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Computer analysis of EEG 
EEG scientists must be especially wary of mathematics in search of applications – after 
all the number of ways to transform data is infinite.  In evaluating new methods, the 
central question is not what EEG can do for mathematics, but rather what mathematics 
can do for EEG. Avoid the approach of some signal processors – have Matlab toolbox, 
will travel to any problem. 
We may wish to simply reduce the data to a more manageable form.  Looking at EEG in 
its raw form is tedious and inter-patient comparisons impossible.  The spatial and 
temporal properties of EEG can vary widely, and consequently no single method is 
universally applicable. However, since frequency features have been used over the years 
to identify EEG under different brain states, spectral analysis and spectral coefficients are 
a logical start to compressing the data and identifying sensitive features. One error in the 
past has been to think of each frequency or band originating from a particular source.  
Rather, the brain is a dynamic complex process with regions constantly changing in both 
function and size.  This suggests that analyses of spatial properties of the EEG spectrum 
are required – measures of phase synchronization between different brain regions appear 
especially promising.  If you think of the concept of brain cells with synchronous (in 
phase dipoles) activity growing and diminishing as the brain changes state, this approach 
would be consistent with some modern ways of viewing brain activity.  Coherence, a 
method of determining phase synchronization using Fourier analysis, is one such method 
but others such as principal components analysis, and propagation velocities 
determination across the scalp are also applicable here. The methods chosen should be 
based on the theoretical model of EEG and brain behaviour (inexact as that may be) since 
we do not want to fall into the trap that our results are determined by the assumption 
inherent to and limitations of the analysis method chosen.  In other words we should have 
some idea why a particular approach may give useful results rather than embark on 
fishing expeditions. Here a theoretical approach may guide us in determining the 
limitations of different methods and guide us in our instrumentation and experimental 
design. 
 
Synaptic Action Generates EEG 
Our theoretical model could be the cell assemblies discussed in EEG-1, which can range 
from small local networks to sizes up to the entire brain, all connected in a dynamic 
communication network.  These can develop, disconnect and reform on roughly 10 to 
100 ms timescales.  EEG is a very large-scale measure of brain source activity, 
apparently recording some mixture of cell assembly and global activity organized over 
macroscopic (cm) and even whole brain spatial scales.  This approach can even account 
for very localized sources such focal epilepsy or short latency evoked potentials which 
could be the result of isolated cell assemblies.  One can think of large-scale cortical and 
scalp potentials being generated by millisecond scale modulations of synaptic current 
sources at the surfaces of neocortical neurons about longer time-scale background 
neuromodulator activity all caused by neurotransmitter release and absorption.  
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Although cortical and scalp potentials are generated by microsources s(rn, t) associated 
with synaptic action, it is more convenient to think of the intermediate mesosource 
function P(r,t)  or dipole moment per unit volume.  The potential anywhere in the brain 
can then be thought of the weighted integral of all active mesosources. 
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Where there are N volumes (voxels) in the brain and each gn is determined by the 
distance from the nth voxel to the measurement site and the intervening volume 
conductor.  To be measurable at the scalp there must be sufficient mesosources (several 
cm) synchronously active (dipoles lined up) and these must be within cm of the recording 
electrode. 
 
Fourier Analysis 
The earliest form of spectral analysis was zero-crossing detection but modern FFT 
software has made this redundant.  In Fig 9.1 the raw EEG is shown as example 2 sec 
windows while the frequency power spectra are shown as the averages of 31 windows.  
Averaging the results of 1 min of EEG is more representative of the ongoing EEG. The 
power spectra (amplitude squared) is a measure of the power at each frequency. 
Fourier analysis is concerned with expressing an arbitrary time series such as EEG as a 
sum of sine waves with different frequencies. 
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To avoid aliasing (higher frequencies being misrepresented as lower frequencies, the time 
sampling rate must be at least twice the highest frequency component of the EEG signal.  
To be safer we should use he engineer’s sampling rate where 
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Figure 9.2 shows the effects of undersampling. 
 
If there are N data samples in your time series and the sampling interval is Δt, then the 
total window length in time is T.  The FFT algorithm also returns N frequency 
coefficients with a frequency separation of 
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and the total frequency covered is sampF N f f= Δ = sampF N f f= Δ =  
Only the first N/2 coefficients can be considered and their values doubled since the other 
N/2 are the mirror image of them (they really represent the negative frequency 
coefficients in the Fourier series). That is you obtain frequency coefficients over the 
range fsamp/2.  The first coefficient represents the average or DC value and should be 
ignored since the EEG signal is AC coupled.  In commercial machines the sampling rate 
is set to 200 Hz for spontaneous EEG and no more than 500 Hz for longer latency evoked 
potentials.  The signal is lowpass filtered at 70 Hz to avoid aliasing. 
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To get accurate frequency coefficients it is assumed that each frequency in the signal has 
an integer number of periods.  This is not the case in practice especially when the time 
data window is short compared to the periods of the frequency components.  The result is 
that some of the power in each frequency component “bleeds” into the neighbouring 
coefficients, an effect known as “fence picketing”.  Figure 9.3 shows this effect.  For the 
mathematically inclined selecting a data window (collecting a fixed time duration) is 
equivalent to multiplying the infinite EEG signal by a rectangular data window function.  
This multiplication in the time domain is equivalent to convolution in the frequency 
domain resulting in a sinc function being convolved with the spectrum of the signal. One 

 3



 
way of overcoming this is to multiply the data window by a function that begins and ends 
in zero, typically some function including a raised cosine such as the Hamming or 
Hanning window.   
 
Time Domain Spectral Analysis 
Spectral analysis allows us to assess statistical properties of the oscillations in different 
frequency bands.  Each EEG signal recorded is one realization of a stochastic process. 
The amplitude spectrum of one epoch of EEG is an exact representation of the frequency 
content of that particular signal epoch, but only provides one observation about the 
stochastic process.  An ensemble of K observations Vk(t) must be used to make a 
statistical estimate of the power spectrum (auto spectral density function) of an EEG 
signal.  The power spectrum provides a decomposition of the variance of the signal as a 
function of frequency.  The ensemble mean of the observations 
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and the power spectrum provide all that is required to estimate the signal probability 
density function.  It is assumed in spectral analysis that the signal is stationary (it is 
weakly stationary if the mean and power spectrum are invariant with shifts in time.  This 
can generally be assumed true for spontaneous EEG over a period of 10 to 20 sec or even 
longer if the subject doesn’t change the brain’s state but is definitely not true for evoked 
potential data.  One can still perform Fourier analysis but the results will have to be 
interpreted differently. 
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As is the case of any other statistical measure, we can never know the actual power 
spectrum of a stochastic process.  Rather we can find an estimate of the power spectrum 
if we obtain the spectra for K epochs. That is 
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For each sample Vk(tn) Fourier coefficients Fk(fn) can be obtained using the FFT 
procedure. The factor 2 is included because we use only half the derived coefficients and 
the DC term f0 is not included but should be in the above equation.  The power spectrum 
summed over all positive and negative frequencies (including f0  and fN/2 the folding 
frequency) is equal to the variance of the signal (Parseval’s theorem).  The power 
spectrum is given as μV2 and the power is μV2/Hz if normalized with respect to Δf.  Of 
course using this approach includes certain tradeoffs.  If one calculates the power 
spectrum for a 60 sec epoch of EEG the frequency resolution would be Δf = 0.017 Hz 
with no ensemble averaging as shown in Fig 9-4.  The exact spectrum is obtained but not 
estimates of the statistical properties of the underlying stochastic process.  A choice must 
be made of how long an epoch should be analysed.  This depends on the frequency 
resolution one would like to have.  The shorter the epoch length, the more epochs to 
average but the coarser the resolution.  In Figure 9-4, the sampling rate looks like 50 Hz, 
giving us 25 coefficients if the epoch length is 1 sec (Δf = 1 Hz), where if 2 sec windows 
are used Δf = 0.5 Hz. 
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The Impact of Source Synchrony and Spatial Filtering on EEG Power Spectra 
Scalp potential at any frequency can change for several reasons related to “synchrony”.  
EEG scientists and clinicians have adopted the label desynchronization to indicate large 
amplitude reductions, particularly in the alpha band.  We can divide the brain into several 
thousand voxels (mesosource elements) each having a dipole moment P(r,t).  Microscale 
changes in synaptic source synchrony across cortical columns can change mesosource 
strength P(r,t).  As mesosource strength increases we expect scalp potential to increase 
proportionally if there are no other changes.  As the dipole layer changes in diameter 
from 1 to 3 cm large increases in scalp amplitudes are expected based on the exponential 
curves of scalp potential for dipole diameter.  Finally even larger increases in dipole layer 
diameter from 3 to 10 cm result in modest increases in scalp potential (curve flattens out) 
Potential magnitudes can even decrease as the diameter gets even larger because of the 
cancelling effects of the curved scalp. 
Figure 9-6 shows simulated scalp potentials due to a single dipole and dipole layers of 
diameter ranging from 3 to 5 cm, composed only of radial dipoles source.  Each dipole 
source has a time series composed of a 6 Hz sinusoid of fixed amplitude A = 15 added to 
a Gaussian random process with mean μ = 0 and standard deviation σ = 150 μV.  The 6 
Hz components are phase locked across the dipole layers, where all other components are 
random phase.  
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4-sphere model. (d) is power spectrum of surface potential in (c).  (e) time series similar 
to (c) but due to a dipole layer of 4 cm with 68 dipole sources and power spectrum in (f). 
(g) similar to (c) but with layer 5 cm in diameter and 112 dipoles with power spectrum in 
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(h).  Figure 9-7 summarizes the idea of dipole layer sources of different strength and size.  
The 6 Hz source could be any frequency. Each set of symbols represents a different 
mesosource strength of the 6 Hz oscillation as a percentage of the total generated 
mesosource strength (variance).  The power has been normalized with respect to the 
power generated by a dipole layer of 1.5 cm diameter with a very weak (0.5%) relative 
mesosource strength.  In this figure you can see that one strong dipole layer source (20%0 
with 1.5 cm diameter under the electrode produces the same scalp power at 6 Hz as a 
weak source (1%) with 4.2 cm diameter. 
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