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3. CELL EXCITABILITY

Here we will look at the response of the cell
membrane to current injections and changes
In the transmembrane potential.

The key features are:

1. the linear behaviour around the resting
membrane potential, and

2. the nonlinear behaviour that leads to the
generation of “action potentials”.



Equivalent circuit near rest:
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Fig. 1.1 NATURE OF THE PASSIVE NEURONAL MEMBRANE (A) Schematic representation of a

small patch of membrane of the types enclosing all cells. The 30-50 A thin bilayer of lipids isolates the
extracellular side from the intracellular one. From an electrical point of view, the resultant separation
of charge across the membrane acts akin to a capacitance. Proteins inserted into the membrane, here
ionic channels, provide a conduit through the membrane. Reprinted by permission from Hille (1992).
(B) Associated lumped electrical circuit for this patch, consisting of a capacitance and a resistance
in series with a battery. The resistance mimics the behavior of voltage-independent ionic channels
inserted throughout the membrane and the battery accounts for the cell’s resting potential Vieg,.

(from Koch)



Notation for potentials:
» Transmembrane potential:

» Membrane potential relative to rest:
vm = Vm — Vrest

» Intra- and extra-cellular potentials relative to
their respective baseline values:

O; = Pj — P rest
Pe Pe — CIDe,l’eS’C




Spherical cell response to current step:

If R (Q2-cm?) and C = (uF/cm?) are the specific
resistance and the specific capacitance,
respectively, of the membrane, then for a spherical
cell with surface area A (cm?) the membrane
resistance Is:

R=1m Q, (7.1)
A

and the membrane capacitance is:

C =CnA uF. (7.2)
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Spherical cell response to current step

(cont.):
o"\
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Figure 7.1. A current step is applied between an intracellular and extracellular microelectrode. The
cell shape is roughly spherical.
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Figure 7.2. Equivalent electrical circuit for preparation described in Fig. 7.1.



Spherical cell response to current step
(cont.):

The response of the relative transmembrane
potential v, of a spherical cell subjected to an
intracellularly-injected current step of amplitude I,
IS:

Um

IoR (1 _ e—t/T) (7.3)

Vo (1—e 7)), (7.4)

wheret = RCand V, = I,R = v, (t—0).



Spherical cell response to current step
(cont.):

T=10ms
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Strength-duration relationship:

Suppose that a relative transmembrane potential
of V. (< V,) is the “threshold” potential for eliciting
an action potential.

From Eqgn. (7.4), the membrane potential will reach
V- at time T'(following the onset of the current
pulse) according to the equation:

Vr=Vo(1-e /7).

Solving for T'gives:

T:—T“’](l—ﬁ).
VO 9




Strength-duration relationship (cont.):

T=10ms
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Strength-duration relationship (cont.):
A strength-duration curve is obtained by plotting:

Vo=Vp/(1-e /7 (7.5)

for a fixed value of V.
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Figure 7.3. Strength—duration curve [from Eq. 7.5)].



Strength-duration relationship (cont.):

» Rheobase is the minimum excitation required
to just reach threshold as T'— oo, I.e., V, = V.

» Chronaxie is the pulse duration 7', required to
reach threshold when the stimulus is twice
rheobase, which can be calculated according
to:

T =7In2 = 0.693r. (7.8)

Chronaxie Is significant as a nominal time
period required to reach the threshold voltage.
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Action potentials are:

» all-or-nothing events,

» regenerative,

» generated when a threshold is reached,
» propagating potentials, and

» also known as nerve spikes or impulses.
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Transmembrane action potential
morphology:
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Figure 5.4. Diagram to show the nomenclature applied to an action potential and the afterpotentials
that may follow it.
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Observing
action
potentials
(cont.):

(from Koch)
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Fig. 6.1 AcTtion POTENTIALS OF THE WORLD  Action potentials in different invertebrate and verte-
brate preparations. Common to all is a threshold below which no impulse is initiated, and a stereotypical
shape that depends only on intrinsic membrane properties and not on the type or the duration of the
input. (A) Giant squid axon at 16° C. Reprinted by permission from Baker, Hodgkin, and Shaw (1962).
(B) Axonal spike from the node of Ranvier in a myelinated frog fiber at 22° C. Reprinted by permission
from Dodge (1963). (C) Cat visual cortex at 37° C. Unpublished data from J. Allison, printed with
permission. (D) Sheep heart Purkinje fiber at 10° C. Reprinted by permission from Weidmann (1956).
(E) Patch-clamp recording from a rabbit retinal ganglion cell at 37° C. Unpublished data from F. Amthor,
printed with permission. (F) Layer 5 pyramidal cell in the rat at room temperatures. Simultaneous
recordings from the soma and the apical trunk. Reprinted by permission from Stuart and Sakmann
(1?94)- (G) A complex spike—consisting of a large EPSP superimposed onto a slow dendritic calcium
spike and several fast somatic sodium spikes—from a Purkinje cell body in the rat cerebellum at 36° C.
Unpublished data from D. Jaeger, printed with permission. (H) Layer 5 pyramidal cell in the rat at room
temperature. Three dendritic voltage traces in response to three current steps of different amplitudes
Teveal the all-or-none character of this slow event. Notice the fast superimposed spikes. Reprinted by
Permission from Kim and Connors (1993). (I) Cell body of a projection neuron in the antennal lobe in
the locust at 23° C. Unpublished data from G. Laurent, printed with permission.
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Nonlinear membrane behaviour:
Subthreshold and

action potential
responses to a

brief stimulating

current.

+04

=D~

Figure 5.5, Subthreshold responses recorded extracellularly from a crab axon in the vicinity of the
stimulating electrodes. The axon was placed in paraffin oil, and, consequently the measured extracellular
potential is directly related to the transmembrane potential (according to the linear core-conductor model
described in Chapter 6). The heavy bar indicates the stimulus period, which was approximately 50 tsec
in duration. The ordinate is a voltage scale on which the height of the action potential is taken as one
unit. [From A. L. Hodgkin, The subthreshold potentials in a crustacean nerve fibre, Proc. R. Soc. London,
Ser. B 126:87-121 (1938).]
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Nonlinear membrane behaviour (cont.):

Figure 5.6. The relation between stimulus and response in a crab axon. This figure was derived from
Fig. 5.5. The abscissa shows the stimulus intensity, measured as a fraction of the threshold stimulus.
The ordinate shows the recorded potential 0.29 msec after the stimulus, measured as a fraction of the
action potential peak. [Reprinted with permission from A. L. Hodgkin, The subthreshold potentials in
a crustacean nerve fibre, Proc. R Soc. London, Ser. B 126:87—-121 (1938).]
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Nonlinear membrane behaviour (cont.):
For the squid axon:-

» C =~ 1 uF/cm? throughout the entire
action potential

> R~ 1000 Q-cm? at rest

> R~ 25 Q.cm? at the peak of the action
potential
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Origin of action potential, resting and
peak voltages:

In the classic studies by Hodgkin and
Huxley, the results were related to the
Goldman-Hodgkin-Katz (GHK) equation for
the transmembrane potential:

— E“’] PK[K]G__PNa[Na]e+PC|[C|]i
F | Pc[K];+ PnalNa];+ Pq[Cl],. |

Vim (5.1)

where P is the permeability of the p™ ion
channel.
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Origin of action potential, resting and peak
voltages (cont.):

As we have observed previously, the
resting transmembrane potential Is
slightly higher than the potassium
equilibrium potential.

Looking at the action potential waveform, we
see that the peak transmembrane
potential approaches but never exceeds the
sodium equilibrium potential.
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Origin of action potential, resting and peak
voltages (cont.):

This result Is consistent with an elevated sodium
permeabillity in the rising phase and peak of the
action potential.

Good agreement between theory and experimental
data from the squid axon is obtained with:

Px:Png: Py = 1.0:0.04:0.45  for membrane
at rest

Px:Png Py = 1.0:20.0:0.45  at an action
potential peak
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Origin of action potential, resting and peak
voltages (cont.):

To a first approximation:

At rest: Vi, =~ Ex = F'”<[[E]]> (5.3)
At the peak: Vi, = Eng = };Tln<[[|:2]]e> (5.4)
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Origin of action potential, resting and peak
voltages (cont.):

In an experiment using radioactive tracers, it
was found for the cuttlefish Sepia giant axon
that:

» atrest, there is steady influx of sodium and
efflux of potassium, consistent with
By <V . < Ey,

rest

» during an action potential there is an influx of
3.7 pmoles/cm? of sodium

» during an action potential there is an efflux of
4.3 pmoles/cm? of potassium
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Origin of action potential, resting and peak
voltages (cont.):

These results can be compared with the
charge movement required to depolarize the
transmembrane potential by around 125 mV:

Q =CV=10x10"°x0.125
1.25 x 107 C/cm?

= number of mole = Q/F
1.25 x 107 7/96487

1.3 pmol/cm?
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4. INTRODUCTION TO THE HODGKIN-
HUXLEY MODEL

Based on a set of detailed physiological
experiments, Hodgkin & Huxley developed a
nonlinear dynamical model of the excitable
cell membrane. Their formulation for gating
dynamics is the basis of almost all
subsequent biophysical models of excitable
cell membranes.
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Voltage and space clamp:

» Hodgkin and Huxley used a voltage and space
clamp apparatus to measure and quantify ionic
currents in the squid giant axon.

» By applying a voltage clamp and making
discrete steps in transmembrane voltage, the
capacitive current is absent, and consequently
only the ionic currents are recorded.

» By Inserting a conducting wire along the inside
of the axon, a space clamp is applied, i.e., the
intracellular potential is the same along the
entire length of the axon. Consequently, the
lonic current from a large number of ion
channels is recorded. %



Voltage and space clamp (cont.):

/SQUID AXON.
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INSULATION- € |INSULATIO B
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Figure 5.7. Schematic diagram showing the voltage and space clamp apparatus as developed by
Hodgkin, Huxley, and Katz [6]. Current electrodes are (A) and (E); potential sensing electrodes are (B)
and(C). Transmembrane current is determined from the potential between (C) and (D) and the total
resistance between these electrodes. (Since the membrane current is uniform and in the radial direction
only, the resistance can be calculated if the electrode end-effects are neglected.) Transmembrane voltage
Vis compared with the desired clamp V, and the difference causes a proportional transmembrane current
of proper sign so that (V - V) = 0.



Example net ionic current to a voltage step:
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Figure 5.8. lllustrative example of the ionic current for a squid axon assuming the application of a
voltage clamp of V,, = 20 mV at 7 = 0 sec. The assumed parameters are: resting potential of

Vo= Viest=—60 mV; sodium and potassium Nernst potentials Fx = -70 mV and Ey, = 57 mV.



Measured ionic current for different voltage
steps:

"k
Y
T
s A
. 3k 143 mV
X 130 mV
v o 117mV
v 104mV
< @1mV
& -
s
UE-' 0 | L

1 3 4 msec

Figure 5.9. Measured ionic current for the squid axon following the application of a voltage clamp of
the value indicated. The sodium Nernst potential is reached with a step change of 117 mV (since the
resting potential is —60 mV and Ey, = 57 mV). [From A. L. Hodgkin, Ionic movements and electrical
activity in giant nerve fibers, Proc. R. Soc. 148:1-37 (1958). After A. L. Hodgkin, A. F. Huxley, and B.
Katz, Measurement of current voltage relations in the membrane of the giant axon of Loligo, J. Physiol.
116:424-448 (1952).]
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Current-voltage curves:

L

-60 -40 -20 -y 0 60 V.mV

Figure 5.10. A typical current—voltage relation for squid axon. Curve /; shows the peak inward current
versus clamped transmembrane voltage V,, after holding at rest. Curve I, plots the steady-state outward
Current versus the clamped voltage V,,. The voltage clamp value of V,, is plotted on the abscissa. Note
that/, =0at v, =V,

rev = ENa-
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Separation of sodium and potassium
currents:

Hodgkin and Huxley utilized two approaches
to separating the contributions of sodium
and potassium currents to the net ionic
current:

1. Assuming I, = 0 for 0 <t < 7T/3, where
T'Is the time of peak inward current.

2. Varying the extracellular sodium
concentration while keeping the
extracellular potassium concentration
fixed.
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Effects of varying extracellular sodium
concentration:

internal potential

B. I, (from current
with reduced Na)
A. Iq, + Iy (current
with 460 mMm-Na)

1 | =l

-

time (msec)

Figure 5.71. Analysis of the ionic current in a Loligo axon during a voltage clamp. Trace A shows the
response to a depolarization of 56 mV with the axon in seawater. Trace B is the response with the axon
in a solution comprising 10% seawater and 90% isotonic choline chloride solution. Trace C is the
difference between traces A and B. Normal Ey, = 57 mV and in the reduced seawater Ey, = —1 mV.
[From A. L. Hodgkin, Ionic movements and electrical activity in giant nerve fibers, Proc. R. Soc.
148:1-37 (1958). After A. L. Hodgkin, A. F. Huxley, and B. Katz, Measurement of current voltage
relations in the membrane of the giant axon of Loligo, J. Physiol. 116:424-448 (1952).]
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lonic conductances from ionic currents:
Rearranging Egns. (3.26) and (3.27) gives:

g (t) = (viK—(%Ky (5.11)
na(t) = 20— (5.12)

In the voltage clamp experiments, the
denominators of Eqns. (5.11) and (5.12) are
constant =

g (t) o< Ix(t), gna(t) oc Ina(t).
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lonic conductances from 1onic currents

(cont.):

sodium conductance potassium conductance
mV = N °
109 Il{) mmho/cm? 109 IIO mmho/cm?
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Figure 5.12. Conductance changes brought about by clamped depolarizations of different magnitudes.
The circles represent values derived from the experimental measurements of ionic current, and the curves
are drawn according to methods described in the text. The voltage clamp transmembrane potential values
are in millivolts and are described relative to the resting value (i.e., v,). [From A. L. Hodgkin, Tonic
movements and electrical activity in giant nerve fibers, Proc. R. Soc. 148:1-37 (1958). After A. L.
Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to
conduction and excitation in nerve. J. Physiol. 117:500-544 (1952).]
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Hodgkin-Huxley equations:

Potassium channel model:
» Potassium conductance:

gK(t,Um) — §Kn4(t,vm) (513)

» Potassium activation particle dynamics:

dn(t,vm)

o — an(vm) (1—n) = Bn(vm)n  (5.14)

or.
dn(t,vm)  Noo —n

5.17
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Hodgkin-Huxley equations (cont.):
» Potassium activation transition rates:

0.01 (10 — vm)

exp(lOl—Ovm) 1

(5.19)

Ofn(”Um) —

Bn(vm) = 0.125 exp(%) (5.20)
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Hodgkin-Huxley equations:

Sodium channel model:
» Sodium conductance:

gNa(t, vm) = Gnam®(t, vm) h(t,vm) (5.21)

» Sodium activation particle dynamics:

dm(cj’tvm) = am(vm) (1 —=m) — Bm(vm) m (5.22)
» Sodium inactivation particle dynamics:
dh(t,vm)

= ap(vm) (1=h) — Bp(vm) b (5.23)

37
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Hodgkin-Huxley equations (cont.):
> Sodium activation transition rates:

exp(251—0vm) 1’

it = a2

am(vm) —

(5.31)

> Sodium Inactivation transition rates:

ap(vm) = 0.07 exp<_2v(;n> ;

30 —vm> |

On(om) = {exp< 10 /"

1}_1 (5.32)
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Hodgkin-Huxley equations (cont.):

I(INO) pk/(INa) mpk
=414
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Figure 5.13. Sodium inactivation curve. Abscissa is the deviation from the resting potential (i.e., v,,).

Dots are experimental points, and the smooth curve satisfies (5.33) for v,,, = 2.5 mV. [From A. L.

Hodgkin and A. F. Huxley, The dual effect of membrane potential on sodium conductance in the giant

axon of Loligo. J. Physiol. 116:497-506 (1952).]
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Hodgkin-Huxley equations (cont.):
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Fig. 6.3 VOLTAGE DEPENDENCY OF THE GATING PARTICLES Time constants (A) and steady-
state activation and inactivation (B) as a function of the relative membrane potential V for sodium
activation m (solid line) and inactivation A (long dashed line) and potassium activation n (short,
dashed line). The steady-state sodium inactivation /i, is 2 monotonically decreasing function of V,
while the activation variables n,. and m., increase with the membrane voltage. Activation of the
sodium and potassium conductances is a much steeper function of the voltage, due to the power-law
relationship between the activation variables and the conductances. Around rest, G, increases e-fold
for every 3.9 mV and G for every 4.8 mV. Activating the sodium conductance occurs approximately
10 times faster than inactivating sodium or activating the potassium conductance. The time constants
are slowest around the resting potential.

(from Koch)
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Simulation of membrane action potential:

The complete Hodgkin-Huxley model is a parallel-
conductance model incorporating:

» nonlinear (active) potassium and sodium
currents:

Ix = gxn”* (Vin — Ex)
Ing = §Nam3h (Vin — ENa)
» a linear (passive) “leakage” current:

Iy, =91, (Vim — EL), (3.41)

» and a capacitive current: [~ = CF' M



Simulation of membrane action potential
(cont.):

In the case of the an injected depolarizing current
1 ,, the membrane equation is:

dV,
Ix + Ina + I+ C—— = 1. (3.39)

dt
With the equations describing the gating particle
dynamics, we have one first-order nonlinear
differential equation coupled with three first-order
linear differential equations.

Analytical solutions are not very tractable, so In
most cases It Is necessary to find numerical
solutions. s



Simulation of membrane action potential
(cont.):

» Hodgkin and Huxley had assistants doing
numerical solutions by hand — not much fun!

» Matlab has a set of numerical ODE solvers.

» Software packages for simulating neurons
iInclude:

HHsim: Graphical Hodgkin-Huxley Simulator

NEURON: For computer simulations of neurons

and neural networks

The GEneral NEural SImulation System

(GENESIS)

43


http://www-2.cs.cmu.edu/%7Edst/HHsim/
http://neuron.duke.edu/
http://neuron.duke.edu/
http://www.genesis-sim.org/GENESIS/
http://www.genesis-sim.org/GENESIS/

Simulation of membrane action potential
(cont.):
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& A 5 B
E 50 E
g :=|- 50
|
9 ‘} ?msec i
0
— 0 5 10 msec
110
100F v = 100 D
by < 80
;E’ 50 'f 50
! 0 1 2 msec
oL 1 1 1 0
—~— — 0 3 10

msec

Figure 5.74. Curve A is the computed (propagated) action potential. Curve B is the same result to a
slower time scale. Curves C and D are measured from different axons. [From A. L. Hodgkin and A. F.
Huxley, A quantitative description of membrane current and its application to conduction and excitation
in nerve, J. Physiol. 117:500-544 (1952).]
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Action potential characteristics:

The characteristics of action potentials can
be Interpreted in terms of:

» how the Ionic and capacitive currents
vary as a function of time, membrane
potential and injected current,

The behaviour of the ionic currents Is
understood In terms of:

» Vvoltage-dependent channel gating, I.e.,
the dynamics of activation and
Inactivation particles.
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Action potential characteristics (cont.):
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Fig. 6.5 HopGKIN-HUXLEY Ac-
TION POTENTIAL Computed ac-
tion potential in response to a 0.5-
msec current pulse of 0.4-nA am-
plitude (solid lines) compared to
a subthreshold response following
a 0.35-nA current pulse (dashed
lines). (A) Time course of the two
ionic currents. Note their large sizes
compared to the stimulating current.
(B) Membrane potential in response
to threshold and subthreshold stim-
uli. The injected current charges
up the membrane capacity (with an
effective membrane time constant
7 = (.85 msec), enabling sufficient
Ing to be recruited to outweigh the
increase in [ (due to the increase in
driving potential). The smaller cur-
rent pulse fails to trigger an action
potential, but causes a depolariza-
tion followed by a small hyperpo-
larization due to activation of [g.
(C) Dynamics of the gating parti-
cles. Sodium activation m changes
much more rapidly than either i or
n. The long time course of potas-
sium activation n explains why the
membrane potential takes 12 msec
after the potential has first dipped
below the resting potential to return
to baseline level.

(from Koch)
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Threshold behaviour:

Consider the case where the membrane Is at rest
and Is then depolarized very rapidly to a relative
membrane potential of v, . If sodium activation IS
assumed to occur instantaneously and sodium
Inactivation and potassium activation are assumed
to remain unchanged, then the net ionic current Is:

§Nam3(vm) h(0) (vm — ENa)
+ gxn”(0) (v — Ex)
T gy, (Um—EL). (KOCh 621)

Io(vm)

a7



Threshold behaviour (cont.):

The resulting current-voltage relationship, shown
below, explains the threshold behaviour of such a

depolarization.

01t

Fig. 6.6 CURRENT-VOLTAGE RELATIONSHIP AROUND REST
Iy, associated with the standard patch of squid axon membrane and its three components: Iy =
Ing + Ix + Tear (Eq. 6.21). Because m changes much faster than either k or n for rapid inputs, we
computed G, and Gk under the assumption that m adapts instantaneously to its new value at V,
While & and n remain at their resting values. Iy crosses the voltage axis at two points: a stable point at
V' = 0 and an unstable one at Vi, =~ 2.5 mV. Under these idealized conditions, any input that exceeds
Vin will lead to a spike. For the “real” equations, m does not change instantaneously and nor do n and
h remain stationary; thus, /p only crudely predicts the voltage threshold which is, in fact, 6.85 mV
for rapid synaptic input. Note that Iy is specified in absolute terms and scales with the size of the

membrane patch.

Instantaneous /-V relationship,

(from Koch)
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Accommodation:

Very slow changes in the membrane
potential allow sodium Inactivation and
potassium activation to overcome sodium
activation.

Consequently, the cell may not spike, even
though the nominal threshold potential (i.e.,

INn the case of a rapid depolarization) has
been reached.

Any definition of a “threshold potential” is
therefore restricted to a particular stimulus.

49



Accommodation (cont.):
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Accommodation (cont.):
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Strength-duration behaviour:

For a finite-duration current pulse, the strength of
the stimulating current required to just elicit one
action potential is characterized by a strength-

duration curve.

Vo

2x RHEOBASE

L)
i RHEOBASE
‘l’ 1 ] | ‘I' 1 | 1 ]
—
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Figure 7.3. Strength—duration curve [from Eq. 7.5)].



Anode break excitation:

Sodium deinactivation
and potassium st
deactivation can give
rise to an action
potential at the offset
of a hyperpolarizing
pulse. This is referred
to as “anode break”
excitation.

uA/cm2
o

time (msec)

Figure 5.17. Anode break excitation. Computed values of m, n, h, and V,, from Hodgkin—Huxley

. .. . 2
equations. Space-clamped conditions. Values are computed during and after a 2 msec—11.7 pa/em”
hyperpolarizing pulse which starts at 7 = 0. The resting potential is ~60 mV and the temperature is 7 =
6.3°C.
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Repetitive firing:

Injection of a sustained suprathreshold current
gives rise to repetitive firing, illustrating the
regenerative nature of spiking.

Fig. 6.8 REPETITIVE SPIKING Voltage trajectories
ooena | 1N Tesponse to current steps of various amplitudes n

rl 1 the standard patch of squid axonal membrane. The
' ] minimum sustained current necessary to initiate a
~|_— - —_ spike, termed rheobase, is 0.065 nA. In order for the
| | I. _ membrane to spike inclcﬁnitc]y,_largcr currents must

l'. |', |', i' | be used. Experimentally, the squid axon usually stops

| -

/) B ol I firing after a few seconds due to secondary inactiva-
o |\ ' - 01 1 tion processes not modeled by the Hodgkin—Huxley
| I ‘. l' '| r, |'| " | | equations (1952d).
| I, | 'II | I I |
t | | _,,|| altlh ) I| f,.lll _J 0250A
0 20 40 60 80 100 (from Koch)
t (msec)
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Repetitive firing (cont.):

Increasing the injected current produces a slight

Increase In the spike rate.

A)

10

| 1(nA)

80

§ 60
(Hz)
40

20

] 0.1 1 0.2 0.3 0.4 0.5
Iy 1 {nA)

Fig. 6.9 SusTAINED SPIKING IN THE HODGKIN-HUXLEY EQUATIONS (A) Steady-state [-V
relationship and (B) f—I or discharge curve as a function of the amplitude of the sustained current [
associated with the Hodgkin-Huxley equations for a patch of squid axonal membrane. For currents
less than 0.18 nA, the membrane responds by a sustained depolarization (solid curve). At [y, the
system loses its stability and generates an infinite train of action potentials: it moves along a stable
limit cycle (dashed line). A characteristic feature of the squid membrane is its abrupt onset of firing
with nonzero oscillation frequency. The steady-state /-V curve can also be viewed as the sum of all
steady-state ionic currents flowing at any particular membrane potential V,,.

(from Koch)

55



Refractory effects:

» During most of the falling phase of an
action potential it is impossible to
generate another action potential,
Irrespective of the magnitude of injected
current. This is referred to as the
absolute refractory period.

» For some time following an action
potential the injected current required to
reach threshold is greater than Is
necessary when the membrane Is at rest.
This is referred to as the relative
refractory period.
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Refractory effects (cont.):
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Figure 5.15. Calculated changes in membrane potential (upper curve), sodium and potassium conduc-
tances (middle curves), and sodium and potassium currents; all curves are for a squid giant axon
membrane patch. The second stimulus is seen to elicit essentially no response even though it is of the
same size and duration as the first (for which an action potential results, as is seen). It therefore identifies
the condition as refractory. Since a larger stimulus would generate an action potential this is a relatively
refractory period. The stimulus amplitude is 53 },Lafcm2 and its duration is 0.2 msec. The second stimulus
is similar in amplitude and duration and occurs after a delay of 15 msec. The resting potential is —60
mV while 7= 6.3°C. Calculations were based on the Hodgkin—Huxley equations.
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Refractory effects (cont.):

uA/cm2
2}
=
— |

time (msec)

Figure 5.16. Computed membrane action potential using the Hodgkin—Huxley equations. In addition

to the temporal variation of V, (1), the gating variables temporal behavior [i.e., m (1), n (¢), h (£)] are shown.

In this simulation resting v,, = —60 mV, while the stimulus current starting at ¢ = 0 is 53 pa/em” for 0.2

msec. The temperature is 6.3°C.
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Refractory effects (cont.):

= =y
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Fig, 6.7 REFRACTORY PERIOD A (.5-msec brief current pulse of /1 = 0.4 nA amplitude causes
an action potential (Fig. 6.5). A second, equally brief pulse of amplitude I is injected Ar msec after
the membrane potential due to the first spike having reached V = 0 and is about to hyperpolarize
the membrane. For each value of A, I, is increased until a second spike is generated (see the inset
for A+ = 10 msec). The ratio /I, of the two pulses is here plotted as a function of Ar. For
several milliseconds following repolarization, the membrane is practically inexcitable since such large
currents are unphysiological (abselute refractory period). Subsequently, a spike can be generated,
but it requires a larger current input (relative refractory period). This is followed by a brief period of
reduced threshold (hyperexcitability). No more interactions are observed beyond about At = 18 msec.
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(from Koch)
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