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Abstract— We consider the design of Tomlinson-Harashima
(TH) transceivers for the downlink of a multiuser communication
system in the presence of uncertain channel state information
(CSI) at the base station. We consider systems in which the
base station has multiple antennas and each user has a single
antenna, and we consider a stochastic model for the uncertainty
in the CSI. We study the joint design of a Tomlinson-Harashima
precoder at the base station and the equalizing gains at the
receivers so as to minimize the average, over channel uncertainty,
of the total mean-square-error (MSE). By generalizing the MSE
duality between the broadcast channel (BC) with TH precoding
and the multiple access channel (MAC) with decision feedback
equalization (DFE) to scenarios with uncertain CSI, we obtain
a relation between the desired robust broadcast transceivers
and the corresponding transceivers that optimize the same
performance metric for the dual multiple access channel. Our
simulations indicate that the proposed approach can significantly
reduce the sensitivity of the downlink to uncertainty in the CSI,
and can provide improved performance over that of existing
robust designs.

I. INTRODUCTION

A key advantage of using multiple antennas on the downlink
of multiuser systems is the ability to transmit independent data
messages to decentralized users. In these broadcasting scenar-
ios, the transmitter typically employs spatial multiplexing tech-
niques to precode the users’ messages in a way that mitigates
the effect of multiuser interference at the receivers created
by the channel propagation. One of the available spatial mul-
tiplexing techniques is to apply Tomlinson-Harashima (TH)
precoding at the transmitter jointly with linear equalization
at each receiver. Tomlinson-Harashima precoding works by
precoding the users’ messages sequentially by pre-subtracting
the interference that previously precoded messages would
otherwise create at the receivers. A fundamental assumption
of TH precoding is the availability of perfect Channel State
Information (CSI) at the transmitter. Perfect CSI enables the
transmitter to precisely pre-subtract the terms that would inter-
fere at the receivers. Based on the assumption of perfect CSI
at the transmitter, several different approaches for designing
TH precoders for broadcast channels have been proposed,
including zero-forcing designs [1], [2], [3], [4], and minimum
mean square error (MMSE) designs [5], [6].

In practical broadcasting schemes, the CSI available at the
transmitter suffers from inaccuracies that arise from sources
such as channel estimation errors. These inaccuracies can
result in serious degradation of the performance of broadcast
systems, e.g., [7]. Furthermore, the performance of TH pre-
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coding is particularly sensitive to inaccuracies in CSI, e.g.,
[8]. Motivated by the sensitivity of both broadcast channels
and TH precoding to channel uncertainty, we design, herein,
a robust TH transceiver that explicitly takes into account
the CSI uncertainty. We will use a stochastic model for
the CSI uncertainty. This model is particularly suitable for
systems in which the CSI uncertainty is dominated by the
effects of channel estimation errors. Examples of such systems
include those with uplink-downlink reciprocity, such as time
division duplex systems with short “ping-pong” time. Using
the stochastic model for channel uncertainty, we consider the
joint design of a Tomlinson-Harashima precoder and the users’
equalizing gains to minimize the average, over the channel
uncertainty, of the total MSE. Previous attempts to solve
this problem have considered a simpler design problem by
restricting all the users’ equalizing gains to be equal [9],
[10], or by using a simpler detection model [11]. In our
approach we will preserve all the degrees of freedom, and
will exploit the duality, derived herein, between the broadcast
with TH precoding and the multiple access channel (MAC)
with decision feedback equalization (DFE), under a statistical
model of CSI. More generally, the duality result that we will
derive will enable us to obtain robust designs for broadcast
channels with TH precoding that optimize functions of the
the average MSEs, by solving the same design problem for
a dual MAC with a DFE. By doing so, we extend to the
case of imperfect CSI earlier work on the duality, in the
MSE sense, of the BC with TH precoding and MAC with a
DFE assuming perfect CSI [6], [12]. Our results indicate that
the proposed approach can significantly reduce the sensitivity
of the downlink to uncertainty in the CSI, and can provide
improved performance over that of existing robust designs.

II. SYSTEM MODEL

We consider the downlink of a multiuser cellular communi-
cation system with [V; antennas at the transmitter and K users,
each with one receive antenna. We consider downlink systems
in which Tomlinson-Harashima (TH) precoding is used at
the transmitter for multi-user interference pre-subtraction. As
shown in Fig. 1, interference pre-subtraction and channel
spatial equalization are performed at the transmitter using
a strictly lower triangular feedback precoding matrix B €
CHE*K and a feedforward precoding matrix P € CN¢* X The
vector s € CX contains the data symbol destined for each
user, and we assume that sy is chosen from a square QAM
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Fig. 1. BC with Tomlinson-Harashima precoding.

constellation S with cardinality M. The Voronoi region of
the constellation V is a square whose side length is D; i.e.,
D = /M d, where d is the distance between two successive
constellation points along any of the basis directions.

In absence of the modulo operation, the output symbols
of the feedback loop in Fig. 2, vg, would be generated
successively according to the following relation:

k—
vk =5k — Y5—1 Brjvj, M

where at the k™ step, only the previously precoded symbols
v1, .., Ux—1 are subtracted. Hence, B is a strictly lower triangu-
lar matrix. The modulo operation is used to prevent the mag-
nitude of vy in (1) from growing outside the boundaries of V.
For square QAM symbols, the modulo operation corresponds
to performing separate modulo-D operations on the real and
imaginary parts of vy, and this is equivalent to the addition of
the complex quantity i = 3¢ D + j i;]"* D to vy, where
i, iy € Z, and j = /—1. Using this observation, we
obtain the standard linear model of the transmitter that does
not involve a modulo operation, as shown in Fig. 2; e.g., [13].
In this model, the constellation of the modified data symbols
in the vector u = s + i is simply the periodic extension of
the original constellation S along the real and imaginary axes.
For this equivalent model, the vector v is linearly related to
the modified data vector u,

v=>1+B)"u 2

Following the feedback processing, the vector v is then
linearly precoded to produce the vector of transmitted signals

x = Pv. 3)

As a result of the modulo operation, the elements of v are
almost uncorrelated and uniformly distributed over the Voronoi
region V, [13, Th. 3.1]. Therefore, the symbols of v will
have slightly higher average energy than the input symbols s.
This slight increase in the average energy is termed precoding
loss [13]. For example, for square M-ary QAM we have
E{|ve|*} = 25 E{|sx|?} for k=2,..., K, and E{|v;|*} =
E{|s1|?}, [13]. For moderate to large values of M this power
increase can be neglected and the approximation E{vvf} =1
is often used; e.g., [1], [14]. If we assume negligible precoding
loss, the average transmitted power constraint can be written
as Ey {xIx} = «(PHP) < Poar.
The signal received by the k™ user, Yk, can be written as

yr = hpx +ng, “®

where hy, € C'*V is a row vector representing the channel
gains from the transmitting antennas to the k' receiver, and

B

Fig. 2. Equivalent linear model for the transmitter.

ng is the additive zero-mean white noise at the k™ receiver
whose variance is 2. Collecting the received signals in the
vector y, we can write

y = Hx + n,

where H is the broadcast channel matrix whose k" row is
hy, and n is the noise vector whose covariance matrix is
E{nnf} = 021 Due to the decentralized nature of the
receivers, joint processing of the received vector y is not
possible. Instead, each receiver will process its received signal
yr, independently using a single equalizing gain g to obtain
the estimate, U, = gxyk, followed by a modulo operation to
obtain §;. In terms of the modified data symbols, the error
signal 4y, — uy, can be used to define the mean square error,

MSEy, = Eo{ i — up|*} = 21, |g?pH (hfThy)p;

k—1
+oalge” — grhipk — pE b off = > plh{ g By
i=1
k—1 k—1
— >  Bifgship; = > B +1. (5
j=1 j=1

Assuming negligible precoding loss and that the vector i is
eliminated by the receivers modulo operation, the error signal
U — ug is equivalent to 5 — s.

A. Stochastic Channel Uncertainty Model

We consider the following additive model for the CSI
uncertainty at the transmitter:

hk = flk + e, (6)

where hy, is the true channel for the k™ user, flk is the
transmitter’s estimate of hy, and the error e; is modeled as
Gaussian random variable with zero-mean and a covariance
matrix E{ef’e;} = o2 I. This model is particularly suitable
for communication schemes with reciprocity between the
uplink and the downlink in which the transmitter can use this
reciprocity to estimate the users’ channels.

Using this uncertainty model, the average over the channel
estimation errors of MSEy is given by:

- K A
MSEy, = Zj=1 |9k|2p§{(thhk + UzkI)Pj +anlgkl?

k—1
— gehkpr — P g = > pi'hilgf By,
j=1
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III. ROBUST DESIGN VIA BC-MAC DUALITY

For the uncertainty model under consideration, our objective
is to jointly design the feedback and precoding matrices, B and
P, and the receivers’ equalizing gains, g, so as to minimize
the average, over the channel estimation error, of the total
MSE:

MSE = Y1, MSE. ®)

Previous attempts to solve this problem have considered a
simpler design problem by restricting all g to be equal
[9], [10], or by using a simpler detection model [11]. In
our approach we will preserve all degrees of freedom, and
will exploit the duality, derived herein, between the broadcast
channel with TH precoding and the multiple access channels
with DFE, under a statistical model of CSI. Using this duality,
we will jointly design the transceiver parameters B, P, and gy,
so as to minimize (8). More generally, the duality result that we
will derive will enable us to obtain robust designs of broadcast
channels with TH precoding that optimize objectives that are
functions of the the average MSEs, by solving the same design
problem for a dual MAC with a DFE. We will start by briefly
introducing a dual MAC for the BC presented in Section II.

A. Dual Multiple Access Channel

By switching the roles of the transmitter and the receiver in
the broadcast channel, we obtain a dual MAC that consists of
K transmitters, each with a single antenna, and a receiver with
N, antennas. The channel matrix between the transmitters and
the receiver of the dual MAC is HH; e.g., [15]. Interference
subtraction in the dual MAC is implemented using decision
feedback equalization (DFE) in which detection of a given
user is preceded by subtraction of the interference resulting
from previously detected users; see Fig 3. To obtain a dual
MAC, the users are detected using the reverse order of the
BC precoding order; i.e., detection starts with the K th yser.

Similar to the MSE expressions obtained for the BC in (7),
we will be interested in obtaining corresponding expressions
for individual MSEs in the dual MAC with linear precoding
and DFE. Because the transmitters in the dual MAC are
decentralized and each have only one transmit antenna, linear
precoding reduces to power loading:

.TCMA pMAC MAC ; (9)

where s}AC and z}AC are the data symbol and the transmit-

ted signal of the k:‘h transmitter. Without loss of generality,
; H
we will assume that E{sMACSMAC™1 — T Hence, a total

power constraint on all the transmitters can be written as
K

Zk:l |le\€/IAC|2 < Ptotal-
The vector of received signals yMAC is given by:

yMAC — HHXMAC 4 nMAC’ (10)

where nMAC is the zero-mean recelver noise vector whose

covariance matrix is E{nMACnMACTY — 521 Ag shown in
Fig. 3, the DFE is implemented using feedforward matrix
GMAC ¢ CEXnr and a strictly upper triangular feedback
matrix BMAC ¢ CEXK 1y this scenario, the detection of the
k™ symbol is preceded by subtracting the effect of previously
detected symbols. Assuming correct previous decisions, the
input to the quantizer, sMA€, can be written as

éMAC — (G’MACHHPMAC _ n, (11)
where PMAC = Diag(p)1AC, ... pMAC). Using the channel
uncertainty model in (6), the average over channel estimation
errors of the MSE associated with the estimation $}'AC can be

written as:

BMAC)SMAC 4 GMAC

———MAC K PN H
MSE, =YL, [p}"ACPglC(hf'h; + o2 T)g)AC
H Hap H
+ 0721 gMACgMAC pII\C/IAC hkgll\g/[AC B gII\C/[ACthpll\C/IAC
K
MacH 7 MacH pMAC MACH _MACY. H, MAC
= D (BT hglCT B + BT gl ACh [T
j=k+1
K
- > IBP+1L (12
Jj=k+1

where gMAC is the k™ row of GMAC,

B. BC-MAC Duality with Stochastic Channel Uncertainty

In this section, we will present the MSE duality result
between the broadcast channel with TH precoding and the
multiple access channel with DFE subject to the stochastic
channel uncertainty model described in Section II-A. This
duality result generalizes the MSE duality between BC with
TH precoding and MAC with DFE for the perfect channel
knowledge case [6], [12] to scenarios with uncertain CSI. This
duality relation will be useful in obtaining a robust design of
the BC transceiver that minimizes the average total MSE in
terms of the corresponding transceiver of the dual MAC that
minimizes the same objective.

Theorem 1: Assuming no precoding loss in the BC and
no error propagation in the dual MAC, the sets of individual
average I MSEs for the BC, {MSE}}, and for the dual MAC,

{MSEk } are equal under the same total transmitted power
constraint when one uses the following transceiver demgns.

—1, MacH

MAC
gk = wk Dk 5

pr = wipgh ¢, 21 pMac,

w
K
,WK) 18

By =

where the vector of positive constants w = (wr, ...
given by:

_ T
w2 -M 1 [ |pl]\-/IAC|2 |pMAC 2 ] \ (14)
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and the matrix M is given by:

_IPE;ACI MAC(hHhk+0. g MacH

_Ip?fACI MAC(hHhk+O. g macH

IBMAC2 MACE 1 MAC MACH
h B

My = — =+ g}

1 B%Ac MACH h gMACH k>
H .
BB T M s

A sketch of the proof of this result is provided in the
appendix. It is a generalization of the result in [6], [12] to sce-
narios with channel uncertainty. Using Theorem 1, an optimal
design of the BC transceiver that jointly minimize MSE under
a total power constraint can be obtained by first obtaining the
optimal MAC transceiver that jointly minimize the average of
the total MSE, and then applying the transformation (14) to
obtain the optimal BC transceiver.

IV. STATISTICALLY ROBUST TRANSCEIVER DESIGN FOR
THE DUAL MAC

In this section, we will obtain a statistically robust design of
the dual MAC transceiver that jointly minimizes the average,
over channel estimation errors, of the total MSE,

———MAC
= Zk 1 MSE, .
First, we will obtain an analytic expression for the optimal
receiver, BMAC and g)AC, for a given set of transmitters p}'A°.
Using these expressions we will then obtain an optimization
formulation for the optimal p}'AC under a total power con-
straint. MAC

From equation (12), we observe that each MSE, is
convex function of the k™ row of BYAC and is independent
of the other rows. Hence, each term in the above summation
can be minimized independently. Setting the derivative of
M_SEI;ZIAC with respect to k™ row of BYAC to zero, we obtain
the following expression:

MSE " (16)

BMAC MACT, h H MAC

= 8k a7

Substituting the expression for the optimal BMAC in (12),
each resulting MSE, "~ is a convex function of gMAC and
is independent of g?’[AC for j # k. Hence, it is optimized by
setting

HA
gy = pMIAC " hy Sy, (18)
where
S, = Z|pMAC2 hh 4+ 02T +021)7"  (19)

Using this optimal value, the average total MSE reduces to:

K
—MAC ~ ~
MSE =K — § |pMAC12h, S hE . (20)
k=1

Similar to scenarios in which channel state information is

available [12], the expression in (20) is differentiable function
of [pMAC|2, and hence a (locally) optimal solution to the
minimization of (20) under a total power constraint can be
found by applying a standard iterative algorithm.

V. SIMULATION STUDIES

In order to compare the performance of the proposed robust
design with the existing approaches, we have simulated these
methods for the cases of QPSK transmission over independent
Rayleigh fading channels. We will plot the average bit error
rate (BER) over all users against the signal-to-noise-ratio,
which is defined as SNR = Pyya1/(K02). In our simulations,
the coefficients of the channel matrix H are modeled as
being independent circularly symmetric complex Gaussian
random variables with zero mean. All TH precoding strategies
assume a given ordering of the users. Since finding an optimal
ordering will involve an exhaustive search over K! possible
arrangements, a suboptimal ordering is usually employed. We
will choose the suboptimal ordering proposed for MMSE
Tomlinson-Harashima transceiver design in [5], using the
transmitter’s channel estimate H. This ordering will be used
for all methods, including the proposed robust transceiver. To
model the error ey between the actual channel hy and the
estimated channel at the transmitter hg, ey is generated from
a zero-mean Gaussian distribution with E{ef’e;} = 02 I. In
our simulation, we will use the same agk_ for all users. This
model is appropriate for a scenario in which the uplink power
is controlled so that the received SNRs on the uplink are equal
and independent from the downlink SNR. For convenience, we
define €2 = E{ezef’ } = N,o2,

In Fig. 4 we compare the performance of the statisti-
cally robust Tomlinson-Harashima transceiver proposed in
Section III with that of the zero-forcing Tomlinson-Harashima
transceiver design (ZF-THP) in [3], [4], and the MMSE
Tomlinson-Harashima transceiver design (MMSE-THP) in [5]
for a system with 4 transmit antennas, 4 users, and QPSK
signalling. In Fig. 4, the performance of each method is
plotted for values of ¢2 = 0.05,0.1. It can be seen that
the performance of Tomlinson-Harashima precoding in the
broadcast channel is rather sensitive to the mismatch between
the actual CSI and the transmitter’s estimate of CSI. It can
be also seen that while the effect of noise is dominant at low
SNR, the channel uncertainty dominates at high SNR, where
the proposed robust transceiver design performs significantly
better than the other two approaches. Fig. 4 also shows that
in the presence of channel uncertainty, both the ZF-THP and
MMSE-THP designs have the same performance limit at high
SNR. This is due to the fact that the MMSE method involves
the addition of a regularization term whose value is inversely
proportional to Py /(Ko2); see [5].

For Fig. 5 we consider a system with N; = 4 antennas
and K = 4 users. In addition to the previous two designs,
ZF-THP [3], [4] and MMSE-THP [5], that assume precise
CSI, we will also compare the performance of the statistically
robust transceiver proposed in Section III with that of the
robust zero-forcing Tomlinson-Harashima (Robust ZF-THP)
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Fig. 4. Comparison between the performance of the proposed statistically
robust Tomlinson-Harashima transceiver, zero-forcing Tomlinson-Harashima
transceiver design (ZF-THP) in [3], [4], and the MMSE Tomlinson-Harashima
transceiver design (MMSE-THP) in [5] for values of channel uncertainty €2 =
0.05, 0.1 for a system with Ny = 4 and K = 4 using QPSK signalling. The
ugper performance curve of each method corresponds to channel uncertainty
e =0.1

approach introduced in [10], and the robust MMSE Tomlinson-
Harashima (Robust MMSE-THP) approach introduced in [9].
These two approaches restrict the all gains g to be equal. It
can be seen from Fig. 5 that improvement in the performance
can be achieved by the proposed robust design as it offers
more degrees of freedom in the choice of the gains gg.

VI. CONCLUSION

We have presented a robust design for Tomlinson-
Harashima transceivers for broadcast channels that jointly
minimizes the average, over channel estimation errors, of
the sum of the MSEs of each user. By generalizing the
MSE duality between the broadcast channel with Tomlinson-
Harashima precoding and the multiple access channel with
decision feedback equalization to schemes with channel esti-
mation errors, we have obtained the desired robust broadcast
transceivers in terms of the robust transceivers that optimize
the same performance metric for the dual multiple access
channel. The proposed approach can significantly reduce the
sensitivity of the downlink to uncertainty in the CSI, and can
provide improved performance over that of existing robust
designs.

APPENDIX

We start by considering linearly related transceivers for BC
and dual MAC:

—1, MACH

gk =Wy P s BMAC

By, =
7 W

Pr = wkglzlAACH,
2n

and we find the necessary conditions for wy such that set of
MSEs 1n BC and dual MSE are equal. By setting MSE;, =

MSEk and substituting the values pg, gx, and By; from

—6— Robust Stat. THP

— B — Robust MMSE-THP
— + — Robust ZF-THP
—&— MMSE-THP

—+— ZF-THP

SNRin dB

Fig. 5. Comparison between the performance of the proposed statistically
robust TH transceiver, zero-forcing TH transceiver design (ZF-THP) in [3],
[4], and the MMSE TH transceiver design (MMSE-THP) in [5], robust zero-
forcing TH (Robust ZF-THP) approach introduced in [10], and the robust
MMSE Tomlinson-Harashima (Robust MMSE-THP) approach introduced in
[9], for values of channel uncertainty €2 = 0.05 for a system with Ny = 4
and K = 4 using QPSK signalling.

(21), we obtain a set of K linear equations:
Mo? = [ |p} A (22)

where M was defined in (15). We observe that M has
strictly dominant diagonal elements and negative off-diagonal
elements, hence it is non-singular and the elements of M ™!
are non-negative. Addlng all equations in the linear system in
(22) results in >, 1w%g2’[ACgMACH = SO pMAC2
total transmitted power in BC and dual MAC are the same.

AC|2
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