system
G(s)=D + C(sI —A)"'B will be said to be
stable if A is stable.

4.1. Radius of integral controllability

Consider the negative-feedback connection of
the integral controller k1, /s to an n-state stable
m X m system G(s). Morari (1985) showed that
there exists a k* such that k/,,/s stabilizes G(s)
for all k e (0, k*) if G(0) has all its eigenvalues
in the open right half-plane, and only if G(0) has
all its eigenvalues in the closed right half-plane
minus the origin. If there exists such a k* then
G(s) is said to be integral controllable (for
related work, see also Lunze, 1985; Campo and
Morari, 1994). The largest possible value of k* is
known as the radius of integral controllability,
and will be denoted by k¥,,. A 2mn-dimensional
eigenvalue formula for k., was derived under
mild conditions by Mustafa (1994a). Its con-
struction involved the wuse of the block
Kronecker sum within the guardian map
framework (Saydy et al, 1990). Mustafa
(1995, 1994b) showed that the dimension of the
eigenvalue problem can be halved by using the
block Lyapunov sum and that the mild
conditions can be removed by using a Schur-type
determinantal formula from the Appendix of
Mustafa and Davidson (1994).

In the following proposition we derive an
improved mn-dimensional eigenvalue formula
for the radius of integral controllability, using
the block bialternate sum. The formula improves
on that of Mustafa (1995,1994b) in that it
involves the inverses of square matrices of
dimensions 3n(n — 1), 3m(m — 1) and n, whereas
the corresponding matrices in the formula of
Mustafa (1995, 1994b) are of dimensions 3n(n +
1), sm(m +1) and n.

Proposition 1. Let G(s)=D + C(sI — A)™'B be
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an n-state m X m system. Furthermore, let G(s)
be stable and let G(0) have all its eigenvalues in
the open right half-plane. The radius of integral
controllability of G(s) is
k¥ = 1
" AmadZ)

where Z is the mn X mn matrix

Z:=(A"'®D)
+{(A"'B®1,)D,, (A '®C)D,]
y {[G(O)@G(O)]‘l 0 J
0 —(Ae®A)™!
% [Dﬁ[f;‘f] ® G(O)]]
D) (1,®B)
Proof. See the Appendix. O

We now provide an example of the application
of Proposition 1 to determine the radius of
integral controllability of an interval plant family
(for background, see e.g., Barmish et al., 1992).

Example 1. Consider the following interval plant
family taken from Hollot and Tempo (1994):
N(s)
D(s)
39 060(q1s> + g»5> + q15 + qo)
STHrest st st nsd st s+

(10)

G(s)=

where
q;€[0.8,8], ¢,e[3.28,32.8],
q,€[3.52,352], q,€(0.32,3.2],
re € [81.31, 81.92], rs € [3910.38, 3960.94],
ry € [61 412.23, 63 897.28],
ry € [343379.7, 386 727.7},
r, € (620 977.75, 915 287.75],
r; € [1324 350, 1978 350],
ro € [126 562.5, 189 062.5].

As pointed out by Hollot and Yang (1990),
Corollary 1.5 of Ghosh (1985) can be easily
modified to show that an interval plant family
that contains no members with a zero at the
origin is stabilized by a positive-grain integral
controller k/s if and only if the integral
controller k/s stabilizes the following plants:

Na(s)  Nuls) Mos) MNi(s) 1)
Di(s)’ Dy(s) Ds(s) Dys)

where N(s) and Di(s) (i=1,2,3,4) are the
Kharitonov polynomials (Kharitonov, 1978) with

ordering as in Barmish er al (1992) for the
numerator and denominator of the interval plant
respectively.

Since the interval plant family in (10) is stable
and G(0) >0 for all members of the family, it is
integral controllable. Therefore its radius of
integral controllability is the smallest of the radii
of integral controllability of the plants in (11).
By applying the formula of Proposition 1 to each
of the four plants in (11), we obtain

k. = min {0.4971, 4.7196, 4.2202, 0.9995}
=0.4971.

To illustrate that k¥,,=0.4971 is indeed the
maximal gain, the cross-section of the robust
root locus of G(s)/s at a gain of 0.4971 was
calculated using the method of Barmish and
Tempo (1990). A detail of the cross-section is
shown in Fig. 1. It is clear from this figure that
when & = k}%,,, there is one pair of jw-axis poles
in the cross-section of the robust root locus.
Hence the closed-loop system of kf,./s with the
interval plant in (10) is indeed on the
stability/instability threshold.

4.2. Maximal stability range of singularly
perturbed systems
Consider the singularly perturbed system

Xy = Anpxy + Apx,,
€X; = Ay Xy + Anpxy,

where
x; e R™,

xeR™, e>0. (12)

It is well known (Klimushchev and Krasovskii,
1962) that if both A,, and A,, — A;;A5'A,, are
asymptotically stable matrices then there exists
an €*>0 such that the system in (12) is

42 4 08 08 04 0z 0
Real Axis

Fig. 1. The cross-section of the robust root locus of G(s)/s at
k¥*.x for Example 1.
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asymptotically stable for all € e (0, €*). The
maximal value of e€* is known as the maximal
stability range of the singularly perturbed
system, and will be denoted by ek,,. For some
time, only estimates of €}, were available (see
e.g. Chen and Lin, 1990, and references therein).
More recently, however, Feng (1988) and Abed
et al. (1990) characterized e}, using Nyquist and
guardian map techniques respectively. Mustafa
(1994a) derived an exact 2n,n,-dimensional
eigenvalue formula for €},, under mild condi-
tions and, in independent work, Sen and Datta
(1993) used the (unstructured) bialternate sum
to derive an 3(n; + n,)(n, + n, — 1) dimensional
eigenvalue formula for eX,,. Furthermore,
Mustafa (1994b) used the block Lyapunov sum
to derive an n,n,-dimensional eigenvalue for-
mula without the mild conditions required in
Mustafa (1994a).

In the following proposition we use the block
bialternate sum to give an improved n,n,-
dimensional eigenvalue formula for e€X,,.. The
proof is by applying the transformation of
Section 4.2 of Mustafa (1995) to obtain an
equivalent k%, problem, and then applying
Proposition 1.

Proposition 2. Consider the singularly perturbed
system in (12) where A,, and Ag:=A; —
A AR Ay are asymptotically stable matrices.
The maximal e* such that the system is stable for
all € € (0, €*) is given by

1
€hax = Ao (WY
where W is the n,n, X n,n, matrix
Wi=~(A%'®A,) + [(A%'A»®1,)D,,
(A% ®Ap)D,.])

% [(A(]@AO)” 0 :l
0 ~(Ap®Ap)™

[DII(A,ZA;; ®Ao)}
ﬁ:z(lnz ® A;’l)

We demonstrate the advantages of Proposition
2 over previous work in the following example.

Example 2. Consider the singularly perturbed
system for which

-3 4 -3 4
A, = =
= [ 0 2}’ An [—1 —2}’

1 2 -2 3
Ay = Ay = )
2 [0 2]’ 2 [ 0 —3]

This system has also been used by Chen and Lin

(1990), Sen and Datta (1993) and Mustafa
(1994b, 1995). Applying Proposition 2, the
eigenvalues of W are

—0.7976, —0.4865, 0.2021, 1.0201,
and hence
€X.«=1/1.0201 = 0.9803,

as was obtained by Sen and Datta (1993) and
Mustafa (1994b, 1995). Note that in this example
W is a 4X4 matrix, as was the case in the
application of the formula of Mustafa (1994b) to
the present problem. The corresponding matrix
in the method of Sen and Datta (1993) is of
dimension 6 X 6. Furthermore, the expression for
W involves the inverse of a 2 X 2 matrix and the
inverses of two scalars, whereas the formula of
Mustafa (1994b) involves the inverses of a 2 X2
and two 3 X 3 matrices. By contrast, the formula
of Sen and Datta (1993) involves the inverse of a
6 X 6 matrix. The computational savings of the
formula in Proposition 2 over the formulae of
Mustafa (1994b) and Sen and Datta (1993) can
be even more significant in other cases.

4.3. All stabilizing first-order controllers via the
critical gains

Consider the negative-feedback connection of
a general first-order controller k(s)= (as+
B)/ (s +vy) to an n-state scalar plant g(s)=
c(sT—A)'h. Let A; (1<i=n+1) denote the
closed-loop eigenvalues (the eigenvalues of the
closed-loop dynamics matrix), and, with a slight
abuse of terminology, let the controller para-
meters «, B and y be known as gains. Mustafa
(1994c) showed that all stabilizing first-order
controllers for g(s) can be found by dividing the
(a, B, v) gain-space into distinct regions whose
boundaries are ‘critical gains’. The critical gains
are defined to be those (finite) real values of a,
B and vy (if any) such that A; + A; =0 for some i,
j (=i j=<n+1). Using some elements of
guardian map theory (Saydy et al., 1990),
Mustafa (1994c) showed that all the controller
gains within a given region result in the same
number of unstable closed-loop eigenvalues.
Therefore, once the gain-space has been divided
as above, it is easy to identify the regions (if any)
that result in no unstable closed-loop eigen-
values. The union of those regions that result in
no unstable closed-loop eigenvalues contains all
the controller gains «, B and 7y that stabilize
g(s).

A vparticular attraction of the approach of
Mustafa (1994c) is that closed generalized
eigenvalue formulae for the critical gains were
given. Furthermore, these formulae were shown
to simplify in certain special cases. In the
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following proposition and its corollaries the
block bialternate sum is used to give more
compact formulae for the critical gains. In order
to state the results, we define the in(n +1) X
in(n+1) matrices with block structure
(3n(n —1),n)

A®A 0 bcobec O
R R
Y l-(,®c0)D, A Q 0 b

elp ) el )
(13)

and the (n+1)X (n+1) matrices with block
structure (n, 1)

Pl ) el )

0 -b 00
R,:= = .
2 [0 0]’ 52 [o 1}

Let @(B, y) denote the critical values for a for
fixed values of B and 7. Similarly, let B(a, y)
and ¥(a, B) denote the critical values for 8 and
7y respectively.

(14)

Proposition 3. Let g(s)=c(sI—~A)b be an
n-state scalar system. For the controller k(s) =
(as + B)/(s + y) connected to g(s), the critical
gains are

* &(ﬁ: 7) = )‘real(Pi - BRn - ‘YSE’ Qi - ’YR!) for
i=1,2 and arbitrary B, vy;

hd ﬁ(ax 7) = Arez\l(l)i - aQ: - YSI + a‘yRiv RI) for
i=1, 2 and arbitrary «, 7;

* ‘7(“5 B) = Areal(I)i - aQi - BRb S - CYR,') fOr
i=1,2 and arbitrary a, 8;

where P, Q;, R, and §,, for i = 1, 2 are defined in
(13) and (14).

Proof. See the Appendix. O

As pointed out by Mustafa (1994c), there are
several special cases in which further matrix
analysis can simplify the formulae for the critical
gains. For example, consider the case where
v =0, so that k(s) = a + B/s is a PI controller.
To simplify the terminology, the critical gains
B(a, 0) will be called the critical integral gains.

Corollary 1. Let g(s)=c(sI —A)"'b be an
n-state system and define A:=A —abc. If a is

any fixed real number such that Aand Ae A are
non-singular and cA~'b#0 then the critical
integral gains for the PI controller k(s)=
a + B/s connected to g(s) are the finite values of

_r
Areal( Y(Of))

together with zero, where Y(g) iAs the nXn
matrix Y(a):=—(A'®c)D,(A®A)"'D,I,®
b).

The proof of Corollary 1 is straightforward
(and so is omitted)—one simply applies the same
determinantal manipulations that are used in the
proof of Proposition 1 in the Appendix (which
are all valid under the assumptions of Corollary
1). The conditions of Corollary 1 are easy to
check. Indeed, A is non-singular provided
@ # Areat(A, bc), and A®A is non-singular
provided a # A, (A® A, bcobc). If A is non-
singular then A is invertible provided a #
—1/g(0). Also, if A is non-singular and g(0) #0
then cA ~'b #0 for all « such that A is invertible.

Another case where simplifications occur is
when « is fixed and B and y are varied. This case
includes controllers of the form k(s) = B/(s + )
(where @ =0) and k(s) = (s + B)/(s + y) (where
a =1). Formulae for the critical values of 8 and
v in this case are given in the following corollary.

Corollary 2. Let g(s)=c(sI—A)"'b be an
n-state system and define A:=A — abc. Let a be
any fixed real number such that A and A ¢ A are
non-singular and define g,:=—cA 'b. For the
controller k(s) = (as + B)/(s + ¥) connected to
g(s), the critical gains are

* Bla, 7) = AealA = I, — ayV (@), —V(a)),
and if §, # 0 then also B(a, y) = —y(1 — ago)/éo;

s y(a, B)= )\ml(/i + BV(a), I, + aV(a)), and
if 8,7 1/« then also ¥(a, B) = —Bgo/(1 — agy);

where V(a) is the nXn matrix V(a):=
(1, ®c)D,(A e A) DI, ®b).
Proof. See the Appendix. a

This section is completed with the following
illustrative example.

Example 3. Consider the plant

—1.645s® — 1.034465% — 0.04075s
s*+1.0603s® — 1.1154s* — 0.0565s — 0.0512’

g(s)=

taken from Bhattacharyya er al. (1988). This
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plant is not stabilizable by a proportional gain
(Bhattacharyya et al., 1988), and furthermore, by
using the formulae of Proposition 3 and
Corollary 1 to plot the critical gains @(8, 0) and
B(a,0), it can be shown that it is not
stabilizable by a PI controller. Bhattacharyya et
al. (1988) solved a linear programming problem
to show that

+
ko(s) = ays Bo)

s+ v

where aq=~0.7982, By=-1.4951 and y,=
—0.6366, is a stabilizing controller. Since
stabilization is normally not the only goal of
controller design, it is of interest to find the
maximal set of stabilizing controllers around
ko(s). To illustrate how this can be done using
the methods of this section, we consider
controllers of the form (aqs + B)/(s + v).

Using Corollary 2, the critical gains ¥(ay, B)
were computed for a grid of values of B between
—5 and 0, and the critical gains B(aq, y) were
computed for a grid of values of y between —1.5
and 0.5. These critical gains divide the given
window of (B, y) gain-space into regions, as
shown in Fig. 2. Since ky(s) is a stabilizing
controller, the shaded region in Fig. 2 is the
maximal stabilizing region in the given window
of (B,y) gain-space that contains (B, vo)-
Calculation of the closed-loop eigenvalues for a
single point in each of the other regions shows
that the other regions in Fig. 2 do not contain
any stabilizing gain pairs. As can be seen from
Fig. 2, there is considerable freedom in the
selection of B and vy such that the controller
(ags + B)/(s + y) stabilizes g(s), which is not
evident from the linear programming approach

05

05 0

Fig. 2. The maximal stabilizing region (shaded) in the given
window of (B, y) gain-space that contains (B, y,) (marked
with the ‘+’) for Example 3.

7% 45 4 a5 38 25 2 5 -

of Bhattacharyya et al. (1988). The freedom in B
and vy exposed by the techniques of this section
is then available to satisfy other performance
constraints.

5. CONCLUSIONS

The block bialternate sum defined in this
paper retains the useful eigenvalue properties of
the bialternate sum whilst preserving the block
structure of the summand. As such, it is a logical
progression from the development of the block
Kronecker sum (Hyland and Collins, 1989) and
the block Lyapunov sum (Mustafa, 1995). To
illustrate some of its applications, the block
bialternate sum has been used to find closed
eigenvalue formulae for the radius of integral
controllability and the maximal stability range of
a singularly perturbed system. It has also been
used to find formulae for the ‘critical gains’, from
which all stabilizing first-order controllers for a
scalar plant can be easily obtained. In each
problem the internal dimensions of the derived
formulae are lower than those previously
available.

In the design of control systems it is often
useful to consider a generalized notion of
stability. This allows the inclusion of perfor-
mance constraints such as a minimum damping
factor or a maximum oscillation frequency.
However, to solve the stability problems
considered in this paper with respect to such
generalized stability domains, the block Kron-
ecker sum is needed rather than the block
bialternate sum, as shown by Mustafa and
Davidson (1995).
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APPENDIX—PROOFS

Proof of Fact 1

Fuller (1968) defined the bialternate sum of a matrix A
with itself to be the in(n —1)X 3n(n — 1) matrix G, with
rows labelled pg (p=2,3,....n,9=12,...,p—1) and
columns labelled rs (r=2,3,...,n;5=1,2,...,r—1), such
that the element at the intersection of the row labelled pg
and the column labelled s is

a, a 8 8,
& ,,.vr:det[ P ”‘] +det[ o ”’}. (A1)
e 8gr 84e gy Bgs

where 8 is the Kronecker delta.

For a matrix M, let [M];; denote the (i, j)th scalar element
of M and let [M]; denote the jth column of M. Careful
examination of A A, where A € R"*”, reveals that

[A@ AL 1ynvjik - 1om 1= QB + A8y (A2)

for 1 =i, j, k. I=n.
Given integers x, y (1=x,y=<in(n—1)), the (x, y)th
element of AD A is

[4¢ Al = H(D,].)(ADA)D,], (A3)

To proceed further, we use the expression for D, given in
Theorem 6.1 of Magnus (1988). Let e/ denote the ith column
of 1, and let E;:=eXenT. Define T;:=E;— E;. Define

m(n i, j) (1=j<isn) to be the posijtion which the pair

(i.j) takes in the sequence

(21,3 1),..., (n.1%5(3,2),(42),...,
(n2);....n—1,n=2),(n,n=2);(n,n—1), (A4)

and note that an alternative way to find /i (n, ¢, j) is to use the
formula (see Magnus, 1988, p. 93)

mn, i, f)=(j—Dn+i=%(j+1).

Define i, to be the i (n, i, j)th column of 1,,—1)2. Then
n—1 n
=12 2 vee@pay ifn>1,
" j=1i=j+1 ) A.5)
[ lixo if n=1 (
Furthermore, define E,;:=e(ef"~1"?)T. Then
vee(T)) @} = Eqiynvimmin = Ei-vnsjmmiy (A6)
and hence
[Dn]-,m(nu):ef';—:)nﬂ_ef'i:i)n+j- (A7)

Now define integer pairs (p, ¢) and (r, s) such that (p, g)
and (r, s) are respectively the xth and yth pairs of integers in
the sequence in (A.4). Hence

mn,p,q)=x, mnrs)=y. (A.8)
Substituting (A.7) and (A.8) into (A3) gives
[A® Al =3(AD Al -1ynsps—n+r
~[ADALp-1neqis-1n+r
“[ADALy-1ynsp.—tines
+H[AB AN - 1yn1 .- 1ynts)-
An application of (A.2) then gives
[A® A, ,=a,b, +a,8, —a,8, —a,$,

rBgs ps Ogr rOps
8y Bos Ay gy

and hence the (x,y)th element (1=x,y=<3in(n—1)) of
A@® A is equal to the scalar element in Fuller’s definition
of the bialternate sum.
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Proof of Proposition 1
The proof of Proposition 1 closely follows those of the

corresponding results in Mustafa (1994a,b, 1995) and
Mustafa and Davidson (1994), but for completeness it is
provided in some detail. The closed-loop dynamics matrix for
the negative feedback connection of kl,,/s to G(s) is

< A kB

A: [-C AkD]'

Define the function

s m n+m | n+m
v(k)::det(g)det(ﬁé/i)=(ﬂ A)[ 1T 11 ().,+/\,-)],

Y= Jj= i=j+1

where A, (1=i=n+m) are the eigenvalues of A. Observe
that if A has all its eigenvalues in the closed left half-plane
then v(k)=0 if and only if A has an eigenvalue on the
imaginary axis. Hence v(k) guards the open left half plane in
the sense of Saydy er al. (1990). Since G(0) has all its
eigenvalues in the open right half-plane, G(s) is integral
controllable (Morari, 1985) and hence, for all sufficiently
small positive , all the eigenvalues of A are in the open left
half-plane. Thus k¥, is the smallest positive real root of
v(k) =0 (or += if there are no positive real roots).

The remainder of the proof involves showing that v(k) = 0
can be transformed to an eigenvalue problem. Firstly, since
G(s) is stable, A is invertible and, on applying Schur’s
determinantal formula,

det (A) = (—k)™ det (A) det [G(0)],

which is non-zero for all non-zero k. From Section 3.3,

A A kDT(1,®B) 0
ASA=| —(I,®C)D,, A®(-kD) Kk(B®I)D,, |
0 -DI(C®L,) -k(D¢ D)

Since G(s) is stable, A ® A is invertible, and applying Schur's
determinantal formula gives

A®L,+kM k(B ®1M)Dm]
-D.(C®L,) ~k(D&D) ]|
(A9)

where M = —([,® D)+ (1,8 C}D (A ® A) 'DI(1,QB).
We now give a Schur-type formula to simplify the second
determinant on the right-hand side of (A.9). The proof

involves some straightforward matrix and determinantal
manipulations, and is given in Mustafa and Davidson (1994).

det(AéA):det(AeA)del[

Lemma 2. Let U, Vel WecR™, X ecR? and
Y eRI*9 If Uand Y — XU 'W are non-singular then

v+v wy_ v
del[ ¥ Y]vdut(b)dct(Y XU'W)

xdet{l, + (U '+ U 'W

X (Y= XU 'W)y 'XU 'V}

We simplify the second determinant on the right hand side
of (A.9) by choosing (in the notation of Lemma 2)
U=A®]I,, which is invertible because A is stable by
assumption. This choice of U gives (again in the notation of
Lemma 2) Y - XU™'W = —k[G(0) ® G(0)], which is non-
singular for k # 0. Thus, for & # 0, applying Lemma 2 gives

V(k) - (,k)m(mﬂwzu dCl ([nm — k‘)VM).
where
u =det (A" ') det (A ® A) det [G(0)] det [G(0) & G(0)],
N=—(A"'®1,) (A 'B®I,)D,[G(0)
@ G0)] 'DI(CA '®1,).

Since u is non-zero and independent of k, the smallest
positive real solution to v(k) =0 is the smallest positive real
solution to det(f,,, —kNM), that is, the reciprocal of the
largest positive real eigenvalue of NM (or + if there are no
positive real eigenvalues). The proposition follows by
multiplying out NM, collecting terms and simplifying using
standard properties of Kronecker algebra and Lemma 1 to
show that NM =Z. This simplification is straightforward
(and so is omitted)—the key step is to note that

DT(CA-'®C)D, (A9 A)"'DI(I,®B)
=DT(CA'® CA™'B).

Proof of results of Section 4.3
The proof of the results of Section 4.3 use similar
techniques to the corresponding proofs in Mustafa (1994c).
However, for completeness, they are provided in some detail.
Proof of Proposition 3. The closed-loop dynamics matrix
1S

-~ [A—abc (B~ ay)b
A—[ e —y ] (A.10)
Consider the function
f(a, B, v):=det (A) det (A6 A) (A.11)

n+m [n#m*l n+m

=(11 ,\,.) 11 H(A,-+Aj)], (A12)

j=1 i=j+1
where A,(1<i=n+m) are the eigenvalues of A. It is clear
from (A.12) that the critical gains are the (finite) real
solutions (if any) to f(a, B, ¥) = 0. Using the structure of A
and the definitions in (13) and (14), f(«, B, ¥) can be written
as

2
fla. B y)=[1det (P — aQ,— BR, — 5+ ayR)) (A.13)
i=1

The formulae for the critical gains follow by rearranging the
terms within the determinants in (A.13) as is illustrated
below for @(B, v).

The critical gains a(B, ) satisfy f(a, B, v} =0 for given B8
and y. Equivalently, they are the real values of a that satisfy

det{(P = BR, ~ ¥8§) —a(Q1 — YR)] =0, (A.14)
or
det[(P, = BR; — ¥55) — a(Q, — YR)] =0, (A15)

The real solutions to (A.14) and (A.15) are simply the real
generalized eigenvalues given in the proposition.

Proof of Corollary 2. Using A in (A.10) and the
assumptions and definitions of Corollary 2, an application of
Schur’s determinantal formula gives

det (Ao A)=det (A ¢ A)det[A +BV(a)— vl, — ayV(a)),
(A.16)
det (A) = (aygo~ B0 — v) det (4). (A.17)

Recall that the critical gains satisfy f(a, 8, y) =0, where
f(a, B, y) is defined in (A.11). Using the simplifications in
(A.16) and (A.17) and the assumptions of the corollary, the
critical gains satisfy

det[A + BV (a) — yI, — ayV(a)] =0, (A.18)
or
ay8o— Bgo—v=0. (A.19)

The formulae for the critical values of B in the corollary
follow by fixing y and writing (A.18) as a generalized
eigenvalue problem for 8 and solving (A.19) for 8. Similar
manipulations give the formulae for the critical values of v.



