ELEC ENG 3BB3 – Cellular Bioelectricity (2014) <u>Tutorial #2</u>

- 1. Consider an excitable cell with $C_m = 1 \,\mu\text{F/cm}^2$, sodium equilibrium potential and resting conductance respectively of $E_{\text{Na}} = 90 \,\text{mV}$ and $g_{\text{Na}} = 0.2 \,\text{mS/cm}^2$, and potassium equilibrium potential and respective conductance respectively of $E_{\text{K}} = -90 \,\text{mV}$ and $g_{\text{K}} = 1.6 \,\text{mS/cm}^2$.
 - a. Find V_{rest} .
 - b. If $V_m(t) = V_{\text{rest}}$ and $I_m(t) = 0$ for t < 0, and $I_m(t) = 36 \,\mu\text{A/cm}^2$ for $t \ge 0$, then find $V_m(t)$ for $t \ge 0$.
 - c. If $V_m(t) = V_{\text{rest}}$, $I_m(t) = 0$ and $g_{\text{Na}}(t) = 0.2 \text{ mS/cm}^2$ for t < 0, and $I_m(t) = 0$ and $g_{\text{Na}}(t) = 0.4 \text{ mS/cm}^2$ for $t \ge 0$, then find $V_m(t)$ for $t \ge 0$.
 - d. What is $V_m(t \to \infty)$ if $I_m(t) = -36 \,\mu\text{A/cm}^2$ and $g_{\text{Na}}(t) = 0.2 \,\text{mS/cm}^2$ for $t \ge 0$? What is $V_m(t \to \infty)$ if $I_m(t) = -36 \,\mu\text{A/cm}^2$ and $g_{\text{Na}}(t) = 0.4 \,\text{mS/cm}^2$ for $t \ge 0$?
- 2. An excitable cell has the parallel-conductance model for a membrane patch shown below.

Consider the case where the membrane is at rest for time t < 0, and the resting sodium conductance g_{Na} is 0.05 mS/cm². If the membrane is then subjected to an intracellular current injection of $I_0 = -15 \,\mu\text{A/cm}^2$ for time $t \ge 0$ and at t = 2 ms the sodium conductance switches instantaneously to a new value of 1.0 mS/cm² and stays at that conductance for $t \ge 2$ ms, find the membrane potential response $V_m(t)$ for all $t \ge 0$.