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ABSTRACT
We study the design of non-linear multi-user communication sys-
tems that implement sequential interference (pre-)subtraction, such
as broadcast channels with Tomlinson-Harashima precoding (THP)
and multiple access channels with decision feedback equalization
(DFE), with an emphasis on the broadcast case. We consider scenar-
ios with partial channel state information in which the channel un-
certainty is deterministically bounded. We propose a general chan-
nel uncertainty model that embraces many bounded uncertainty re-
gions, and we study the robust design of THP transceivers for the
broadcast channel that minimize the maximum MSE over all set ad-
missible channels. We show that the design problem is NP-hard,
and we propose an iterative local optimization algorithm that is
based on efficiently-solvable convex subproblems. We then gener-
alize the robust designs to the case in which the channel uncertainty
is described by the intersection of bounded regions. The robust de-
sign framework is also generalized to multiple access channels with
DFE and bounded channel uncertainty. Simulation studies demon-
strate that in presence of channel uncertainty, the proposed robust
design framework can result in considerable improvement in the
performance of THP-based transceivers for the broadcast channel.

1. INTRODUCTION

Tomlinson-Harashima precoding (THP) was originally proposed as
a temporal non-linear pre-equalization technique for channels with
inter-symbol-interference, in which it works by sequentially pre-
subtracting the interference effect of previous symbols. The same
principle can be applied at the base station of a downlink system
in which independent data symbols are transmitted to decentralized
users, in which the THP pre-subtracts the interference of previously
precoded symbols that are intended for other users. The operation
of the THP relies critically on the availability of channel state in-
formation (CSI) in order to accurately subtract the interference that
otherwise would be created at each decentralized receiver. Based
on the assumption of perfect CSI at the transmitter, several differ-
ent approaches for designing TH precoders for broadcast channels
have been proposed, including zero-forcing designs [1, 2, 3, 4], and
minimum mean square error (MMSE) designs [5, 6].

In practical downlink scenarios, the CSI available at the base
station is generally imperfect. In particular, in systems in which
each user quantizes its channel information and feeds it back to
the transmitter, e.g., [7, 8], the uncertainty in the CSI at the trans-
mitter is mainly due to the effect of quantization errors. The re-
sulting mismatch between the actual CSI and the transmitter’s es-
timate of the CSI can result in a serious degradation of the perfor-
mance of the downlink; e.g., [7]. Furthermore, CSI mismatch de-
grades the performance of Tomlinson-Harashima precoders in gen-
eral [9]. In order to mitigate this performance degradation, in this
paper we will explicitly incorporate robustness to CSI mismatch
into our design. For downlink scenarios with limited feedback from
the receivers, the transmitter can bound the CSI uncertainty using
its knowledge of the quantization codebooks. For these scenar-
ios, we propose a general channel uncertainty model that embraces
many bounded uncertainty regions, and we consider the design of
robust THP transceivers for the downlink that minimize the maxi-
mum MSE over all admissible channels. We show that the design
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Figure 1: BC with Tomlinson-Harashima precoding.

problem is NP-hard, and we propose an iterative local optimization
algorithm that is based on efficiently-solvable convex subproblems.
We generalize the robust designs to the case in which the channel
uncertainty is described by the intersection of bounded regions. We
also consider the dual multiple access channel (MAC) with deci-
sion feedback equalization (DFE), and apply the proposed design
approach to design robust transceivers for the MAC with bounded
channel uncertainty. (The proposed designs include BC and MAC
linear transceivers as special cases.) Simulation results show that
in presence of channel uncertainty, the proposed robust approaches
can result in significant improvement in the performance of THP-
based transceivers for broadcast channels.

2. SYSTEM MODEL

We consider the broadcast channel (BC) with Tomlinson-
Harashima precoding, and its dual, the multiple access channel
(MAC) with decision feedback equalization. We will obtain ro-
bust minimax designs for these non-linear multi-user transceivers
for deterministically bounded channel uncertainty models. Our de-
velopment will start by describing the model of these two systems.

2.1 BC with Interference Pre-subtraction
We consider the downlink of a communication system with Nt an-
tennas at the transmitter (base station) and K single-antenna re-
ceivers in which Tomlinson-Harashima (TH) precoding is used at
the transmitter for multi-user interference pre-subtraction and spa-
tial pre-equalization. In such schemes, the elements of the vec-
tor v in Fig. 1 are generated sequentially by computing vk =

sk − ∑k−1
j=1 Bk jv j , where sk is the symbol intended to the kth user

which is chosen from a constellation whose Voronoi region is V ,
and B ∈ C

K×K is a strictly lower triangular feedback matrix. To
prevent vk from growing outside V , the modulo operation is then
applied to each vk. The vector v is subsequently linearly precoded
using the feed forward matrix P ∈ C

Nt×K to generate the transmit-
ted vector x,

x = Pv. (1)

We will assume that the elements of s are chosen from a square
QAM constellation with cardinality M, and hence the Voronoi re-
gion V is a square of length D. Therefore, the modulo operation
with respect to V corresponds to to performing separate modulo-D
operations on the real and imaginary parts of vk, and this is equiva-
lent to the addition of the complex quantity ik = irek D+ j iimag

k D to
vk, where irek , iimag

k ∈ Z, and j =
√
−1. Using this observation, we
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Figure 2: Equivalent linear model for the transmitter.

obtain the standard linearized model of the transmitter as shown in
Fig. 2; e.g., [10]. For this equivalent model, the vector v is linearly
related to the modified data vector u = s+ i,

v = (I+B)−1u. (2)

As a result of the modulo operation, the elements of v are
almost uncorrelated and uniformly distributed over the Voronoi
region V , [10, Th. 3.1]. Therefore, the elements of v will
have slightly higher average energy than the input symbols of s—
something that is often called precoding loss [10]. For exam-
ple, for square M-ary QAM we have E{|vk|2} = M

M−1 E{|sk|2} for
k = 2, . . . ,K, and E{|v1|2} = E{|s1|2}, [10]. For moderate to large
values of M this power increase can be neglected and the approxi-
mation E{vvH} = I is often used; e.g., [1, 11]. If we assume neg-
ligible precoding loss, the average transmitted power constraint can
be written as Ev{xHx} = tr(PHP) ≤ Ptotal.

The signal received by the kth user, yk, can be written as

yk = hkx+nk, (3)

where hk ∈ C
1×Nt is a row vector representing the channel gains

from the transmitting antennas to the kth receiver, and nk is the ad-
ditive zero-mean white noise at the kth receiver whose variance is
σ2

n . Collecting the received signals in the vector y, we can write

y = Hx+n,

where H is the broadcast channel matrix whose kth row is hk, and
n is the noise vector whose covariance matrix is E{nnH} = σ2

n I.
Since the receivers operate independently, each receiver will pro-
cess its received signal yk using a single equalizing gain gk to obtain
the estimate, ûk = gkyk, followed by a modulo operation to obtain
ŝk. Assuming negligible precoding loss and that the vector i is elim-
inated by the receivers modulo operation, the error signal ûk −uk is
equivalent to ŝk −s, and can be used to define the mean square error,

MSEk = ‖gkhkP−mk −bk‖2 +σ2
n |gk|2, (4)

where mk and bk are the ith row of I and B, respectively. Similarly,
the total MSE can be written as:

MSE = tr{(GHP− I−B)H(GHP− I−B)}+σ 2
n ‖g‖2, (5)

where g = (g1, . . . ,gK) and G = Diag(g).

2.2 Dual MAC with Interference Subtraction
By switching the roles of the transmitter and the receiver in the
broadcast channel (BC), we obtain a dual multiple access channel
(MAC) that consists of K transmitters, each with a single antenna,
and a receiver with Nt antennas. The channel matrix between the
transmitters and the receiver of the dual MAC is HH ; e.g., [12].
Interference subtraction in the dual MAC is implemented using de-
cision feedback equalization (DFE) in which detection starts with
the Kth user, i.e., the matrix BMAC is an upper triangular matrix;
see Fig 3. Because the transmitters in the dual MAC are decen-
tralized and each have only one transmit antenna, linear precoding
reduces to power loading:

xMAC
k = pMAC

k sMAC
k , (6)
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Figure 3: The Dual MAC with decision feedback equalization.

where sMAC
k and xMAC

k are the data symbol and the transmitted sig-
nal of the kth transmitter. Without loss of generality, we will assume
that E{sMACsMACH}= I. Hence, a total power constraint on all the
transmitters can be written as ∑K

k=1 |pMAC
k |2 ≤ Ptotal.

The vector of received signals yMAC is given by:

yMAC = HHxMAC +nMAC, (7)

where nMAC is the zero-mean receiver noise vector with
E{nMACnMACH} = σ2

n I. As shown in Fig. 3, the operation of the
DFE can be represented by a feedforward matrix GMAC ∈ C

K×Nr

and a strictly upper triangular feedback matrix BMAC ∈ C
K×K . In

this scenario, the detection of the kth symbol is preceded by sub-
tracting the effect of previously detected symbols. Assuming cor-
rect previous decisions, the input to the quantizer, ŝMAC, can be
written as

ŝMAC = (GMACHHPMAC −BMAC)sMAC +GMACn, (8)

where PMAC = Diag(pMAC
1 , . . . , pMAC

K ). Hence, the MSE associ-
ated with the estimation ŝMAC

k is

MSEMAC
k = ‖gMAC

k HHPMAC −mk −bMAC
k ‖2 +σ2

n ‖gMAC
k ‖2,

(9)
where gMAC

k and bMAC
k is the kth row of GMAC and BMAC, respec-

tively.
In closing this section we point out that linear transceivers are a

special subclass of the transceivers that we consider. In the BC case
they correspond to THP transceivers in which the feedback matrix
B = 0, and in the MAC case they correspond to DFE transceivers
in which BMAC = 0; see Figs 1 and 3.

3. CHANNEL UNCERTAINTY MODELS

We consider the following additive uncertainty model for the CSI
available at the transmitter:

hk = ĥk +ek, (10)

where ĥk is the transmitter’s estimate of hk, and ek is the corre-
sponding error. This can be equivalently written as H = Ĥ+E,
where ek is the kth row of E. We will develop design formulations
for robust transceivers channel uncertainty models that only assume
that the error ek is deterministically bounded. We will consider a
general model for bounded uncertainty sets that is suitable for sys-
tems in which the channel state information is quantized at the re-
ceivers and fed back to the transmitter; e.g., [7]. In these systems,
the transmitter can use its knowledge of the quantization codebook
used by the kth user to bound the error ek.

We will consider uncertainty sets of the form:

Uk(δk,Φk,Qk) =

{hk |hk = ĥk +ek = ĥk +
J

∑
j=1

w jφ
( j)
k , wT Qkw ≤ δ 2

k }. (11)

This model enables us to treat several different uncertainty regions
in a unified way. For example, it can model the following uncer-
tainty sets:
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• Ellipsoidal and Spherical Uncertainty Sets:
By choosing Qk = I, the uncertainty set in (11) describes an
ellipsoidal uncertainty region around the channel estimate ĥk.
The spherical uncertainty set with center ĥk and radius δk is is
the special case that arises when Φk, the matrix whose rows are
φ ( j)

k , is selected to be I. If a vector quantizer is employed at
the receivers, then the quantization cells in the interior of the
quantization region can be often approximated by ellipsoids.

• Interval Uncertainty Sets:
Interval constraints on an element of hk can also be modeled
as uncertainty sets of the form in (11). By taking φ j to be the
rows of I and Qk to be the matrix whose only non-zero element
is Qii = 1, then the uncertainty set in (11) models an interval
constraint on the ith entry of the error hk.

For uncertainty sets of the form in (11), robust downlink
transceivers that employ Tomlinson-Harashima precoding at the
base station will be presented in Section 4.

The above uncertainty model extends naturally to the case in
which the uncertainty region for each hk is described as the inter-
section of more than one uncertainty set U `

k of the form (11). In
that case, the uncertainty set is of the form

Ũk =
L
⋂

`=1

U
`

k (δk,Φk,Q
`
k). (12)

Note that there is no restriction in assuming that each U `
k has the

same uncertainty parameters δk and Φk, since Q`
k, in (11) can be

chosen to accommodate different sizes and geometrical regions.
Examples of constraint sets of the form in (12) include interval con-
straints on each of the entries of hk. In particular, if a simple scalar
quantizer is employed at the receivers, the quantization region can
be modeled using a set of interval constraints. Robust transceiver
designs for the case of multiple intersecting uncertainty set will be
presented in Section 4.1.

4. ROBUST THP TRANSCEIVER DESIGN: SINGLE
UNCERTAINTY SET FOR EACH USER

In this section we present a robust transceiver design for the case
in which each user’s channel lies within a given uncertainty set
Uk(δk,Φk,Qk); cf. (11). Our goal is to jointly design the trans-
mitter (i.e., B and P), and the equalizing gains of the receivers,
gk, so as to minimize the worst-case MSE over all admissible chan-
nels hk ∈ Uk(δk,Φk,Qk), subject to a total power constraint, and
B being a strictly lower triangular matrix.1 That is,

min
B,P,g

max
hk∈Uk

K

∑
k=1

‖gkhkP−mk −bk‖2 +σ2
n ‖g‖2 (13a)

s. t. Bi j = 0 1 ≤ i ≤ j ≤ K, (13b)

‖vec(P)‖2 ≤ Ptotal. (13c)

Our problem can be simplified by writing the this minimax problem
as the following minimization problem

min
B,P,g,t

K

∑
k=0

t2
k (14a)

s.t. ‖gkhkP−mk −bk‖ ≤ tk ∀hk ∈ Uk(δk,Φk,Qk),
(14b)

σn‖g‖ ≤ t0, (14c)
Bi j = 0 1 ≤ i ≤ j ≤ K, (14d)

‖vec(P)‖2 ≤ Ptotal. (14e)

1We have adopted the common implementation (e.g., [1, 2, 3, 4, 5, 6])
in which P,B and gk are jointly designed at the base station (using the
available CSI), and the base station informs each receiver of the equalizing
gain, gk, that it is to use.

For each k, (14b) generates an infinite set of constraints, one for
each hk ∈ Uk(δk). However, each of these infinite sets of con-
straints can be precisely characterized by the following inequality
[13, 14]:





tk −µk 0 ak
0 µk Qk δk(gkΦkP)
ak

H δk(gkΦkP)H tkI



 ≥ 0, (15)

where ak = gkĥkP−mk −bk. Using the characterization in (15),
the robust transceiver design can be formulated as:

min
B,P,g,
t,µ,α

α (16a)

s.t.
∥

∥

[σng
t

]∥

∥

2 ≤ α, (16b)




tk −µk 0 ak
0 µk Qk δk(gkΦkP)
ak

H δk(gkΦkP)H tkI



 ≥ 0, (16c)

Bi j = 0 1 ≤ i ≤ j ≤ K, (16d)

‖vec(P)‖2 ≤ Ptotal, (16e)

where we have used the fact that the optimal value for t0 is σn‖g‖.
The constraint in (16c) represents a set of K bilinear matrix inequal-
ities and hence the optimization problem in (16) is NP hard [15].
However, given initial values for P, B and g, one can find a locally
optimal solution by iteratively optimizing over P and B for fixed
g, and over g and B for fixed P. Each of those problems is implicit
in (16) and is a convex conic program that can be efficiently solved;
e.g., [16]. One natural choice of the starting point for this iterative
design would be the transceiver designed for the case in which the
estimates ĥk are assumed to be the actual channels; e.g., [6].

The formulation in (13) employs a simple constraint on the
transmitted power. However, other types of power constraints can
be incorporated into the robust minimax transceiver design without
compromising the convex conic nature of the steps in the proposed
iterative algorithm. In particular, one can impose constraints on the
power transmitted by each antenna, per-cell power constraints for
distributed antenna arrays, and spatial masking constraints, see [17]
for details.

4.1 Multiple Intersecting Uncertainties for Each User

The problem formulation in (13) can be generalized to the case in
which the uncertainty region Ũk for each hk is described as the in-
tersection of more than one uncertainty set of the form (11); cf. (12).
In that case, the problem is at least as hard as the case of a single
uncertainty set (the special case of (12) when L = 1). In particular,
in the general case when Uk is replaced by Ũk it is not possible to
characterize the infinite set of constraints of the form in (14b) by a
polynomial (in Nt ) number of constraints [14]. Therefore, the num-
ber of constraints in the subproblems in an iterative local optimiza-
tion algorithm analogous to to that described above for the problem
in (16) grows faster than any polynomial in Nt . As a result, each
of these subproblems is NP-hard, even though they remain convex.
However, by adopting a conservative approach one can obtain an
efficiently-solvable approximation to the problem with the uncer-
tainty set in (12). This conservative approach involves enveloping
(12) in a superset that can be described more efficiently, and then
minimizing the maximum MSE in this superset. Using the superset
characterization in [14] of sets of the form (12), it can be shown
that the solution of robust transceiver design problem in (13) for
the intersection of uncertainty sets in (12) is upper-bounded by the
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solution of the following optimization problem

min
B,P,g,

t,µ`
k,α

α (17a)

s.t.
∥

∥

[σng
t

]
∥

∥

2 ≤ α, (17b)




tk −∑` µ`
k 0 ak

0 ∑` µ`
k Q`

k δk(gkΦkP)
ak

H δk(gkΦkP)H tkI



 ≥ 0,

(17c)

Bi j = 0 1 ≤ i ≤ j ≤ K, (17d)

‖vec(P)‖2 ≤ Ptotal, (17e)

Similar to (16), a local optimal solution can be found by employing
an alternative optimization algorithm that optimizes over P and B
for fixed g, and over g and B for fixed P. In this conservative
approach, those (convex) problems can be efficiently solved.

5. UPLINK MINIMAX ROBUST DESIGNS

The proposed design framework for minimax robust transceivers for
the downlink is quite general and can be applied to uplink systems
as well. In this section we will provide explicit formulations of the
minimax robust designs for the dual MAC.

To derive the robust minimax design, we first observe that the
MSE expression for the kth user in the uplink is function is a func-
tion of all channels, not just its own. While these multiple sources
of uncertainty can complicate the design, one can write the total
MSE as

MSEMAC =
K

∑
k=1

‖GMAChH
k pMAC

k −mH
k − (bMAC

k )H‖2

+σ2
n tr{(GMAC)HGMAC}, (18)

where each term of the summation is subject to uncertainty from
one source only. Using (18) and the analysis in Section 4, the uplink
robust minimax design can be formulated as

min
BMAC,GMAC,
pMAC,t,µ ,β

β (19a)

subject to (19b)
∥

∥

∥

[

σnvec(GMAC)
t

]∥

∥

∥

2
≤ β , (19c)





tk −µk 0 (aMAC
k )H

0 µk Qk δk(pMAC
k ΦkG

MAC)
aMAC

k δk(pMAC
k ΦkG

MAC)H tkI



 ≥ 0,

(19d)

Bi j = 0 1 ≤ j ≤ i ≤ K, (19e)

‖pMAC‖2 ≤ Ptotal, (19f)

where aMAC
k =GMAChH

k pMAC
k −mH

k −(bMAC
k )H , and vec(·) is the

operator that stacks the columns of matrix sequentially to produce a
vector. Similarly, conservative formulations can be obtained for the
robust uplink designs with multiple intersecting uncertainty sets for
each channel. As was the case with the downlink, both problems are
NP-hard, but one can employ a local iterative algorithm in which a
convex conic program is solved at each iteration. In the formulation
in (19), the power constraint is a constraint on the total power trans-
mitted by the uses; cf. (19f). This constraint can be replaced by
individual power constraints of the form |pMAC

k |2 ≤ Ptotal-k without
disturbing the convex structure of the problem.

6. SIMULATION STUDIES

To compare the performance of the proposed designs with other ex-
isting approaches, we have simulated QPSK transmission over in-
dependent Rayleigh fading channels . We considered downlink sce-
narios with Nt = 4 and K = 4 users. The coefficients of the channel
matrix H were modeled as being independent circularly symmetric
complex Gaussian random variables with zero mean, and the per-
formance was evaluated in terms of the average bit error rate (BER)
over all users against the signal-to-noise-ratio, which is defined as
SNR = Ptotal/(Kσ2

n ). All TH precoding strategies assume a given
ordering of the users. Since finding an optimal ordering will in-
volve an exhaustive search over K! possible arrangements, a subop-
timal ordering is usually employed. We chose the suboptimal order-
ing proposed for MMSE Tomlinson-Harashima transceiver design
in [5], using the transmitter’s channel estimate Ĥ. This ordering
was used for all methods, including the proposed robust transceiver.
We considered systems that use feedback to provide the transmitter
with quantized version of the CSI, and we assumed that all K users
employ the same vector quantization codebooks. In these feedback
systems, the information available to the transmitter will include
the users’ codebooks and the statistics of the error resulting from
the use of these codebooks. Since we assume that each user’s chan-
nel is independent from the others, the transmitter can model the
error matrix E as being zero mean with independent rows ek and
second order statistics given by E{EEH} = ε2I. Thus, we have
‖E{EEH}‖= ε2. To simulate quantization errors, we will generate
matrices E such that the elements are independent and uniformly
distributed such that E{EEH}= ε2I. We will consider vector quan-
tization schemes in which the transmitter employs a robust THP
transceiver designed using spherical uncertainty regions ‖ek‖ ≤ δk.
To estimate δk, we observe that an appropriate estimate of ‖E‖ can

be ε , and since ‖E‖ ≤
√

∑k e
2
k , one can choose δk = ε/

√
K.

In the first experiment, we compare the performance of
the robust minimax Tomlinson-Harashima transceiver proposed
in Section 4 with that of the zero-forcing Tomlinson-Harashima
transceiver design (ZF-THP) in [3, 4], and the MMSE Tomlinson-
Harashima transceiver design (MMSE-THP) in [5]. In Fig. 4, the
performance of each method is plotted for values of ε2 = 0.03,0.05.
It can be seen that the performance of the downlink with interfer-
ence pre-subtraction is rather sensitive to the mismatch between the
actual CSI and the transmitter’s estimate of CSI. It can be also seen
that while the effect of noise is dominant at low SNR, the chan-
nel uncertainty dominates at high SNR, where the proposed robust
transceiver design performs significantly better than the other two
approaches. Fig. 4 also shows that in the presence of channel un-
certainty, both the ZF-THP and MMSE-THP designs have the same
performance limit at high SNR. This is due to the fact that the
MMSE method involves the addition of a regularization term whose
value is inversely proportional to Ptotal/(Kσ2

n ); see [5].
In the second experiment, we simulate a scenario with two dif-

ferent sets of users’ locations from the base station. The first two
users are assumed to be close to the base station and their channel
coefficients are generated using the above model but with variances
equal to 10. The other two users are assumed to be farther from
the base stations and their channel coefficients are generated using
unit variance. We plot the average BER of all users in addition to
the average BER of the two near users and the far users for value of
ε2 = 0.1. It can be seen from Fig. 5 that the advantage offered by
using a robust design is even more significant in the case of the near
users.

7. CONCLUSION

We have presented robust minimax designs for broadcast channels
that employ Tomlinson-Harashima transceivers. The robust designs
are based on a general uncertainty model that embraces different
uncertainty regions. We also showed that the robust designs can be
extended to multiple access channels transceivers that employ deci-
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Figure 4: Comparison between the performance of the proposed
robust minimax Tomlinson-Harashima transceiver, zero-forcing
Tomlinson-Harashima transceiver design (ZF-THP) in [3, 4], and
the MMSE Tomlinson-Harashima transceiver design (MMSE-THP)
in [5] for values of channel uncertainty ε2 = 0.03,0.05 for a system
with Nt = 4 and K = 4 using QPSK signalling. The upper per-
formance curve of each method corresponds to channel uncertainty
ε2 = 0.05
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Figure 5: Comparison between the performance of the proposed
robust minimax Tomlinson-Harashima transceiver, zero-forcing
Tomlinson-Harashima transceiver design (ZF-THP) in [3, 4], and
the MMSE Tomlinson-Harashima transceiver design (MMSE-THP)
in [5] for values of channel uncertainty ε2 = 0.1 for a system with
Nt = 4 and K = 4 using QPSK signalling. The curves with (+) mark-
ers and no markers represent the average BER of the two near and
the two far users, respectively.

sion feedback equalization. Simulation results showed that in pres-
ence of channel uncertainty, the proposed robust approaches can
result in significant improvement in the performance of THP-based
transceivers for broadcast channels.
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