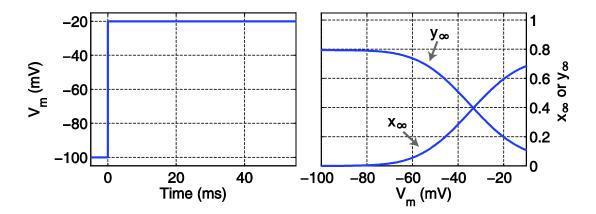
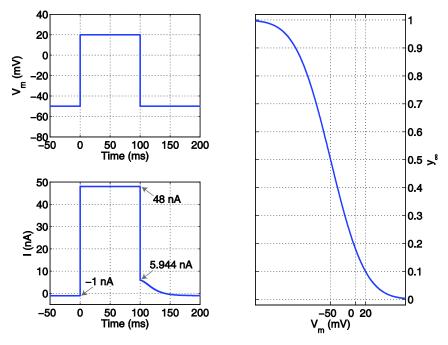

ELEC ENG 3BB3 – Cellular Bioelectricity (2013) Tutorial #3



Assume that the measured transmembrane current I(V,t) is comprised of a passive leakage current $I_L(V) = g_L(V - E_L)$ and a time- and voltage-dependent current $I_y(V,t) = \overline{g}_y y (V - E_y)$, where the dynamics of the gating particle y are first-order, i.e., $dy(V,t)/dt = (y_{\infty} - y)/\tau_y$. The time-constant τ_y is independent of voltage, whereas the voltage dependence of the steady-state value $y_{\infty}(V)$ is shown in the figure above. It is known that the Nernst equilibrium potential $E_y = -70$ mV.


- a. Is the current $I_y(V,t)$ activated by depolarization or hyperpolarization? Is $I_y(V,t)$ an inward or an outward current in the voltage-clamp experiment performed above?
- b. From the results of the voltage-clamp experiment, find the values of g_L , E_L and \overline{g}_y .

2. Consider the voltage clamp experiment in the left panel below applied to an ion channel with the steady-state activation/inactivation characteristics given in the right panel below.

If the conductance per unit area for this ion channel is $g_{xy}(t) = 200 \cdot x^3(t) \cdot y^2(t) \,\mu\text{S/cm}^2$ and the gating particle kinetics are first-order, i.e., $dx/dt = (x_{\infty} - x)/\tau_x$ and $dy/dt = (y_{\infty} - y)/\tau_y$, with $\tau_x = 1 \text{ ms}$ and $\tau_y = 8 \text{ ms}$, then derive an expression for $g_{xy}(t)$ for $t \ge 0$ in response to the voltage step shown above and sketch the approximate form of $g_{xy}(t)$ for $t \ge 0$.

3. The results of a voltage-clamp experiment are shown below.

Assume that the measured transmembrane current $I(V_m, t)$ is comprised of a passive leakage current $I_L(V_m) = g_L(V_m - E_L)$ and a time- and voltage-dependent current $I_y(V_m, t) = \overline{g}_y y^3 (V_m - E_y)$, where there are three y gating particles per channel and the dynamics of each gating particle y are first-order, i.e., $dy(V_m, t)/dt = (y_m - y)/\tau_y$. The time-constant τ_y is independent of voltage, whereas the voltage dependence of the steady-state value $y_m(V_m)$ is shown in the figure above.

- a. From the results of the voltage-clamp experiment, find the values of g_L , E_L , \overline{g}_v and E_v .
- b. Is the current $I_y(V_m,t)$ activated by depolarization or hyperpolarization? Is $I_y(V_m,t)$ an inward or an outward current in the voltage-clamp experiment performed above?