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5. LINEAR CABL

EQUATIONS
We will look at:

» Core-conductor model
» Cable equations

» Linear (subthreshold) response of a
cylindrical fiber



Core-conductor model:

In the core-conductor model we approximate an
axon or a segment of a dendrite as a uniform

cylinder.
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Figure 4.6 Diagram for current flow in a uniform cylinder such as an axon or segment
of dendrite.

Each small (cylindrical) segment of membrane is
electrically linked (axially) to the next segment by
the intra- and extra-cellular electrolytes. ,



Resistance and capacitance in a cylindrical
fiber:

If the resistivity of the intracellular electrolyte iIs
R, (Q-cm), then for a cylindrical fiber of radius a the

axial (longitudinal) resistance per unit length is:
R;

’J'T(l2

/cm. (6.1)

r;, —

(Note the convention that (i) resistivity or specific
resistance/capacitance is designated by an
uppercase letter and (ii) resistance or capacitance
per unit length is designated by a lowercase letter.)
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Resistance and capacitance in a cylindrical
fiber (cont.):
If R (Q2-cm?) and C'(uF/cm?) are the specific

m

resistance and the specific capacitance,
respectively, of the membrane, then the
membrane resistance times length is:

21Ta

and the membrane capacitance per unit length is:

cm = Cm2ma  uF/cm. (6.3)
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Core-conductor model (cont.):

If a single fiber described by the core-conductor
model lies In a restricted extracellular space, then

longitudinal current flow can occur in the
extracellular electrolyte and longitudinal variations

In the extracellular potential can result.
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Figure 6.1. The linear core-conductor model for a single fiber lying in a restricted extracellular space.
Longitudinal extracellular and intracellular currents are [, and [I;, while extracellular and intracellular
potentials per unit length are designated @, and ®,, respectively. 6



Core-conductor model (cont.):

Under linear (i.e., subthreshold) conditions, each
membrane patch of length Az can be described by

a lumped RC circuit.
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Figure 6.2. Electrical representation of a cylindrical fiber membrane element of length Ax under

(linear) subthreshold conditions.



Core-conductor model (cont.):

Under nonlinear (i.e., suprathreshold/
transthreshold) conditions, each membrane patch
of length Az must be described by the HH model.

g AX OnglX = 94X

CrBX

Figure 6.3. Electrical representation of the membrane for a fiber of length Ax under transthreshold
conditions. The conductances gy, gy, and g, are found from the Hodgkin—-Huxley equations and are

converted to umits of S/ecm for the linear core-conductor model. 8



Core-conductor model assumptions:

1. The transmembrane and longitudinal currents,
as well as the intra- and extra-cellular
potentials, are functions only of the axial
(longitudinal) coordinate =. That is, we have a

one-dimensional cable model.

2. For a fiber with a restricted extracellular space,
the extracellular current can only flow in the
axial (longitudinal) direction.

In the case of a larger extracellular space, the
resistance of the extracellular electrolyte Is
assumed to be negligible, i.e., r_ =~ 0.



Nerve fiber bundle showing restricted extracellular

Spaces.

Figure 6.4. Photomicrograph of a transverse section of a cat saphenous nerve fascicle. Few fibers have
a circular cross section and some are quite convoluted, but they can be approximated as circular or,
better, as elliptical. Except near the periphery the interstitial currents can be expected to be essentially
axial. It all fibers are approximately the same and behaving synchronously, and if the total number is N
while the total interstitial cross-sectional area is A,, then each fiber is associated with an interstitial
cross-sectional area of A,/N. Figure 6.1 would then apply to a typical fiber with r, = R,/(A_./N). This
figure is from W, Olson, PhD dissertation, University of Michigan, 1985; also W. Olson, X. Wit, and S.
L. BeMent, Compound action potential reconstructions and predicted fiber diameter distributions, in
Conduction Velociry Distributions, L. J. Dorfman, K. L. Commins, and L. J. Leifer, eds., A.R. Liss, New
York, 1981. Reprinted by permission of Wiley-Liss Inc., a subsidiary of John Wiley and Sons.
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Core-conductor model assumptions (cont.):

3. The radius of a fiber is typically many times
smaller than its length, such that the
Intracellular current can be assumed only to
flow in the axial (longitudinal) direction. The
resistance per unit length of the intracellular
electrolyte is found via Egn. (6.1).

4. For nerve and muscle under passive
conditions, the membrane is represented by
passive components (shown in Fig. 6.2) with
values for » and ¢, found via Egns. (6.2) and
(6.3).

Under active conditions, the HH model is

utilized, as illustrated in Fig. 6.3. y



Cable equations:

Ohm’s and Kirchhoff's laws can be applied
to the core-conductor circuit (shown in Fig.
6.1 of Plonsey and Barr) to obtain the cable

equations for a uniform cylindrical fiber of
arbitrary length.

It Is then desirable to evaluate the cable
equations in the limit as Az — 0, such that
the equations describe the behaviour of the
fiber as a continuous function of axial
(longitudinal) position, rather than a set of
discrete membrane patches. -



Cable equations (cont.):

The resulting relationship between the extracellular
potential gradient in the axial direction as a
function of the axial current is:

9L
ox

= —Iere, (6.4)

and likewise the intracellular potential gradient is:

0P,
ox

= —ILr,. (6.5)



Cable equations (cont.):

If current leaves the intracellular space by crossing
the membrane, then the intracellular current will
show an axial decrease, while the transmembrane
current will be positive. This conservation of
current is described by:

or,
% — —lim, (66)

where i _ Is the transmembrane current per unit
length.

(Note that i, is a linear function of the membrane potential
under passive (subthreshold) conditions but is a nonlinear
function under active (suprathreshold) conditions.) y



Cable equations (cont.):

In contrast, the extracellular current will increase
axially due to any transmembrane current.

In stating this relationship we will also allow for the
possibility that a current may be injected into the
extracellular space from polarizing electrodes,

giving:

Ox

where i is the current per unit length injected from
the polarizing electrodes.
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Dependence of ®, and ®_on V :

Suppose I is defined as:
I =1+ Ie. (6.8)
From Eqgns. (6.6) and (6.7):

o1 _ oI,  dle L
% Iy | 97 — 3m‘|‘(3m‘|‘3p)

ip. (6.10)

That is, any change in the total axial (longitudinal)

current must come from the injected current ;.



Dependence of ®, and ®_on V. _ (cont.):

We now consider the relationship between the
transmembrane potential and the extra- and intra-
cellular currents and potentials.

Since, by definition V., = ®©, — ®©_, we have:

ox ox ox

— _T?,I’Er + Te[e

—?"%’I?; —|— Te (I — Ig) (69)

—(rij+re) I; + rel. (6.11)



Expressions for membrane current:

If Egns. (6.11) is differentiated with respect to =,
then:

0%V
Ox2

oI,
= —(rit+re) — +re—  (6.23)
ox T

Substituting Egns. (6.6) and (6.10) gives:

8%V, . .
52 = (rit7e) im + reip. (6.24)
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Expressions for membrane current (cont.):

In comparison, If Eqn. (6.9) is differentiated with
respect to  and Egn. (6.6) Is substituted for

oI, /0x, then:
1 649,
i = ; 6.25
i r; Or2 ( )

» Note that Eqgn. (6.24) shows the dependence of the
transmembrane current i, on the transmembrane

potential, the injected current and the extra- and intra-
cellular resistances.

» |n contrast, Eqgn. (6.25) describes the dependence of
the transmembrane current on the intracellular
potential and resistance only. -



Linear (subthreshold) response of a
cylindrical fiber:

Under subthreshold conditions, the
transmembrane current per unit length
¢, (mA /cm) in a cylindrical fiber is:

) vm dom
m — I m )
m dt

(7.9)

where r _ Is the membrane resistance times
unit length (Q-cm) and ¢, is the membrane
capacitance per unit length (uF/cm).
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Linear (subthreshold) response of a
cylindrical fiber (cont.):

Substituting Egn. (7.9) into cable equation
(6.24) gives:

02 v Ov |
A2 mg"' + a? vm = reXliy,  (7.11)

A = m and 7 =wvrpem. (7.12)
i T Te
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Linear (subthreshold) response of a
cylindrical fiber (cont.):

For steady-state conditions (dv, /ot = 0),
Egn. (7.11) simplifies to:

2d2vm

dx

In the case of :, = 0, Eqn. (7.13) becomes:

2d2’l)m

A
dz2
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Linear (subthreshold) response of a
cylindrical fiber (cont.):

The solution of Egn. (7.14) :
vm = Ae~%/A 4 BeT/A ,, (7.15)

where A and B are constants, the values of which
are determined by boundary conditions.

Note that in cases where ¢, # 0, rather than solving
Eqgn. (7.13) for the particular solution, Is possible to
apply Eqn. (7.14) to regions of a fiber where z, = (
and use the region where ¢, # 0 to Impose the

boundary conditions and solve for A and B.
23



Space and time constants:
In Eqn. (7.12) we introduced:

» the space constant 2, and

» the time constant .

Space constant:-

Under steady-state conditions, Eqgn. (7.15)
describes the space constant A as the
distance over which the transmembrane
voltage and current decay by the factor 1 /e.
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Space and time constants (cont.):

For a cylindrical fiber with uniform membrane
properties and with », = 0:

/\=\/ LGRS Y (7.16)

Pi T Te P

Substituting for », and »,_ In Eqn. (7.16) using
Egns. (6.1) and (6.2) gives:

R /2
\ = | Bm/ e (7.17)
\ R;/ma
R
= [ (7.18),
OR, s




Space and time constants (cont.):

Time constant:-

For an isopotential patch of membrane (e.g., a
small spherical cell), we saw in Eqn. (7.4) that the
time constant t corresponds to the time over which
the transmembrane potential grows towards Its
steady-state value by the factor 1—1/e.

For a cylindrical fiber, the transmembrane potential
grows to a particular fraction its steady-state value
by the time t, where the fraction depends on the
distance from the site of stimulation.
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Steady-state solution for stimulus current at
the origin:

Injection of a small current into the extracellular
space at the origin (center) of an infinitely-long
cylindrical fiber can be approximated by a spatial
delta function source:

ip = Igd(x) , (7.19)

where I is the total applied current (mA) and d(z)
Is the unit delta function.

Note that ;, Is zero everywhere except at the
origin, where 1t is infinite, and integrating z, around

the origin gives the total current 1, ..



Steady-state solution for stimulus current at
the origin (cont.):

Given the current injection described by
Egn. (7.19), the steady-state membrane
equation (7.13) becomes:

2d2?.)m

A vm = reA?Io 8(x) . (7.21)

da?2

Except at the origin, the fiber is described by
the homogeneous equation (7.14), which
yields the homogeneous solution given in
Egni. (7 .19)
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Steady-state solution for stimulus current at
the origin (cont.):

However, v_(x) must be continuous at the
origin, so Eqgn. (7.15) must apply
everywhere.

Now we need to apply the boundary
conditions of:

» a source at the origin x = 0, and
» the transmembrane potential at |z| = o,

to determine the constants A and B.
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Steady-state solution for stimulus current at
the origin (cont.):

» The relative transmembrane potential at x =
oo must be zero, so the constant B must be
zero for the region x > 0.

» Likewise, the relative transmembrane potential
at + = —oo must be zero, so the constant A
must be zero for the region = < 0.

» Because of the continuity of v, (x) at the origin,
the value of the constant A for the region = > 0

must be equal to the constant B for the region
xr < 0. We will call this constant .
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Steady-state solution for stimulus current at
the origin (cont.):

These boundary conditions can be summarized

as.
Table 7.1. Boundary Conditions

Constants A B
x>0 C 0
x<0 0 C

Given these boundary conditions, Egn. (7.135) can
be rewritten as:

vm = Ce~12l/A (7.27)
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Steady-state solution for stimulus current at
the origin (cont.):
Integrating Eqn. (7.21) around the origin and
Imposing these boundary conditions to solve for
the constant (', we obtain:
TeAIO

5

C = (7.30)

Substituting Egn. (7.30) Into Eqgn. (7.27) gives:

Tegfo e lzl/x (7.31)

Um
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Steady-state solution for stimulus current at
the origin (cont.):

Inspection of Egn. (7.31) leads to the following
conclusions:

1.

The stimulus clearly affects the
transmembrane potential, since v, IS nonzero
for all finite values of .

The effects of the stimulus varies markedly
with =. The largest change in v,, occurs where
x = (0. v,, decreases exponentially with
distance, falling by a factor of 1/e every length

A from the stimulus site.

33



Steady-state solution for stimulus current at
the origin (cont.):
3. For a given stimulus I,, the change in v,

Increases with increasing r,, Increasing r,,
and/or decreasing r,.

4. From the sign of Eqn. (7.31), a positive current

Injected Into the extracellular space leads to a
negative v, , I.e., the membrane Is

hyperpolarized.

5. The space constant A gives a nominal
measure of how far the disturbance in v,

extends from the site of stimulation.

34



Step current at origin — general time-varying
solution:

Consider the homogeneous version of Eqn.
(7.11):

92w ov
bl (%;”’ T 8;” vm = O. (7.32)

As before, we will apply the boundary condition of
an injected current at the origin.

If we assume an unbounded extracellular space
and an intracellular injected current, we can
assume that », = 0.
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Step current at origin — general time-varying
solution (cont.):

To simplify our notation, we introduce the
normalized space and time variables:

t
X=2 and T = —, (7.33)
A T

such that Egn. (7. 32) becomes:

82 Um a'Um
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Step current at origin — general time-varying
solution (cont.):

The solution to Egn. (7.34) for an infinite
cable with an intracellularly-injected current
I, at the origin can be obtained by using:

» the Laplace transform to turn the
differential equation into an algebraic
equation, and

» the boundary conditions of the injected

currentat X = 0and v, (X) =0 at
— T CCQ.

37



Step current at origin — general time-varying
solution (cont.):

In the normalized space and time variables
the solution is:

’Um(X,T) — T'?,/:;.IO{ {1 erf (F—\/_)]

— g [1—erf(2ﬁ ﬁ)” . (7.45)

where:

erf(y) o %/oy e=*°dz. (7.47)
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Step current at origin — general time-varying

solution (cont.):

Converting back to the original coordinates

gives:

r;Alg

A 4

vm(x,t) =

_ e‘xl/}‘

e_|x|/)\

39



Step current at origin — general time-varying
solution (cont.):

For a given value of time, the spatial
behaviour i1s exponential-like. Fort¢ > ,

v, () tends towards a true exponential, as
was obtained for the steady-state response
described by Eqgn. (7.31).

This continuous decrement of v_ () with
increasing |z| is due to the leakage of

current through the membrane, while &
describes the rate of this effect.

40



Step current at origin — general time-varying
solution (cont.):

For a given position x along a fiber, the

membrane potential reaches its steady-state
In an exponential-like manner over time.

Only at o = }\' |S |t truly Table 7.2. Temporal Morphology at

Different Values of x Due to Current Step

exponential, i.e., the | atx =0
fraction of the © vaercachedatret
steady-state potential ; oo
that is achieved " o

att =rtis 1-1/e. i e
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Step current at origin — general time-varying
solution (cont.):

I=uw

Vo |-

-3 =2 -1 0
- Distance

Ve |-

Vi

+x —x Distance +x

Figure 7.4. Theorctical distribution of potential difference across a passive nerve membrane in
respanse to onset (q and o) and cessation (& and o) of a constant current applied imracellularly at the
point x =0 (a) and (b} show the spatial distribution of potential difference at different times, and ()

-05 and (o} show the time course of the potential at different distances along the axon. Time (1) is expressed
-0.6 in units equal to the time constant, T, and distance (x) is expressed in uniis of space constant, A. [From
=0.7

D. ). Aidley, The Physiology of Excitable Cells, Cambridge University Press, Cambridge, 1978, Afier

:gg A L. Hodgkin and W. A. H. Rushton, The electrical constants of a crustacean nerve fiber, Proc, K. Soc,
_1:{' London, Ser B 133:444-470 (1946). Reprinted with permission of Cambridge University Press.]
-1.2




6. PROPAGATION OF ELECTRICAL
POTENTIAL WAVEFORMS

We will look at:

» Axonal delays & propagation velocity in linear
cable

» Local circuit currents during propagation

Mathematics of propagating action potentials

» Numerical solutions for propagating action
potentials

» Propagation velocity constraint for uniform
fiber

» Propagation in myelinated nerve fibers

- -
__I'-
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Impulse propagation:

In the previous lecture we considered
excitation and action potential generation in
an isopotential patch of membrane.

However, In practice we are often concerned
about the propagation of transmembrane
potential iImpulses (i.e., waveforms),
particularly action potentials, along the
length of axons, dendrites or muscle fibers.

44



Impulse propagation (cont.):

Chemical synapse

synaptic r
potential

2 4 & Bmse 1 !
: ™. snode of Ranvier
e e L g o pyemen? ANOTI il

myelin sheath

Figure 1.2 Neurons convey information by electrical and chemical signals. Electrical
signals travel from the cell body of a neuron (left) to its axon terminal in the form of action
potentials. Action potentials trigger the secretion of neurotransmitters from synaptic
terminals (upper insert). Neurotransmitters bind to postsynaptic receptors and cause
electric signals (synaptic potential) in the postsynaptic neuron (right). Synaptic potentials
trigger action potentials, which propagate to the axon terminal and trigger secretion of
neurotransmitters to the next neuron. (Adapted from Kandel et al. 1991 and from L.L.
Iversen, copyright © 1979 by Scientific American, Inc. All rights reserved.)

(from Johnston
and Wu)
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Axonal delays & propagation velocity in
linear cable:

Figure 7.4 on slide # 42 shows a delay In
depolarizing sites far away from the site of current
Injection. Is this delay somehow proportional to
the distance, i.e., can one define a propagation
velocity?

There i1s no wave solution for a linear cable:

1. waveforms must dissipate due to the low-pass
character of the linear membrane, and

2. there must be an infinitely-quick response at
distant sites if the cable contains no inductive
elements. 46



Axonal delays & propagation velocity (cont.):

However, it Is possible to define a propagation
delay/velocity based on the centroid (first moment)
of potentials in a linear cable. For a current or

voltage waveform h(z.t), the centroid at location =
IS:

7h — JEODOth(I,t) dt
L[ h(z,t)dt

(K2.43)
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Axonal delays & propagation velocity (cont.):

The transfer delay D is the difference between the
centroid of the induced voltage measured at

location y and the centroid of the current that was
Injected at location z:

Dy =Dy =%, —¥4. (K2.45)

The local or input delay iIs then D .

The propagation delay P s the difference in the
voltage centroids at = and y:

Py =1Y ~ &) = Dyy— Dia. (K2.51)
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Axonal delays & propagation velocity (cont.):

These delays can be obtained for a linear cable by
multiplying the cable equations by ¢ and integrating
over t. The resulting equation is an ODE similar to

the steady-state cable equations.

Some important properties are:
1. D_>10
2. D, isindependent of the formof [, I.e., itis a

inj?

properties of the cable not the input, and
3. D,,=D,,.
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Axonal delays & propagation velocity (cont.):
For an isopotential neuron, D, =t

m-

For an infinite cable, D, =1 _/2,

lz —y|\ ™m
D= | 14 K2.50
Iy ( I )\ 2 ? ( )
and
|$ — ’U| ™™
[ — —, K2.52
Ty ( X 5 ( )

such that the nominal propagation velocity Is:

A d
v=2=\/ - (K2.53)
TT?’L Rrrg,RiOm
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Axonal delays & propagation velocity (cont.):

A Meambrana Palch

Normalized Responsa

T 10 * Z0 : a0 : a0
t (msac)
B) Cable
‘lT;'-, ' (from Koch)
i | 1

MNormalized Aesponse

0 ' 10 20 ' a0 40
t (msec)

Fig. 2.11 NEURONAL INPUT AND PROPAGATION DELAYS  An elegant way to define propagation

delays in passive cables involves tracking the ceniroid or center of mass of voltages or currents in

passive cable (Agmon-Snir and Segev, 1993). This is illustrated in (A) for an isopotential patch of

membrane with 1, = 20 msec. A brief current pulse {solid profile with f.. = (0.5 msec) gives risc

Lo a rapidly rising but very slowly decaying depolarizing potential (shown dashed using normalized

umits). The centroids of the two signals (see arrows al | and 21 msec) are displaced by one time

constant. In (B), the same current is injected into a very long cable, and the normalized potential al

the same location (dashed) and at a location one space constant displaced (dotted) are plotted. In an

infinite cable, the transfer delay D, , between the centroid of the current at x and the centroid of the 51
voltage al v is (1 + |x — #|/ A1 /2 (see the arrows at 1, 11, and 21 msec). As witnessed already in

Fig. 2.8A, the potential decays [aster in a cable than m an isopotential patch of membrane.



Local circuit currents in active membranes:

Propagation of action potentials in active
(nonlinear) membranes can be understood
qualitatively by considering the patterns of
local currents that are produced by an action
potential (site A Iin the figure below).

A B C
-5
/ \ Exrm
| | 1
1© 20 30 4@ 50 @MEMBRANE ;

[ F INTRACELLULAR

Figure 6.5. Local circuit or action current pattern. 52
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Local circuit
currents (cont.):

Fig, 6.13 LocaL Circurt CURRENT IN THE SQUID AXON

A)
50

Na channels

Squid axon @
action potential o
18.5°C 'E
1]
E
=]
(4]
E
140 2
]
c
120 §
K channels G
c
=3
0 o

0 2 3 4
t (msec)

0 25 50 75
¥ (mm)

Ilustration of the events occurring in

the squid axon during the propagation of an action potential. Since the spike behaves hike a wave
traveling at constant velocity, these two panels can be thought of either as showing the voltages and

(from Koch)

currents in time at one location or as providing a snapshot of the state of the axon at one particular
instant (see the space/time axes at the bottom}. (A) Distribution of the voltage (left scale) or the number

of open channels (right scale) as inferred from the Hodgkin-Huxley model at 18.57 C. (B) Local circuit
currents that spread from an excited patch of the axon to neighboring regions bringing them above
threshold, thereby propagating the action potential. The diameter of the axon (0,476 mm) is not drawn
to scale. Reprinted by permission from Hille ( 1992),
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Mathematics of propagating action potentials:

The cable equations describe the behaviour of
the extra- and intra-cellular (and consequently
transmembrane) currents and potentials as a
function of space, specifically the axial
(longitudinal) coordinate x.

In order to describe the propagation of
transmembrane potentials, i.e., movement in
space over time, we must couple the cable
equations with a description of how a patch of
membrane behaves as a function of time, i.e., the
linear (passive) RC circuit equation or the

nonlinear (active) HH model equations.
o4



Mathematics of propagating action
potentials (cont.):

Evaluating Eqgn. (6.24) in a source free region
gives:
0°Vim,

52 (r;+re) im. (6.26)

Assuming that the extracellular space is large
(= r. = 0) and using Eqgn. (6.1), we have:

2 02
wa 8 Lm
) — . 6-27
. R% 8332 ( )
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Mathematics of propagating action
potentials (cont.):

The transmembrane current per unit area, I _, Is

related to ¢, (the current per unit length) via' the

cylindrical geometry, such that:

and consequently:

a 82Vm
Iy = : 6.29
" 2R; Oz2 ( )
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Mathematics of propagating action
potentials (cont.):

To model the propagation of action potentials, the
description of the transmembrane current per unit
area, [, given by Eqn. (6.29) can be equated to

the HH model equation for I :

Im = gkn* (Vim—Ek)
T §Nam3h (Vm_ENa)
T 9r (Vm—EL)

dVim
Cm——.
+ Cm ¥

(6.30)
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Mathematics of propagating action
potentials (cont.):

Thus:

OVm i ( a 82Vm) > Lion

_ - . (6.31
ot  Cm (6.31)

where the total ionic current is given by:

Y Tion = gkn* (Vim—Ek) + gnam>h (Vim—Ena)
+ 91, (Vmm—EL) + Io, (6.32)

and I, Is a current applied (normally briefly) at a

particular spatial location. =



Numerical solutions for propagating action
potentials:

» Eqgn. (6.31) Is a nonlinear partial differential
equation (PDE) that Is first-order in time and
second-order in space.

» Numerical solution is required because of the
nonlinear nature of Eqn. (6.32) and hence Eqn.
L6.31%

» The fiber must be discretized into sequential
points (or nodes of Ranvier) spaced at intervals
of Ax (say 25 pm).

» The solution is then computed for each time
iInterval At (say 10 ps).
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Numerical solutions for propagating action
potentials:

One method for numerical solution is to compute
these four steps at each time interval:

1.

This has updated 7, and V,

Solve for the change in transmembrane
potential AV by approximating the partial

m

derivates for discrete intervals.
Update V

Compute the updated gating particle time
constants o, [3,,, etc.

Compute the new ionic currents based on the
updated gating time constants and V/

m-

by one time step.

m 60



Numerical solutions for propagating action
potentials (cont.):

Note that it is often desirable to have a variable
time step At, to optimize computation speed.

This can be achieved with:

» Matlab, which has a set of numerical PDE
solvers, or

» software packages for simulating axons and
dendrites, including:
— NEURON: For computer simulations of
neurons and neural networks

— The GEneral NEural Simulation System
(GENESIS) s




Example propagating action potential:

—i vm
13.3m/s

Vm (mV)

distance (cm)

Figure 6.9. Simulation of propagation on squid axon of diameter 600 pm at T = 6.3 °C. Hodgkin-
Huxley membrane parameters and equations are utilized. The figure describes the behavior of gating

variables and transmembrane potential as functions of the axial coordinate. The velocity of propagation
is 13.3 m/sec.
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Example propagating action potential
(cont.):

Vm (mV)
(wn) 4

20 2 22 24 26
distance (cm)

Figure 6.70. Simulation of propagation on squid axon of diameter 600 pm at 7= 6.3 °C, Hodgkin-
Huxley membrane parameters and equations are utilized. The figure describes the spatial behavior of
transmembrane potential and the intracellular (longitudinal) current; v, is given in mV and /; in pA. 63



Example propagating action potential
(cont.):

(woyyn) wy

T T T T T T 1 - -'40
20 22 24 26
distance (cm)

Figure 6.11. Simulation of propagation on squid axon of diameter 600 um at T = 6.3 °C. Hodgkin—

Huxley membrane parameters and equations are utilized. The figure describes the spatial behavior of
the transmembrane potential and the transmembrane current; v, is given in mV and i,, in pAfcm.
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Propagation velocity constraint for uniform
(unmyelinated) fiber:

For uniform propagation, the space-time
behaviour of V_(z.,t) must satisfy the wave
equation:

Vin(z,t) = Vin(z — 6), (6.37)

where 0 Is the propagation velocity.

(Note that propagation of the action potential
waveform without dissipation requires an active

membrane, I.e., voltage-gated ion channels.)
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Propagation velocity constraint for uniform

(unmyelinated) fiber (cont.):

Differentiating Egn. (6.37) once with respect

to =, utilizing the chain rule, gives:

S =—(1/6) 2", (6.38)
and again results in:

0%V > 0%Vim

S = (1/9 ) P (6.39)
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Propagation velocity constraint for uniform
(unmyelinated) fiber (cont.):

Substituting Eqn. (6.39) into (6.31), with
I, = 0, gives:

a d4V, dV
i Cm d;’n | QK(Vm_EK)

T gNa(Vm_ENa)

+ 9r(Vm—Er) (6.41)

With an appropriate value for 6 the solution
to this ODE exhibits an action potential; the
solution diverges with an incorrect 6.

2R.02 dt?
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Propagation velocity constraint for uniform
(unmyelinated) fiber (cont.):

An important property of the propagation
velocity can be obtained with inspection of
Eqgn. (6.41) without solving it explicitly.

Note that all the terms on the right-hand side
(6.41) are independent of the fiber radius a,
as is d*V_/dt?, and thus the coefficient must

be a constant independent of a, that is:

a

D R,02

1
— constant = —. (6.42)
K
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Propagation velocity constraint for uniform
(unmyelinated) fiber (cont.):

Consequently:
b aK
— _ 6.43
\ \/QR?; i

Since K Is unknown, it must be determined
experimentally.

An empirically obtained relationship is:
0 =+vd m/s, (6.44)

where d Is the fiber diameter in um. -



Propagation in myelinated nerve fibers:

In vertebrates, Schwann cells produce myelin
which wraps around an axon to produce an
Insulating sheath. The regularly-space breaks in
the myelin are called nodes of Ranvier, and the
axon segments between nodes are referred to as
internodes.

NODE OF RANVIER
SCHWANN CELL NUCLEUS

Figure 6.6. Diagram showing the structure of a myelinated nerve fiber. (Reprinted with permission
from D. J. Aidley, The Physiology of Excitable Cells, Cambridge University Press, Cambridge, 1978.) 70



Propagation in myelinated nerve fibers
(cont.):

The myelin Is wrapped In layers around the axon,
often on the order of 10s or even 100s of layers.

Figure 6.7. The development of the myelin sheath by vertebrate Schwann cells in the sequence A —
B — C. [Reprinted with permission from J. V. Robertson, The molecular structure and contact
relationships of the cell membrane, Prog. Biophys. 10:343-417 (1960). Copyright 1960, Pergamon
Journals, Ltd.]



Propagation in myelinated nerve fibers

(cont.):

Fig. 6.14 MYELINATED AXONS
Electron micrograph of a cross sec-
tion through a portion of the optic
fiber in an adult rat. The complete
transverse section through a sin-
gle myelinated axon is shown in
close neighborhood to other axons.
About four wrappings of myelin
insulation are visible. The circu-
lar structures inside the axonal
cytoplasm are transverse sections
through microtubules. Reprinted
by permission from Peters, Palay,
and Webster (1976).

(from Koch)
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Propagation in myelinated nerve fibers

(cont.):

Fig. 6.15 Evectrican Circuim For A MYELINATED AXon  Geometrical and electrical layout
of the myelinated axon from the frog sciatic nerve (Frankenhaeuser and Huxley, 1964 Rogart and
Ritchie, 1977). The diameter of the axon and its myelin sheath is 15 pom, the diameter of the axon
itself 10.3 yem, the difference being made up by 250 wrappings of myelin. The myelin is interrupted
every .38 mm by a node of Ranvier that is 2.5 um wide. The total distributed capacitance for the
internode (2.2 pF) is only slightly larger than the capacitance of the much smaller node (1.6 pF). The
same is also true of the distributed resistance. At each node, the spike is rearnplified by a fast sodium
current and is repolarized by a potassiom current. Little or no potassium current is found at the nodes
of Ranvier in mammalian myelinated axons. There, repolanization is accomplished by rapid sodium
inactivation in conjunction with a large effective “leak™ curremt,

(from Koch)
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Propagation in myelinated nerve fibers
(cont.):

The specific leakage resistances and
specific capacitances of the myelin sheath
and cell membrane shown below are
consistent with the myelin sheath being
equivalent to around 100 layers of cell
membrane.

Table 6.1. Electrical Properties of Myelin Sheath and Cell Membrane

Specific leakage resistance (Q cm?) Specific capacitance (F/cm?)

Myelin sheath 10° 10-8
Cell membrane 10 10-6
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Propagation in myelinated nerve fibers
(cont.):

Considering the Frankenhaeuser-Huxley model
under subthreshold (i.e., linear/passive) conditions,
the nodes of Ranvier have a specific membrane
resistance and specific membrane capacitance of:

and (6.45)

respectively.
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Propagation in myelinated nerve fibers
(cont.):

Note:-

» Nodes of Ranvier are around 1 um in length.

» Internodal distances are on the order of 1 to 2
mm. (A rough empirical rule is that the

Internodal length equals 100xd, where d is the
fiber diameter.)

Although Internodes are much longer than nodes,
the much smaller specific capacitance of the
former means that an internode and a node have
approximately the same capacitance.
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Propagation in myelinated nerve fibers
(cont.):

The purpose of the myelin Is clearly to:

1. reduce the capacitance of long stretches of
membrane, the internodes, such that they do
not need to be charged up for action potential
propagation, and

2. Increase the membrane leakage resistance so
that there Is less leakage across the

membrane of the intracellular longitudinal
current.

Consequently, the “local circuit currents” extend
over much longer lengths of the fiber. .



Propagation in myelinated nerve fibers
(cont.):

Because the local circuit currents extend
from node to node, action potentials
effectively jump or skip from node to node,
which is referred to as saltatory propagation.

Saltatory propagation produces:

1. faster propagation of action potentials,
and

2. a “faillsafe” mechanism — if one node Is
blocked, the action potential will skip
over it to the next.
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Propagation in myelinated nerve fibers
(cont.):

In contrast to Eqn. (6.44), for myelinated fibers:
0 =6d m/s, (6.46)
where d Is the fiber diameter in pum.

120 = Fig. 6.16 IMAMETER AND PROPA-

- GATION VELOCITY Relationship be-
tween (internal) diameter d of adult cat
peripheral myelinated fibers and prop-
agation velocity u of the action poten-
tial. The data are shown as dots (Hursh,

80 1939) and the least-square fit as a line,
Peripheral myelinated fibers are bigger
than | pm, while myelinated fibers in

I[mm.-";l‘nﬂccj the central nervous system can be as

thin as 0.2 pem, with an expected veloc-
ity in the 1-mm/msec range. Reprinted

40 by permission from Ritchie (1982).

(from Koch) 80



