## ELEC ENG 3BB3 – Cellular Bioelectricity (2014) Tutorial 7

1. A patch of membrane at 21°C has the following intra- and extra-cellular ionic concentrations:

| Ion            | [C] <sub>in</sub> (mM) | $[C]_{out} (mM)$ |
|----------------|------------------------|------------------|
| $\mathbf{K}^+$ | 200                    | 5                |
| $Na^+$         | 10                     | 150              |

- a. If the resting conductances of voltage-gated potassium and sodium channels in this patch of membrane are  $g_{\rm K} = 2.0 \,\mathrm{mS/cm^2}$  and  $g_{\rm Na} = 0.05 \,\mathrm{mS/cm^2}$ , respectively, find the resting potential  $V_{\rm rest}$  for this patch of membrane.
- b. If a postsynaptic receptor in this patch of membrane has maximum conductances for potassium and sodium of  $g_{\text{syn,K}} = 10 \text{ mS/cm}^2$  and  $g_{\text{syn,Na}} = 5 \text{ mS/cm}^2$ , respectively, determine whether the synapse is excitatory or inhibitory.
- 2. The subthreshold behaviour of a neural soma can be described by the circuit diagram shown below.



The neuron has a threshold potential of  $V_{\text{th}} = -40 \text{ mV}$ . Synaptic input onto this soma consists of one inhibitory synapse that produces the current:

$$I_{\mathrm{I}} = g_{\mathrm{I}}(t) [V_m - E_{\mathrm{I}}].$$

Consider the case where the membrane is at rest (i.e.,  $V_m = V_{rest}$ ) and the inhibitory conductance  $g_1 = 0$  nS for time t < 0. At time t = 0, a step current of  $I_{inj} = 0.5$  nA is injected into the interior of the soma. Assume that the inhibitory synaptic conductance  $g_1$  steps instantaneously at time t = 2 ms to a new value in response to neurotransmitter binding and remains at that value until at least t = 4 ms.

What is the minimum value to which the inhibitory conductance  $g_1$  can step at time t = 2 ms in order to stop the membrane potential  $V_m$  from reaching the threshold potential  $V_{th}$  by time t = 4 ms?