Coupling Capacitors and Decoupling Capacitors:

- Coupling Capacitors
 - o Block DC signals, AC signals pass through
 - Connected in series with incoming signal
 - A theoretical 'extreme' (passive) high pass filter (all frequencies except DC) where the resistor value is very small >> 0.
 - If the resistor value was zero, all of the signal would just go to ground; impractical in reality
 - Used in AC amplifiers to stop signals from interfering with DC bias of transistors
- Decoupling Capacitors (AKA Bypass Capacitors)
 - Block AC signals, DC signals pass through
 - Connected in parallel to incoming signal
 - A theoretical 'extreme' (passive) low pass filter (only DC signal passes through) where the R value is very small
 - Used to smooth signals
 - Absorbs any excess (AC or rapidly changing) voltage and will shoot it into ground
 - Will provide voltage if the incoming signal drops off temporarily

Passive vs. Active Filters

Passive filters work better in low frequency applications (< 100 kHz) and for circuits where you do not want an external power source or require signal amplification. Active filters use chips/OP-AMPS, which require a positive and negative supply, to amplify the signal and/or buffer it (recall voltage/current buffer circuits).

High Pass and Low Pass Filters

- Just coupling/decoupling capacitors with the addition of one or more resistors
- You must modify the capacitor and resistor values in order to get the desired cut-off frequency (f_c) of your circuit. The equation depends on the kind of filter you wish to build.
- High Pass Filters
 - Remove low frequency signals, allow high frequency signals to pass through
 - Passive, first order HPF

 $f_H = \frac{1}{2\pi RC}$

High Pass Filter

• Active, first-order, non-inverting HPF with amplification

o Active, first order, inverting HPF with amplification

- Low Pass Filters
 - o Remove high frequency signals, allow low frequency signals to pass through
 - Passive, first order LPF

o Active, first-order, non-inverting LPF with amplification

2

• Active, first order, inverting LPF with amplification

Active, second-order LPF
Circuit schematic for Sallen-Key topology with unity gain

Coefficients for Second-Order Filters

	Butterworth	3 dB Chebyshev
a1	1.4142	1.065
b1	1	1.9305
Q	0.71	1.3
R_4/R_3	0.568	0.234

Notes:

- An inverting amplifier shifts the phase of the input signal by 180 degrees, which is the same as flipping the signal along its x-axis (inverting it).
- Increasing the order of the circuit increases the slope of the cut-off. This can also be modified using different types of filters:

Figure: Amplitude response of a Butterworth and Chebyshev LPF

- Butterworth
 - Provides maximum pass band flatness. This allow for a clean, consistent signal to pass through.
 - In Fig. X, the higher the order, the longer the pass band at the same cut-off frequency and the steeper the cut-off.
- > Chebyshev
 - Provides a steeper slop at the cut-off, but inconsistent signal amplitude at the pass band.
 - In Fig. X, the higher the order, the more ripples in pass band at the same cut-off frequency and the steeper the cut-off.
 - Each ripple equals one second-order filter stage. I.e. two ripples means it's a fourthorder filter.
 - Filters with an even order create ripples above the 0 dB line and filters with an odd order create ripples below the 0 dB line.
- o To easily create a higher order filter you just cascade lower order filters.

Figure: A fourth-order low pass filter circuit, non-inverting, unity gain