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Abstract: The authors consider the design of a precoder for block transmission over a frequency-
selective fading channel that minimises the worst-case averaged pairwise error probability (PEP) of
the maximum likelihood detector. In applications in which the transmitter does not know the
channel, the scaled identity matrix is shown to be an optimal precoder for the general uncorrelated
frequency-selective Rayleigh fading channel. Such precoded communication systems automatically
guarantee that the maximum likelihood detector extracts full diversity and that the optimal coding
gain is achieved. A comparison of the error performance of the optimal precoded system with that
of other systems with unitary precoders shows that the optimal system obtains a significant SNR
gain (2–4dB).

1 Introduction

We consider wireless communication systems with a single
transmitting antenna and a single receiving antenna which
transmit data over a frequency-selective fading channel. The
systems which we consider mitigate the intersymbol
interference generated by the channel by transmitting the
data stream in consecutive equal-size blocks, which are
subsequently processed at the receiver on a block-by-
block basis, see, e.g. [1–6]. In order to remove inter-
block interference, some redundancy is added to each block
before transmission. There are several ways to add
redundancy (e.g. [1, 6]), but in this paper we will focus on
linearly precoded block-by-block communication systems
with zero-padding redundancy; e.g. [4–6]. To describe our
systems of interest in more detail, we assume that the
channel is of length at most L (i.e. that L is an upper bound
on the delay spread). The systems operate as follows: First,
a length K data symbol vector s is linearly precoded by a
K!Kmatrix F to form the vector x¼Fs. Then, L#1 zeros
are append to x to form x0 which is of length P¼K+L#1.
The elements of x0 are then serially transmitted through the
channel. The impulse response of the channel is denoted by
h ¼ ½h0; h1; . . . ; hL#1%T and is assumed to be constant over
the transmission of a block. The length P received signal
vector r can be written as

r ¼ HFsþ n ð1Þ
where n denotes the vector of noise samples at the receiver
and H denotes the P!K Toeplitz matrix [4–7]

H ¼
XL#1

k¼0

hkTk ð2Þ

where, for 0rkrL#1, 1rirP and 1rjrK, the (i, j)th

element of the matrix Tk is

Tk½ %i;j ¼
1; if i ¼ jþ k
0; otherwise

!
ð3Þ

For applications in which the transmitter knows the channel
impulse response, there exist solutions [3] to a large number
of precoder design problems for systems of the form in (1),
including maximisation of information rate [4], maximisa-
tion of a measure of the signal-to-noise ratio (SNR) [5],
minimisation of the mean squared error [5] and minimisa-
tion of the bit error probability for zero-forcing equalisation
[7]. However, in wireless communication systems, it is often
difficult to provide sufficiently timely and accurate feedback
to the transmitter for such designs to be practically viable.
Many proposed systems for such scenarios consist of a
transmitter designed without knowledge of the channel, and
a receiver which possesses perfect knowledge of the channel
and employs maximum likelihood (ML) detection. As the
pairwise error probability (PEP), see e.g. [8], is a convenient
measure of the performance of the ML detector at high
SNRs, a natural precoder design question is:

Question 1: If the transmitter does not have knowledge of
the channel and the receiver employs maximum likelihood
detection (with precise channel knowledge), which precoder
will minimise the pairwise error probability (PEP) of the
system?

In the following Sections we will show that under a
common channel model, the (scaled) identity precoder
FpIK is an optimal precoder. Such systems correspond to
simple serial transmission of the block of data with guard
times between the blocks. More specifically, we will show
that for an independent (but not necessarily identically
distributed) frequency-selective Rayleigh fading channel
model, the identity precoder achieves the minimum worst-
case average pairwise error probability. This result comple-
ments an independent result [9] which is weaker, but applies
to a broader class of channels. That result states that the
identity precoder achieves full diversity and maximum
coding gain, and hence that for a general correlated
Rayleigh fading channel model, the averaged Chernoff
bound on the error probability is minimised.
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2 Precoder design

Throughout this paper, we adopt the following assump-
tions:

(i) Perfect channel estimates are available at the receiver to
allow coherent detection.

(ii) The channel impulse response vector h is a sample of
zero-mean circularly-symmetric complex Gaussian random
vector with covariance matrix K ¼ diagfl1; l2; . . . ; lLg.
The matrix K is of rank NrL; i.e. L#N diagonal elements
are zeros. For notational convenience we defineQ to be the
L!N tall matrix containing the N columns of IL
corresponding to the nonzero values of lk. We also define
the N!N full rank matrix ~K ¼ QTKQ, which is the
covariance matrix of ~h ¼ QTh.

(iii) The elements of s are uncoded independent identically
distributed (i.i.d) equally likely signaling points from the
same constellation S, normalised so that E{s sH}¼ IK.

(iv) The noise vector n is zero-mean circularly-symmetric
complex white Gaussian noise with covariance N0Ip.

Given a channel realisation h, the maximum likelihood
(ML) detector and two vectors s and s0, the pairwise error
probability (PEP), P(s-s07h), is the probability of transmit-
ting s and deciding in favor of s0as at the decoder. Under
the above assumptions, the PEP can be written as [8]

P s ! s0jhð Þ ¼ Q
dr s; s0ð Þffiffiffiffiffiffiffiffi

2N0

p
# $

ð4Þ

where dr(s, s
0) is the Euclidean distance between the received

code words HFs and HFs0,

d2r s; s0ð Þ ¼ s# s0ð ÞHFHHHHF s# s0ð Þ ð5Þ

and

QðtÞ ¼ 1=
ffiffiffiffiffiffi
2p

p% & Z 1

t
e#t2=2dt

We will find it convenient to use the following alternative
expression for the Q function [10]:

Q tð Þ ¼ 1

p

Z p=2

0
exp # t2

2 sin2 y

# $
dy ð6Þ

At high SNRs, the union bound (e.g. [8]) can be used to
bound the block error probability Pble in terms of the
pairwise error probability

Pble )
X

s6¼s0
P sð ÞP s ! s0jhð Þ ¼

X

s6¼s0
P sð ÞQ dr s; s0ð Þffiffiffiffiffiffiffiffi

2N0

p
# $

ð7Þ

An observation which assists our analysis is that by using
the Toeplitz structure of H, the received signal vector (1)
can be rewritten as

r ¼ XF sð Þhþ n ð8Þ

where

XF sð Þ ¼ T0Fs;T1Fs; . . . ;TL#1Fs½ % ð9Þ

Using (9) we have that

d2r s; s0ð Þ ¼ hHXH
F eð ÞXF eð Þh ð10Þ

where e ¼ s# s0. By taking the average of (4) over the ran-
dom vector h, whose statistics are given in assumption (ii),

the average pairwise error probability can be written as

PF s ! s0ð Þ¼ 1

p

Z p=2

0

dy

det INþ 4N0 sin
2 y

' (#1 ~X
H
F eð Þ ~XF eð Þ~K

% &

ð11Þ

where ~XF eð Þ is defined by

~XF eð Þ ¼ XF eð ÞQ ð12Þ
and we have made the dependence of the PEP on F explicit.
From the union bound (7) we see (e.g. [8]) that when the
SNR is high (and the symbols are equally likely), the
average performance of the ML detector is dominated by
the worst-case averaged PEP. Therefore, our design
problem in question 1 can now be formally stated as:

Problem 1: Let p40 be fixed. Find a matrix F that
minimises the worst-case average pairwise error probability
PF(s-s0), subject to the power constraint tr (FHF)rp. That
is, find

F* ¼ arg min
tr FHFð Þ)p

max
s;s02Sk

s 6¼s0

PF s ! s0ð Þ

where SK ¼ S ! S ! + + + ! S.
To assist with our derivation of a solution to problem 1,

we let s be an element of the vector s and define the
minimum distance of the constellation S as

dmin ¼ min
s;s02S; s6¼s0

s# s0j j ð13Þ

Note that since s 2 SK , the minimum distance between
the vectors s and s0 is simply dmin: i.e.
mins;s02SK ;s 6¼s0 k s# s0 k¼ dmin. The proof of our main result
(theorem 1, below) will exploit the following two lemmas,
which are proved in the Appendix (Sections 6.1 and 6.2,
respectively). These lemmas generate lower and upper
bounds, respectively, on the worst-case average PEP.

Lemma 1: Let JN(a) denote the integral,

JN að Þ ¼ 1

p

Z p=2

0

YN

k¼1

1þ alk
sin2 y

# $#1

dy for a40 ð14Þ

Then we have that

max
s;s02SK ;s 6¼s0

PF s ! s0ð Þ , JN
d2minp
4N0K

# $

Lemma 2: Let G ¼ diagfg1; g2; . . . ; gNg with gnZ0. Then,
for any nonzero vector e, the following inequality holds:

det G þ ~X
H
IK

eð Þ~XIK eð Þ
% &

, det G þ d2minIN
' (

¼
YN

k¼1

gk þ d2min

' (
ð15Þ

where equality in (15) holds if and only if k e k¼ dmin.
We now formally state our main result.

Theorem 1: We have the following three statements:

(i) The precoder F* ¼
ffiffiffiffiffiffiffiffiffiffi
p=K

p
IK is an optimal solution for

problem 1.

(ii) The minimal value of the objective of problem 1 is

max
s;s02SK ; s 6¼s0

PF* s ! s0ð Þ ¼ JN
d2minp
4N0K

# $
ð16Þ

(iii) In addition, PF* s ! s0ð Þ ¼ JN d2minp=ð4N0KÞ
' (

if and
only if k s# s0 k ¼ dmin.
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Proof: First we notice that when F ¼ F* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=KÞ

p
IK ,

XF eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=KÞ

p
XIK eð Þ. In this case, we have

det IN þ 1

4N0 sin
2 y

~X
H
F* ðeÞ~XF* ðeÞ ~K

# $

¼ p
4N0K sin2 y

# $N

det ~K
' (

det G þ ~X
H

IK
ðeÞ~XIK ðeÞ

% &

ð17Þ
where

G ¼ 4N0K sin2 y
p

~K
#1

Using lemma 2, we obtain that for any nonzero vector e
and nonzero y in the interval [0, p/2]

det G þ ~X
H
IK
ðeÞ~XIK ðeÞ

% &
,
YN

k¼1

4N0K sin2 y
plk

þ d2min

# $

ð18Þ
Here, the inequality holds with equality if and only if s and
s0 are neighbour points, i.e. k s# s0 k ¼ dmin. Therefore,
combining (17) with (18) yields

det IN þ 1

4N0 sin
2 y

~X
H
F* ðeÞ~XF* ðeÞ ~K

# $

,
YN

k¼1

1þ d2minplk
4N0K sin2 y

# $

This results in

max
s;s02SK ; s6¼s0

PF* s ! s0ð Þ ) JN
d2minp
4N0K

# $
ð19Þ

where the inequality holds with equality if and only if
k s# s0 k ¼ dmin. Combining (19) with lemma 1 yields

min
trðFHFÞ)p

max
s;s02SK

s 6¼s

PF s ! s0ð Þ ¼ JN
d2minp
4N0K

# $

and hence statements (i), (ii) and (iii) of the theorem. &
We now present a sequence of observations regarding

theorem 1.

(i) Since 7siny7r1, we obtain from (11) that

PFðs ! s0Þ ) 1
2 detðIN þ ð4N0Þ#1 ~X

H
F ðeÞ~XFðeÞ ~KÞ#1, which

is the bound one would obtain by applying the Chernoff
bound to (7) and then taking the average over h. In some
related work on multiple antenna transmission and
reception over flat fading channels, certain ‘rank’ and
‘determinant’ criteria were derived [11, 12] in order to design
‘space–time’ codes which render the Chernoff bound ‘small’.
Applying these criteria to the precoder F, we find that the
choice F*, enables the ML detector to extract full diversity
and provides the optimal coding gain. However, theorem 1
tells us that the identity precoder not only extracts full
diversity and achieves the optimal coding gain, it actually
minimises the worst-case average pairwise error probability
(for the case of zero-padded block-by-block single antenna
transmission and reception over an independent frequency-
selective Rayleigh fading channel).

(ii) Theorem 1 also tells us that the optimal performance is
obtained by simply serially transmitting the data symbols
and then adding a ‘guard time’ by padding the appropriate
number of zeros. There is an interesting coincidence that
our optimal precoder for problem 1 is also an optimal
precoder for cyclic-prefix-based block transmission schemes
with linear zero-forcing or minimum mean squared error

equalisation [13] or an ‘iterated decision’ detector [14]. That
said, the diversity of our scheme is L whereas that of the
cyclic-prefix-based scheme [13] is only one.

(iii) Since the channel coeffcients are modelled as being
uncorrelated, one might suspect that any unitary precoder
would provide equally good performance. This would
indeed be true if the channel matrix H in (2) was derived
from an uncorrelated frequency-flat Rayleigh fading multi-
ple antenna channel [11, 12]. However, we consider the case
of single antenna frequency-selective channels and the
channel matrix has the Toeplitz structure illustrated in (2).
Hence it cannot absorb the unitary precoder without
changing the distribution of the channel coefficients. That
said, the matrix F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=KÞ

p
P diagðejy1 ; ejy2 ; . . . ; ejyK Þ,

where P is a K!K permutation matrix, is also an optimal
precoder in the sense of theorem 1. While the assumption
that the elements of h are uncorrelated is an idealisation that
facilitates some of the analysis herein, it is approximated
in practice when the channel path gains are uncorrelated
(as is often the case) and the spectral shaping is mild.

(iv) A desirable property of the optimally precoded system
in theorem 1 is that it preserves the Toeplitz structure of the
channel matrix, i.e. HF is also Toeplitz. This allows us to
take advantage of the Viterbi algorithm [15] to efficiently
implement the ML detector when the channel memory is
short and the constellation size is not too large. In addition,
this Toeplitz structure exposes the potential for blind
equalisation techniques based on second-order statistics.

3 Simulations

To verify our analysis, we demonstrate the error performance
using two simple examples. For simplicity, we assume that the
channel vector h is a sample of zero-mean circularly-symmetric
complex white Gaussian random vector with covariance
matrix K ¼ IL and that the elements of s are uncoded and
independent identically-distributed equally-likely 71s.

Example 1: In this example, we compare the error
performance of optimally precoded channels with different
memory. We consider systems for which the data symbol
block size is K¼ 8. We consider scenarios in which the
channel memory is L¼ 2, 3, 4 or 5. We define the SNR to
be the ratio of the transmitted signal energy per symbol to
the receiver noise variance per sample, i.e.

EfðFsÞHFsg=K
N0

¼ p
K N0

The average block error rates of our Monte Carlo
simulations are shown by the dashed lines in Fig. 1. To
check how close the dominant term in the union bound is to
the simulated block error rates for the optimally precoded
system, we also indicate the theoretic average block error
probability of the ML detector with the solid line in Fig. 1.
To be precise, the solid line is tKðSÞJLðd2minp=ð4N0KÞÞ,
where tKðSÞ denotes the ‘kissing number’, e.g. [8]. In our
system tKðSÞ ¼ 8. At high SNRs this is a good approxima-
tion of the true block error rate. The fact that our precoded
scheme achieves the full diversity, L, provided by the
channel is evident from the slopes of the curves in Fig. 1 at
high SNR, which are proportional to #L.
Example 2: In this example, we compare our optimal
precoder with the following precoders: Zero-padded
transmission precoded by the normalised inverse discrete
Fourier transform (IDFT) matrix, i.e. ‘zero-padded
OFDM’ [9]; and zero-padded transmission precoded by
the Hadamard matrix. For all three precoders, we employ
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ML detection. The scenario corresponds to the case of the
frequency-selective fading channel of length L¼ 3 from
example 1. It is clear from Fig. 2 that the identity precoder
can provide substantial SNR gain (up to 4dB).

4 Conclusions

We have shown that a scaled identity matrix is an optimal
zero-padded block precoder for the uncorrelated Gaussian
frequency-selective fading channel. The precoder is optimal
in the sense that it minimises the worst-case average
pairwise error probability of the maximum likelihood
detector in the scenario in which no channel state
information is available at the transmitter (except an upper
bound on the delay spread). Here, the average is taken over
the distributions of the channel coefficients, which are
assumed to be independent, but not necessarily identical,
Gaussian distributions. The worst case is taken over the set
of all pairs of data vectors. In addition to minimising the
worst-case pairwise error probability, the identity precoder

also guarantees that the maximum likelihood detector
extracts full diversity from channel and that the optimal
coding gain is achieved. Finally, our main result also
identifies the vector symbol pairs which achieve the worst-
case pairwise error probability. That information may be
useful in the design of an outer code for our systems of
interest. By choosing to minimise a measure of the pairwise
error probability, we have implicitly focused on high SNR
performance. However, our simulation results indicated
that the scaled identity precoder continues to perform well
at lower SNRs.
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6 Appendix

6.1 Proof of lemma 1
From the definition (12) of the signal matrix ~XFðsÞ, we
observe that all diagonal entries of ~X

H
F ðeÞ~XFðeÞ are equal

each other and that

~X
H
F ðeÞ~XFðeÞ

h i

k;k
¼ eHFHFe

for k ¼ 1; 2; . . . ;N , where the notation [A]k,k denotes the
kth diagonal entry. Therefore,

IN þ 4N0 sin
2 y

' (#1 ~X
H
F ðeÞ~XFðeÞ ~K

h i

k;k

¼ 1þ 4N0 sin
2 y

' (#1
lkeHFHFe
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Fig. 1 Simulated average block error rate (dashed) and the
theoretic approximation to the average block error probability
(solid) for optimally precoded schemes for frequency-selective fading
channels of lengths L¼ 2, 3, 4 and 5
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Fig. 2 Block error rate performance comparison of the optimally
precoded system (O-MLD) with systems which use the IDFT
precoder (DFT-MLD) or Hadamard precoder (HADA-MLD) for
the length L¼ 3 frequency-selective fading channel in example 1
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for k ¼ 1; 2; . . . ;N . Using Hadamard’s inequality [16], we
have

det IN þ
~X
H
F ðeÞ~XFðeÞ ~K
4N0 sin

2 y

 !

¼ det IN þ
~K
1=2 ~X

H
F ðeÞ~XFðeÞ ~K

1=2

4N0 sin
2 y

 !

)
YN

k¼1

1þ lkeHFHFe

4N0 sin
2 y

# $

ð20Þ

Let m ¼ argmin1)k)K ½FHF%k;k. Setting 7em7¼ dmin and
ek¼ 0, k ¼ 1; 2; . . . ;K; k 6¼ m in (20) yields

det IN þ
~X
H
F ðeÞ~XFðeÞ~K
4N0 sin

2 y

 !

)
YN

k¼1

1þ
d2minlk FHF

) *
m;m

4N0 sin
2 y

 !

ð21Þ

However, we know that

FHF
) *

m;m ) tr FHF
' (

=K ) p=K ð22Þ

Combining (22) with (21) leads to

det IN þ
~X
H
F ðeÞ~XFðeÞ ~K
4N0 sin

2 y

 !

)
YN

k¼1

1þ d2minplk
4N0K sin2 y

# $
ð23Þ

Therefore, for any nonzero vector e

1

p

Z p=2

0

dy

det IN þ 4N0 sin
2 y

' (#1 ~X
H
F ðeÞ ~XFðeÞ~K

% &

, JN
d2minp
4N0K

# $

This completes the proof of lemma 1. &

6.2 Proof of lemma 2
To simplify the proof of this lemma, we first state and prove
an auxiliary result which relates a measure of the distance
between matrices ~XIK sð Þ and ~XIK s0ð Þ to dmin. The statement
in the following lemma is more general than is needed to
prove lemma 2, but it may be of independent interest. For
notational convenience, let ~XIK e; i1; i2; . . . ; inf gð Þ denote
the matrix that remains after the columns of ~XIK eð Þ indexed
by i1; i2; . . . ; inf g have been removed.

Lemma 3: Let s; s0 2 SK and e ¼ s# s0. Then, for any
nonzero vector e, we have

det ~X
H
IK

e; i1; i2; . . . ; inf gð Þ~XIK e; i1; i2; . . . ; inf gð Þ
% &

, d2ðN#nÞ
min for n ¼ 0; 1; . . . ; N # 1 ð24Þ

where the inequality holds with equality if and only if s and
s0 are neighbours, i.e. if and only if ek k ¼ dmin.

Proof: Without the loss of generality, we can always assume
that e1 6¼ 0, where e1 is the first element of e. Otherwise, we
can permute the rows and columns of ~XIK ðeÞ such that the
first entry is nonzero. (Recall that row and column
permutations of a matrix X do not change the determinant

of XHX.) In this case, ~XIK ðeÞ can be written as

~XIK ðeÞ ¼

e1 0 . . . 0
e2 e1 . . . 0

..

.
e2 . .

. ..
.

eN . .
. . .

.
e1

..

.
eN . .

.
e2

eK . .
. . .

. ..
.

0 . .
. . .

.
eN

..

. . .
. . .

. ..
.

0 . .
.

0 eK

0

BBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCA

P!N

ð25Þ

(Although (25) has been written for the case where K4N,
the analysis is valid for any KZ1.) An important property
of ~XIK ðeÞ in (25) is that the submatrix consisting of the first
N rows of ~XIK ðeÞ is a lower triangular matrix with nonzero
diagonal entries. Now, if we eliminate any n columns
i1; i2; . . . ; inf g from ~XIK ðeÞ, we can always find matrices

that permute the rows and columns of the remaining matrix
~XIK e; i1; i2; . . . ; inf gð Þ so that it has a structure analogous
to that in (25). That is, we can find a P!P permutation
matrix P1 and an N # nð Þ ! N # nð Þ permutation matrix
P2 such that

P1
~XIK e; i1; i2; . . . ; inf gð ÞP2 ¼

A

B

# $

where A is an N # nð Þ ! N # nð Þ lower triangular matrix
with nonzero diagonal entries and B denotes the remaining
submatrix of P1

~XIK e; i1; i2; . . . ; inf gð ÞP2. Therefore, using
a standard result on the determinant of the sum of a
positive definite and a positive semidefinite matrix (e.g. [16,
p.484]), we have

det ~X
H
IK

e; i1; i2; . . . ; inf gð Þ ~XIK e; i1; i2; . . . ; inf gð Þ
% &

, det AHA
' (

þ det BHB
' (

, d2ðN#nÞ
min ð26Þ

The first inequality in (26) holds with equality if and only
if B is the zero matrix, and the second inequality holds with
equality if and only if det BHB

' (
¼ 0 and AHA is diagonal

with diagonal elements equal to d2min. Therefore, both
inequalities in (26) hold with equality if and only if s and s0

are neighbouring points. This completes the proof of
lemma 3. &

We now proceed with the proof of lemma 2. For
simplicity, we introduce the following notation:

D g1; g2; . . . ; gN ; ~XIK ðeÞ
' (

¼ det G þ Rð Þ ð27Þ

where R ¼ ri;j
' (

1)i;j)N¼ ~X
H
IK
ðeÞ ~XIK ðeÞ. We will prove

lemma 2 via induction on N.
When N¼ 1, the matrices in (15) collapse to scalars and

the inequality is obtained directly. However, to simplify the
proof of the inductive step, we now explicitly consider the
case in which N¼ 2. In that case

R ¼ r11 r12
r*12 r22

+ ,
ð28Þ

and hence

D g1;g2; ~XIK ðeÞ
' (

¼det G þ Rð Þ¼ g1 þ r11 r12
r*12 g2 þ r22

----

---- ð29Þ
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Expanding the determinant in (29) yields

D g1;g2; ~XIK ðeÞ
' (

¼
g1 r12
0 g2 þ r22

----

----þ
r11 0

r*12 g2

----

----þ
r11 r12
r*12 r22

----

----

¼ g1 g2 þ r11ð Þ þ g2r22 þ det ~X
H
IK
ðeÞ ~X IK ðeÞ

% &

¼ g1 g2 þ ~X
H
IK e; f1gð Þ ~XIK e; f1gð Þ

% &

þ g2 ~X
H
IK

e; f2gð Þ ~XIK e; f2gð Þ þ det ~XH
IK

eð Þ~XIK eð Þ
% &

¼ g1D g2; ~XIK e; f1gð Þ
' (

þ g2D 0; ~XIK e; f2gð Þ
' (

þD 0; 0; ~XIK eð Þ
' (

ð30Þ
Using lemma 3 we have that

D g2; ~XIK e; f1gð Þ
' (

¼ g2 þ ~X
H
IK

e; f1gð Þ ~XIK e; f1gð Þ
, g2 þ d2min ð31aÞ

D 0; ~XIK e; f2gð Þ
' (

¼ ~X
H
IK

e; f2gð Þ~XIK e; f2gð Þ , d2min ð31bÞ

D 0; 0; ~XIK eð Þ
' (

¼ det ~XH
IK

eð Þ~XIK eð Þ
% &

, d4min ð31cÞ

where the inequalities in (31) hold with equality if and only
if k e k ¼ dmin. Combining (31) with (30) we have that

D g1; g2; ~XIK eð Þ
' (

, g1 g2 þ d2min

' (
þ g2d2min þ d4min

¼ g1 þ d2min

' (
g2 þ d2min

' (

¼ det G þ d2minI2
' (

¼ D g1; g2; dminI2ð Þ
Thus, lemma 2 holds for N¼ 2.

Now to prove that lemma 2 holds for all positive integers
N, we make the inductive hypothesis that lemma 2 holds for
N¼M and show that this hypothesis implies that lemma 2
holds for N¼M+1. To that end, we note that by following
the case where N¼ 2 we have

D g1; g2; . . . ; gM ; gMþ1; ~XIK eð Þ
' (

¼ g1D g2; . . . ; gM ; gMþ1; ~XIK e; f1gð Þ
' (

þD 0; g2; . . . ; gM ; gMþ1; ~XIK eð Þ
' (

¼
XMþ1

k¼1

gkD 0; . . . ; 0;|fflfflfflffl{zfflfflfflffl}
k#1

gkþ1; . . . ; gM ; gMþ1; ~XIK e; fkgð Þ

0

@

1

A

þD 0; 0; . . . ; 0; 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Mþ1

; ~XIK eð Þ

0

@

1

A ð32Þ

Now using lemma 3 and exploiting the inductive hypothesis,
we have

D 0; . . . ; 0;|fflfflfflffl{zfflfflfflffl}
k#1

gkþ1; . . . ; gM ; gMþ1; ~XIK e; fkgð Þ

0

@

1

A

, D 0; . . . ; 0;|fflfflfflffl{zfflfflfflffl}
k#1

gkþ1; . . . ; gM ; gMþ1; dminIM

0

@

1

A ð33Þ

D 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
Mþ1

; ~XIK eð Þ

0

@

1

A , D 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
Mþ1

; dminIMþ1

0

@

1

A ð34Þ

where the inequalities hold with equality if and only if
k e k¼ dmin. Therefore

XMþ1

k¼1

gkD 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
k#1

; gkþ1; . . . ; gM ; gMþ1; ~XIK e; fkgð Þ

0

@

1

A

þD 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
Mþ1

; ~XIK eð Þ

0

@

1

A

,
XMþ1

k¼1

gkD 0; . . . ; 0;|fflfflfflffl{zfflfflfflffl}
k#1

gkþ1; . . . ; gM ; gMþ1; dminIM

0

@

1

A

þD 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
Mþ1

; dminIMþ1

0

@

1

A

¼ D g1; g2; . . . ; gM ; gMþ1; dminIMþ1ð Þ ð35Þ

Combining (33) with (35) we have

D g1; g2; . . . ; gM ; gMþ1; ~XIK eð Þ
' (

, D g1; g2; . . . ; gM ; gMþ1; dminIMþ1ð Þ

where the inequality holds with equality if and only if
k e k¼ dmin. Thus if lemma 2 holds for N¼M, then it
also holds for N¼M+1. This completes the proof of
lemma 2. &
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