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Channel gating (cont.): 
The stochastic nature of ion channel gating arises 
from thermal energy affecting the movement of the 
gating sections of the channel protein. 
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Channel gating (cont.): 
Assuming that the energy required to open a closed 
channel is supplied through the movement of a charge Qg 
=  zqqe through a transmembrane potential Vm, then 
Boltzmann’s equation expresses the ratio of open to closed 
channels as: 
 
 
 
 
where Boltzmann’s constant k =  1.38 £  10¡ 23 J/ K and w is 
the energy required to open the channel when the 
membrane potential is zero, i.e., with Vm =  0. 



4 

Channel gating (cont.): 
Consequently, the fraction of open channels is: 
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Macroscopic channel kinetics: 
Consider a large membrane patch containing N 
channels of a particular ion species. 
We assume that each channel is either in an open 
or closed state and that the transition between 
these states is stochastic. 
If the number of closed and open channels at any 
instant be Nc(t) and No(t), respectively, where Nc 
and No are random variables, then: 
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Macroscopic channel kinetics (cont.): 
We assume state transitions to follow first-order 
kinetics. (We will check this assumption later!) 

Assuming the rate constant for switching from a 
closed to an open state is α while that for switching 
from an open state to a close state is β, then the 
average behaviour is described by: 
 
 
 
(Note: From empirical data and our understanding of the 
structure of voltage-sensitive gating particles, we expect α 
and β to depend on the transmembrane potential.) 
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Macroscopic channel kinetics (cont.): 
From Eqn. (4.7) we have: 
 
 
 
and: 
 
 
 
Combining Eqns. (4.6) and (4.9) gives: 
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Macroscopic channel kinetics (cont.): 
The solution of Eqn. (4.10) for t ¸  0 in the case of 
constant α and β is: 
 
 
Note:- 
 The parameter A is determined by the initial 

conditions. 
 No(t) decays with a time constant of 1/ (α+ β). 
 The steady-state value is: 
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Macroscopic channel kinetics (cont.): 
For example, if N =  100, No(0) =  0 and α =  β =  
100 s¡ 1 for t ¸  0, then the following time-course for 
No(t ) results. 
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Channel statistics: 
Under steady-state conditions, with an average 
number < No>  channels open and an average 
number < Nc>  channels closed, the probability of a 
single channel being open is: 
 
 
 
and the probability of a single channel being 
closed is: 
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Channel statistics (cont.): 
The probability of a channel being either open or 
closed must be unity, i.e.: 
 
 
 
For N channels, the probability of exactly No 
channels being open is described by the Bernoulli 
distribution: 
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Channel statistics (cont.): 
The mean number of open channels is: 
 
 
and the variance in the number of open channels 
is also proportional to N. 
Consequently, the relative noise level (the square-
root of the variance divided by the mean) is 
proportional to N¡ 1/ 2.  Thus, patches of membrane 
with a small number of channels (e.g., nodes of 
Ranvier) exhibit relatively more noise. 
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Channel statistics (cont.): 
Consider N potassium channels, each with the 
single-channel current: 
 
 
The mean macroscopic current is then: 
 
 
such that the mean macroscopic conductance is: 
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Introduction to the Hodgkin-Huxley 
membrane model: 
The derivation of equation (4.11) — the differential 
equation for number of open channels — assumed 
that the channel opening/closing kinetics are first-
order.  However, many ion channels have multiple 
gating “particles” within the channel protein, each 
with their own independent voltage sensor.  
Consequently, the opening/closing kinetics for the 
entire channel may not be so simple.  In 1952, 
Hodgkin and Huxley published mathematical 
expressions for channel kinetics that fit channel 
conductance data from squid giant axons. 
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Introduction to the Hodgkin-Huxley 
membrane model (cont.): 
Consider a potassium channel with:- 
 four independent gating “particles” 
 the probability of a particle being open is n )  
 the probability p of a potassium gate being 

open is n4 

The dynamics of each potassium gating particle 
can be described by: 
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Introduction to the Hodgkin-Huxley 
membrane model (cont.): 
The maximum conductance of N potassium 
channels is then: 
 
 
For large N, where expected values can be 
assumed: 
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Introduction to the Hodgkin-Huxley 
membrane model (cont.): 
The solution of Eqn. (4.31) for t ¸  0 in the case of 
constant αn and βn is: 
 
 
where no is the initial probability of an open particle 
and the time constant and asymptotic values are, 
respectively: 
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