
ELEC ENG 3BB3 – Cellular Bioelectricity (2014) <u>Tutorial 8</u>

1. An action potential with the spatial waveform illustrated below is propagating along a fiber.

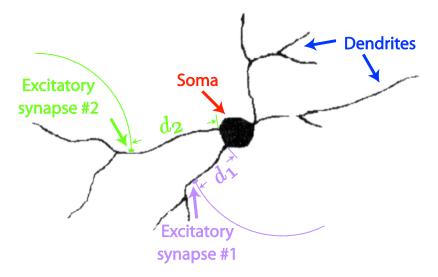
The relative transmembrane potential can be described by:

$$v_m = \begin{cases} 0, & \text{for } x < 0, \\ 700 \, x \left(e^{-5x} - e^{-10x} \right), & \text{for } x \ge 0, \end{cases}$$

where v_m is in units of mV and x is in units of cm.

The fiber has a diameter of $d = 5 \,\mu\text{m}$ and an axoplasmic conductivity of $\sigma_i = 0.04 \,\text{S/cm}$.

Find the strengths and locations of *all* the source models, i.e., distributed & lumped monopoles and distributed & lumped dipoles, for the resulting extracellular potential field.


2. A patch of membrane at 25°C has the following intra- and extra-cellular ionic concentrations:

Ion	[C] _{in} (mM)	$[C]_{out} (mM)$
\mathbf{K}^+	202.9	9
Na^+	10	152.75

A postsynaptic receptor channel in this patch of membrane is permeable to both potassium and sodium when open. The conductances can be described by $g_{\text{syn,K}}(t) = 4te^{-t/5} \text{ mS/cm}^2$ and $g_{\text{syn,Na}} = 6te^{-t/5} \text{ mS/cm}^2$, respectively, for neurotransmitter binding at time t = 0.

- a. What are the *peak* conductances for sodium and potassium in this ligand-gated ion channel?
- b. What is the reversal potential E_{svn} for this synaptic ion channel?
- c. If the membrane's resting potential $V_{\text{rest}} = -65 \text{ mV}$, is the synapse excitatory or inhibitory?

3. Consider the neuron shown below.

Assume:

- i. the extracellular axial resistance is negligible, i.e., $r_e \approx 0$;
- ii. the membrane specific resistance is $R_m = 15 \text{ k}\Omega \cdot \text{cm}^2$ and the membrane specific capacitance is $C_m = 1 \,\mu\text{F}/\text{cm}^2$ for the entire cell;
- iii. the threshold potential at the soma is 30 mV above the resting membrane potential;
- iv. dendrite #1 with the excitatory synapse #1 can be modeled by an infinite uniform cable with a radius of $a_1 = 2 \,\mu\text{m}$ and an intracellular resistivity of $R_i = 200 \,\Omega \cdot \text{cm}$;
- v. dendrite #2 with the excitatory synapse #2 can be modeled by an infinite uniform cable with a radius of $a_2 = 3 \,\mu\text{m}$ and an intracellular resistivity of $R_i = 200 \,\Omega \cdot \text{cm}$;
- vi. synapse #1 is at a distance $d_1 = 20 \,\mu\text{m}$ from the soma;
- vii. synapse #2 is at a distance $d_2 = 30 \,\mu\text{m}$ from the soma;
- viii. an input at synapse #1 can be approximated by a step current injection that causes a steadystate depolarization of $v_1 = 50 \text{ mV}$ at the site of the synapse; and
- ix. an input at synapse #2 can be approximated by a step current injection that causes a steadystate depolarization of $v_2 = 55 \text{ mV}$ at the site of the synapse.
- a. How long would it take for inputs at synapse #1 and synapse #2 each to individually cause the membrane potential at the soma to reach threshold?
- b. Which is faster to reach threshold? Explain why.