ECE 795:

Quantitative
Electrophysiology

Notes for Lecture #4
Wednesday, October 4, 2006




/. CHEMICAL SYNAPSES AND GAP
JUNCTIONS

We will look at:

» Chemical synapses in the nervous
system

» Gap junctions in cardiac cells and
nervous tissue



Chemical synapses:

The specialized contact zones between
neurons are called synapses.

In the nervous system, chemical synapses
are much more common than electrical
synapses (gap junctions).

Most chemical synapses are unidirectional
— the presynaptic neuron releases
neurotransmitter across the synaptic cleft to
the postsynaptic terminal, which leads to

activation of a neurotransmitter-gated ion
channel.



Chemical synapses (cont.):

In the electron micrograph below, a presynaptic
body in the inner hair cell is seen to hold a cluster
of neurotransmitter vesicles. A thickening of the
cell membranes is observed between the pre- and
post-synaptic terminals, and a very narrow
synaptic cleft exists.
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(from Francis et al., Brain Res. 2004)



Chemical synapses (cont.):
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Fig. 1.6 A Fast Excrtatory Synaptic INPUT  Excitatory postsynaptic current (EPSC) caused (from KOCh)
by the simultaneous activation of synapses (arrow) made by the mossy fibers onto CA3 pyramidal

cells in the rodent hippocampus (Brown and Johnston, 1983). This classical experiment showed how

a central synapse can be successfully voltage clamped. (A) The voltage-clamp setup stabilizes—via

electronic feedback control—the membrane potential at a fixed value. Here four experiments are

shown, carried out at the holding potentials indicated at the left. The current that is drawn to keep

the membrane potential constant, termed the clamp current, corresponds to the negative EPSC. It

is maximal at negative potentials and reverses sign around zero. The synaptic current rises within

1 msec to its peak value, decaying to baseline over 20-30 msec. The experiments were carried out in

the presence of pharmacological agents that blocked synaptic inhibition. (B) When the peak EPSC

is plotted against the holding potential, an approximately linear relationship emerges; the regression

line yields an x-axis intercept of —1.9 mV and a slope of 20.6 nS. Thus, once the synaptic reversal

potential is accounted for, Ohm’s law appears to be reasonably well obeyed. We conclude that synaptic

input is caused by a transient increase in the conductance of the membrane to certain ions. Reprinted

by permission from Brown and Johnston (1983). S



Chemical synapses (cont.):

Equivalent electric circuit of a fast chemical
synapse:
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Fig. 1.7 EQUIVALENT ELECTRICAL CIRCUIT OF A FAsT CHEMICAL SYNAPSE (A) Electrical (from KOCh)
model of a fast voltage-independent chemical synapse. This circuit was put forth to explain events
occurring at the neuromuscular junction by Katz (1969). Remarkably, all fast chemical synapses in
the central nervous system, with the exception of the voltage-dependent NMDA receptor-synaptic
complex, operate on the same principle. Activation of the synapse leads to the transient opening of
ionic channels, selective to certain ions. This corresponds to a transient increase in the membrane
conductance ggyn (1) in series with the synaptic reversal potential Ey,, shown here in parallel with a
passive membrane patch. (B) If the evoked potential change is small relative to the synaptic reversal
potential, the synapse can be approximated by a current source of amplitude gy, () Egyn. In general,
however, this will not be the case and synaptic input must be treated as a conductance change, a fact
that has important functional consequences.



Chemical synapses (cont.):

The postsynaptic current (PSC) has the
same form as a voltage-gated ion channel:

Isyn = gsyn(t) [Vm(t) — Esyn], (K1.18)

but the conductance g, (¢) is controlled by
the reception of neurotransmitter (rather
than the transmembrane potential), which
has a waveform that is often approximated
by a so-called alpha function:

gsyn(t) = const-¢ e t/tpeak, (K1.21)



Chemical synapses (cont.):

The direction of the postsynaptic current
depends on the value of £ :

» T E, > V. then I will be a negative
(l.e., inward) current, which will
depolarize the cell.

Consequently, this current is referred to
as an excitatory postsynaptic current
(EPSC), and the resulting membrane
depolarization is referred to as an

excitatory postsynaptic potential (EPSP).
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Chemical synapses (cont.):
»IfE_ <V _ . then I__ will be a positive

syn rest’ syn
(i.e.. outward) current, which wil
nyperpolarize the cell. Because
nyperpolarization takes the membrane
notential further away from the threshold
potential, this is a form of inhibition.
Consequently, this current is referred to
as an inhibitory postsynaptic current
(IPSC), and the resulting membrane
hyperpolarization is referred to as an

iInhibitory postsynaptic potential (IPSP). 9




Chemical synapses (cont.):
»IfE_~V_ . then I__ will be a negligible

syn rest’? syn
when the membraney IS at rest.
However, If current is injected into the
membrane by a propagating EPSP or
action potential or an applied current
source, the increased conductance of
9syu(t) Will tend to “shunt” this injected
current, such that the membrane Is

locked at V.. Because this prevents

rest"

action potential generation, it is referred
to as shunting inhibition.

10
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Fig. 1.8 ACTION OF A SINGLE SYNAPSE
INSERTED INTO A MEMBRANE Three
different types of synaptic inputs and their
differential effect on the membrane po-
tential. (A) Time course of the synaptic-
induced conductance increase, here with
tpeak=0.5 msec and gpesxk = 1 nS
(Eq. 1.21). The synapse is inserted into a
patch of membrane (Fig. 1.7A) with R =
100 M2, C = 100 pF, and T = 10 msec.
(B) Postsynaptic current in response to the
conductance increase if the synaptic rever-
sal potential is positive (Egy, = 80 mV rel-
ative to rest; solid line), negative (Egy, =
—20 mV; dotted line), and zero (so-called
shunting inhibition; dashed line). By con-
vention, an inward current that depolarizes
the cell is plotted as a negative current.
(C) Associated EPSP (solid line) and IPSP
(lower dashed line), relative to Viey, solved
by numerical integration of Eq. 1.20. No-
tice that the time course of the postsynap-
tic potential is much longer than the time
course of the corresponding postsynaptic
current due to the low-pass nature of the
membrane. Shunting inhibition by itself
does not give rise to any change in potential
(center dashed line).

(from Koch)
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nemical synapses (cont.):

(from Koch)
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Fig. 5.2 INTERACTION AMONG AN EXCITATORY AND AN INHIBITORY SYNAPSE How does the
interaction between an excitatory synapse (at location ¢) and an inhibitory synapse (at ) in a passive
dendritic tree depend on their spatial positions? And what role do the synaptic architecture and the
dendritic morphology play? In general, the potential at the soma s is not simply the sum of the
individual IPSP and EPSP but can be much less. If the inhibition is of the shunting type, with a
reversal potential close to the resting potential of the cell, inhibition by itself leads to no significant
potential change while still being able to veto the EPSP, as long as the inhibitory synapse is either
close to the excitatory one or “on the direct path” between excitation and the soma s (shaded area).
The effectiveness of shunting inhibition drops substantially outside this zone.

nunting inhibition is most effective If placed
on the path between an excitatory synapse
and the soma.

12



Gap junctions In cardiac cells:

Figure 9.3. Structure of cardiac muscle. The figure shows three camera lucida drawings from a series
of 42 consecutive 2-m-thick plastic sections showing multiplicity of interconnections of the myocytes
at intercalated disks. Shaded areas denote prominent interstitial vessels and septae. From top to bottom
are shown sections 12, 16, and 22. Myocyte A is followed in its entirety and makes contact at intercalated
discs with cells B-K. [R. H. Hoyt, M. L. Cohen, and J. E. Saffitz, Distribution and three-dimensional
structure of the intercellular junctions in canine myocardium, Circ. Res. 64:563-574 (1989).]
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Gap junctions in cardiac cells (cont.):

PREJUNCTIONAL
MEMBRANE

POSTJUNCTIONAL
MEMBRANE

Figure 9.4. Details of the communicating-type intercellular cardiac junction (connexon array) is
shown. Each unit (connexon) is a protein channel running transverse to the opposing membranes.
Connexons from abutting cells align themselves to form structural continuity. The structural detail shown
is based on morphometry obtained from X-ray diffraction, electron microscopy, and chemical studies.
The gap spacing is given as 35 A. [R. Plonsey, The use of a bidomain model for the study of excitable
media, Lectures on Mathematics in the Life Sciences 21:123-149 (1989). From L. Makowski, D. L. D.
Caspar, W.C. Phillips, and D. A. Goodenough, Gap junctional structures I1. Analysis of x-ray diffraction,
J. Cell Biol. 74:629-645 (1977). Reproduced from the Journal of Cell Biology, 1977, vol. 74, pp.

629-645 by copyright permission of the Rockefeller University Press.]
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Gap junctions in cardiac cells (cont.):

Cable analysis of Purkinje fibers gives
A~ 1mmandrt = 18 ms.
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Figure 9.5. Cable analysis of rabbit Purkinje fiber. (a) Steady-state electrotonic response to an applied
current step. Inset shows fiber geometry and the location of the current passing and voltage recording
microelectrode impalement sites. (b) Temporal response at labeled sites. [From T. J. Colatsky and R. W.

Tsien, Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibers, J. Physiol.
290:227-252 (1979)].
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Gap junctions in cardiac cells (cont.):

Experimental estimation of gap junction resistance

INn dissoclated cardiac cells.

A

Figure 9.7. Diagram of the experimental arrangement. Each cell of a cell pair is connected to a
voltage-clamp circuit via a patch electrode in the whole-cell configuration. Separate voltages V|, V; can
be applied to each cell and the resulting currents I,, I, measured. (Subscripts 1, 2 refer to cells 1 and 2
as described in A.) The equivalent circuit is shown in B. The sarcolemmal resistance is denoted by
Fmis T2 the junctional (nexal) resistance by r,,, and the access (pipette) resistance, shown dotted, by
rs1> I'sp. [From R. Weingart, Electrical properties of the nexal membrane studied in rat ventricular pairs,
J. Physiol. 370:267-284 (1986).]
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Gap junctions in cardiac cells (cont.):
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Figure 9.8. Current flow in a cardiac cell pair under voltage-clamp conditions. (A) Symmetrical pulse
application (V, = V, = 27 mV applied for 200 ms). The associated current signals I, and /, show a
time-dependent inward component; this reflects a sarcolemmal current only. (B) asymmetrical pulse
application [V, =27 mV for 200 ms; as in (A), V; = 0]. The signals /; and I, now show large amplitudes
and no time-dependency. [Note the tenfold increase in scale compared to (A).] The holding potential
Vg =-42mV in (A) and (B). [From R. Weingart, Electrical properties of the nexal membrane studied
in rat ventricular pairs, J. Physiol. 370:267-284 (1986).]
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Gap junctions in cardiac cells (cont.):

Estimation of gap 5
junction resistance

In chick embryo

cell pairs.
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Figure 9.9. Two-cell preparation with V| = —-40 mV, V, = —80 mV. The sarcoplasmic currents were
measured separately by applying equal values of V, and V, and subtracted from the total current with

the above values of V| and V, leaving only the junctional current /; = £(V, — V)/r,. The five distinct

quantal events (numbered) are assumed to result from single channel openings. [From R. D. Veenstra 18
and R. L. De Haan, Measurements of single channel currents from cardiac gap junctions, Science
233:972-974 (1986). Copyright 1986 American Association for the Advancement of Science.]



Gap junctions In nervous tissue:

Gap junctions are found between :-

— some neurons, mainly during
development,

-9
-9

1a
la

ce
ce

S, and
S & neurons.

For more detalls, see:
Brain Research Reviews 32(1), 2000.
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8. DENDRITIC TREES

We will look at:

>

Properties of infinite, semi-infinite &
finite cables

Branching in passive dendritic trees
Equivalent cylinder of a dendritic tree

Compartmental modeling

20



Dendritic tree morphology:

\;\

Fig. 3.1 DEnpriTIC TREES OF THE WORLD  Great variety of dendritic trees (in addition to a glia
cell and an axonal tree) observed in the nervous systems of animals. The cells are not drawn to
scale. (A) @ motoneuron in spinal cord of cat (2.6 mm). Reprinted by permission from Cullheim,
Fleshman, and Burke (1987). (B) Spiking interneuron in mesothoracic ganglion of locust (0.54 mm).
Unpublished data from G. Laurent, with permission. (C) Layer 5 neocortical pyramidal cell in rat
(1.03 mm). Reprinted by permission from Amitai et al., (1993). (D) Retinal ganglion cell in postnatal
cat (0.39 mm). Reprinted by permission from Maslim, Webster, and Stone (1986). (E) Amacrine
cell in retina of larval tiger salamander (0.16 mm). Reprinted by permission from Yang and Yazulla
(1986). (F) Cerebellar Purkinje cell in human. Reprinted by permission from Ramén y Cajal (1909).
(G) Relay neuron in rat ventrobasal thalamus (0.35 mm). Reprinted by permission from Harris (1986).
(H) Granule cell from olfactory bulb of mouse (0.26 mm). Reprinted by permission from Greer (1987).
(I) Spiny projection neuron in rat striatum (0.37 mm). Reprinted by permission from Penny, Wilson,
and Kitai (1988). (J) Nerve cell in the nucleus of Burdach in human fetus. Reprinted by permission
from Ramén y Cajal (1909). (K) Purkinje cell in mormyrid fish (0.42 mm). Reprinted by permission
from Meek and Nieuwenhuys (1991). (L) Golgi epithelial (glia) cell in cerebellum of normal-reeler
mouse chimera (0.15 mm). Reprinted by permission from Terashima et al., (1986). (M) Axonal
arborization of isthmotectal neurons in turtle (0.46 mm). Reprinted by permission from Sereno and
Ulinski (1987). The lengths given are approximate and correspond to the maximal extent. Reprinted
by permission from Mel (1994).

(from Koch)
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Steady-state response of a finite cable:

The steady-state response of a cable of

finite length [ in absolute units (or L = [/A in
electrotonic units) can be described by one
of the equivalent forms:

V(X) = AleX+A26_X,
V(X) = Bjcosh(X) 4+ Bosinh(X) ,
V(X) = Cycosh(L — X))+ Cysinh(L — X) ,

where:
cosh(X) £ % (e¥ +e ), sinh(X) 2 % (e¥ —e )

22



Input iImpedance of a semi-infinite cable:

Consider a current that is injected into the
intracellular space at the origin of a semi-
Infinite cable (i.e., starts at x+ = 0 and heads
off only In one direction to x = +00), with the
return electrode in the extracellular space at

the origin.

The Iinput iImpedance for the semi-infinite
cable Is:
vm(x=0)
4o = .
° 7 Li(z=0)

(7.52)

23



Input iImpedance of a semi-infinite cable
(cont.):

For a semi-infinite cable the relative
membrane potential is:
vm(x) = CeIZl/A (7.53)

Assuming r, ~ 0, the Intracellular axial

current Is:

B — — (.54
() r; Ox r; Ox ( )
_ O elal/n, (7.55)
?“7;)\ 24



Input iImpedance of a semi-infinite cable
(cont.):

Since A = (r, /r,)/? when r_ ~ 0:

I(z) = 2 el (7.56)
\/Tm'ri
and the input impedance Is:
—|z|/A
Zo = C° (7.57)
C__o—lz|/A
A/ TmT;

N (7.58)

25



Input Impedance of a finite cable:

The input impedance Z._ for a finite cable
will depend on the cable’s:

> length ([ in absolute units, or L = [/A In
electrotonic units), and

> termination impedance (Z;).
I;

() )
| X=0

X:L‘ 4,

26




Input Impedance of a finite cable:

The termination impedance Is determined by
the physical configuration of the end of the

fiber.
Some common boundary conditions include:

» semi-infinite cable,
» sealed-end,

» killed-end, and

» arbitrary-impedance.

27



Input iImpedance of a finite cable (cont.):

» A semi-infinite cable termination of a
finite cable correspondsto Z, = Z,. In

this case, the finite cable is simply

considered to be the proximal section of
a semi-infinite cable.

28



Input iImpedance of a finite cable (cont.):

> A sealed-end termination corresponds to
having a patch of membrane covering the
end of the fiber, such that Z, ~ ~c.
In this case, the internal axial current
must be zero at the end of the fiber,
l.e., [(X=L) = 0.

» Using this boundary condition:

V(X) = Vpcosh(L — X) /cosh(L) ,

Rin = Roocoth(L) .

29



Input iImpedance of a finite cable (cont.):

In the case of a sealed-end termination, the
shorter the finite cable, the greater the effect
of the Infinite termination impedance on the
iInput iImpedance.

Table 7.3. Normalized Input
Impedance of Finite Length Cable

L/\ 717
0.1 10.0
0.5 2.16
1 1.31
2 1.04

3 1.01 i




Input iImpedance of a finite cable (cont.):

» A killed-end termination corresponds to

having a direct opening to the
extracellular fluid at the end of the fiber,
such that Z, ~ 0. In this case, the

transmembrane potential must be zero at
the end of the fiber, i.e., V_(X=L) = 0.

» Using this boundary condition:

V(X) = Vpsinh(L — X) /sinh(L) ,

31



Input iImpedance of a finite cable (cont.):
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Fig. 2.5 INPUT RESISTANCE OF A FINITE CABLE Input resistance R, looking into a cable of
electrotonic length L toward the right terminal. The ordinate is normalized in terms of the input
resistance R;, of a semi-infinite cylinder (Eq. 2.16). The normalized input resistance for a sealed-end
boundary condition (upper curve) is always larger than R, while the input resistance of a cable
with killed-end boundary condition (lower curve) is always less. In the former case, the current is
prevented from leaving the cable at the endpoint, while the voltage is “shorted to ground™ in the latter
case. For cables longer than two space constants, Ri, = Ru.

(from Koch)
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Input iImpedance of a finite cable (cont.):

» An arbitrary-impedance termination Is
often used to describe the boundary
between parent and daughter branches
In dendritic trees.

» Using this boundary condition:

cosh(L — X) 4+ (Roo/Ry) sinh(L — X)

VxX) =" cosh(L) + (Reo/Ry) sinh(L) ’

> Roo + Ry tanh(L) "

33
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Fig.2.4 STEADY-STATE VOLTAGE ATTENUATION Steady-state voltage attenuation in a finite piece
of cable as a function of the normalized electrotonic distance X = x/A from the left terminal. The
potential at the left terminal is always held fixed at V = Vy, while the normalized potential throughout
the cable varies with the boundary condition at the right terminal. The bold continuous line corresponds
to the voltage in a semi-infinite cable, showing a pure exponential decay. The thin continuous lines
show the voltage decay for two cables that terminate in a sealed end (Eq. 2.20)at X = 1 or X = 2. This
is the type of boundary condition used most commonly in simulations. The two thin dashed curves
show the same two cables, but now terminating in a short circuit (killed-end boundary condition;
Eq. 2.23). Note that either the spatial derivative of voltage (sealed-end) or the voltage itself (killed-
end) is zero at the rightmost terminal. That the spatial voltage profile can be nonmonotonic in a passive
cable is witnessed by the topmost bold dashed curve, where the voltage at X = 1 is clamped to 1.1
times the voltage at the origin. For the lower bold dashed curve, the voltage at the terminal is clamped
to 0.2V;. Reprinted in modified form by permission from Rall (1989).

Steady-state response of a finite cable:

(from Koch)
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Time-dependent response of a finite cable:

? x (o) (from Koch)

Fig. 2.10 VOLTAGE RESPONSE IN A FINITE CABLE In a finite cable with sealed end boundary
conditions at X = 0 and 1, the voltage V in response to any current input can be described as the
sum (bold line) of infinitely many “reflection” terms (thin lines), each term becoming progressively

smaller. This leads to the convergent series in Eq. 2.41. Here, the current is injected at X = 0. 35



Branching in passive dendritic trees:

A) Ly, dq

O

Lo, dp

O

Ly

ie)
YT UT (from Koch)

Fig. 3.4 PAsSSIVE BRANCHING DENDRITE (A) Schematic drawing of a passive cylindrical dendrite,
with diameter dy and electrotonic length Ly = [/ Ao, with two daughter branches, each with its distinct
diameter and electrotonic length L; = [; /A;. A simple recursive scheme exists to compute exactly the
voltage in such tree structures in response to current input (Rall, 1959). All terminals are assumed to be
sealed. (B) Compartmental-model representation of this passive dendritic tree. The voltage dynamics
in this circuit approximate the solution to the cable equation of the continuous cable in A in the sense
that the cable equation (Eq. 2.7) describes the dynamics of the membrane potential in the limit that the
grid size becomes infinitely fine. For the sake of simplicity, we set Vie to zero (see Fig. 2.3). Standard
software packages, such as NEURON or GENESIS, automatically solve for the voltage in these circuits.

36



Branching in passive dendritic trees (cont.).

Assuming sealed ends on the daughter
branches 1 and 2, their input impedances

are:
Rin1 = Roo1coth(Ly) ,

Rijn o = Ry ocoth(Ly) ,

respectively.

Thus, the parallel daughter branches are
equivalent to a termination impedance given

by: 1 1 1

Rro Rini Rinp

37



Branching in passive dendritic trees (cont.).

Consequently, the input impedances of the
parent branch is:

Rr, 0+ Reo,0tanh(Lo)
Reo+ Rpotanh(Lg)

Rino = R0

Multiple branches can be solved recursively
In this manner.

38



Branching in passive dendritic trees (cont.).

Once the input impedance at the site of
current inject Is calculated, the voltage at
this site can be determined via:

Vo = Rin,OIinj ;

and given V,, we can compute the voltage at
any point in the tree. This Is achieved by
calculating how much current flows into
each of the daughter branches.

39



Branching in passive dendritic trees (cont.).

In daughter branch 1.
%41 sinh(Ll — X)

Il(X):ROOJ cosh(Ly)
V-
= I1(X=0)= _11=v10m,1.
in,
Thus:
Io(X=L) = 1(X=0) + [o(X=0)

V1 (Gin,1 + Ginp2) -

= the current divides between the daughter
branches according to the input conductances

40



Equivalent cylinder of a dendritic tree.

Assume L, = L, and d, = d,

08F e R

0.2 r

1 1 1
0 200 400 600

X (um)

Fig. 3.5 VOLTAGE DECAY ALONG A SIMPLE DENDRITIC TREE Steady-state voltage decay along
the tree shown in Fig. 3.4A, assuming that the two daughter branches are identical, with d; = d;
and Ly = L, = 0.5. The three dashed curves correspond to (1) dy = 2d,, (2) dg'”” = 2d
(3) dy = d,. For the dotted curve, the potential at the right-hand terminal of the main branch is set
to zero (short circuit). For the upper, continuous curve, the membrane is sealed. At the branchpoint
x = 500 um, the voltage profile has a discontinuous derivative for dy = 2d, and for dy = d,.
If the input resistance of the parent at this point is matched to that of the daughter branches (as
is the case for the second condition, dg/g = de"fz), the voltage decay across the cables can be
described by a single, simple expression. This trick is exploited by Rall in his concept of the

equivalent tree.

800

(from Koch)
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Equivalent cylinder of a dendritic tree (cont.):

In the case of d3/? = 2d,%/?, all derivatives of
the voltage profile are continuous =- the
voltage decay can be described by a single
expression.

Why?
1 1 . 1

RL,O - Roo,l COth(Ll) | Roo,l COth(Ll)

Rso.1 cOth(Lq)
5 .

= Rpo=

42



Equivalent cylinder of a dendritic tree (cont.):

For a semi-infinite cable:

0

If d,3/2 = 2d,3/:

 [RmR; 1  Rueor
1

= Input iImpedances are matched

43



Equivalent cylinder of a dendritic tree (cont.):
Consequently:

Ry0= Roo,0c0th(L1)

and:
cosh(Lg+ L1 — X)

VX)) =V cosh(Lg + L1)

= A parent branch of length L, with two identical
Impedance-matched daughter branches of
length L, Is equivalent to a single cylinder of
length L, + L;.

44



Equivalent cylinder of a dendritic tree (cont.):

Rall showed that the entire dendritic tree can
be collapsed into a single equivalent cylinder
If:

1. R, and R, are the same In all branches,

2. all terminals end in the same boundary
condition,

3. all terminal branches end at the same
electrotonic distance L = £, L., and

4. d3? = d?? + d,3/? at every branch point.

Assumptions 1 & 2 are reasonable, but 3 & 4 are
only met in a few remarkable neuron types. 45



Compartmental modeling:

A) Ly, dq

O

Lo, dp

O

Ly
IHCH
lH:'D
o]
’rSLC:
we

Fig. 3.4 PAsSSIVE BRANCHING DENDRITE (A) Schematic drawing of a passive cylindrical dendrite,
with diameter dy and electrotonic length Ly = [/ Ao, with two daughter branches, each with its distinct
diameter and electrotonic length L; = [; /A;. A simple recursive scheme exists to compute exactly the
voltage in such tree structures in response to current input (Rall, 1959). All terminals are assumed to be
sealed. (B) Compartmental-model representation of this passive dendritic tree. The voltage dynamics
in this circuit approximate the solution to the cable equation of the continuous cable in A in the sense
that the cable equation (Eq. 2.7) describes the dynamics of the membrane potential in the limit that the
grid size becomes infinitely fine. For the sake of simplicity, we set Vie to zero (see Fig. 2.3). Standard
software packages, such as NEURON or GENESIS, automatically solve for the voltage in these circuits.

§ % % E o
o [ (from Koch)
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