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Mixed Criticality Systems MOTIVATION

• No longer solely hosting isolated safety-critical tasks

• Execute tasks with different criticalities

• Criticality 𝛼 consequences of failure to meet requirements

• High-criticality tasks

• Airbag Control Unit (ACU)

• Anti-lock Braking System (ABS)

• Engine Control Unit (ECU)
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Mixed Criticality Systems MOTIVATION

• No longer solely hosting isolated safety-critical tasks

• Execute tasks with different criticalities

• Criticality 𝛼 consequences of failure to meet requirements

• Medium-criticality tasks

• Navigation System

• Instrument Cluster

• Cruise Control
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Mixed Criticality Systems MOTIVATION

• No longer solely hosting isolated safety-critical tasks

• Execute tasks with different criticalities

• Criticality 𝛼 consequences of failure to meet requirements

• Low-criticality tasks

• Air Conditioning Unit

• Connectivity Box

• Infotainment Unit
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Mixed Criticality Systems MOTIVATION
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MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)
• Simplicity and Modularity
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MPSoCs MOTIVATION
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PEP

PE4
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PE…
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Hennessy & Patterson, Turing Lecture,
A New Golden Age for Computer Architecture
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Heterogenous MPSoCs MOTIVATION

MPSoCs

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO
Heterogenous MPSoCs
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Heterogenous MPSoCs MOTIVATION

MPSoCs
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Why Heterogenous 
MPSoCs?
• Variety of processing capabilities 
→Best-suits MCS conflicting 

requirements
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Heterogenous MPSoCs with Real-time 
Processors MOTIVATION
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Heterogenous MPSoCs with Real-time 
Processors MOTIVATION
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Where Are We? 
WMC13-17

Uniprocessor: 

Multiprocessor:                    45%
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Where Are We? 
WMC13-17

Uniprocessor: 

Multiprocessor:                    45%

➢ Shared Resources:               ~31% 

➢ SoCs: ~2%

23

19

13
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Where Are We? 
Overall, MCS review[Burns and Davis]

Multiprocessor

~27%



Where Are We? 
Overall, MCS review[Burns and Davis]

Shared

Resources

~13%



Where Are We? 
Overall, MCS review[Burns and Davis]

SoCs

~4%



MPSoC-Based 
MCS: 
Four Aspects

Traditional 
MCS Model

Timing 
Interference

Data Sharing Security
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Traditional Model

WCET
(LO)

WCET
(LO)

normal mode

degraded mode
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Traditional Model

WCET
(LO)

WCET
(HI)

WCET
(LO)

normal mode

degraded mode
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Problems with the Model MODEL

• Lower-criticality tasks are suspended upon 
switching to a higher-mode (not acceptable in 
industry [P. Graydon and I. Bate, WMC 2013])

Suspension

• Switching leads to huge overheads (usually 
overlooked) [L. Sigrist et al, RTAS 2015]Overheads

• Of special importance for MPSoCs (more next)
Sources of 

Uncertainty
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MPSoCs
Opportunities

1. MPSoCs create switching alternatives

• Different modes of operation at different 
cluster of PEs?
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MPSoCs
Opportunities

1. MPSoCs create switching alternatives
• Different modes of operation at different cluster of PEs?

• Migrate instead of switching?

• Dynamic Reconfiguration (IEC61508-7)

C.3.13 Dynamic reconfiguration 
The logical architecture of the system has to be such that it can be mapped 
onto a subset of the available resources of the system. The architecture 
needs to be capable of detecting a failure in a physical resource and then 
remapping the logical architecture back onto the restricted resources left 
functioning. Although the concept is more traditionally restricted to 
recovery from failed hardware units, it is also applicable to failed software 
units if there is sufficient ‘run-time redundancy’ to allow a software re-try 
or if there is sufficient redundant data to make the individual and isolated 
failure be of little importance. This technique must be considered at the first 
system design stage.
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MPSoCs
Opportunities

1. MPSoCs create switching alternatives

• Different modes of operation at different cluster of PEs?

• Migrate instead of switching?

2. MPSoCs open the door for customized 
solutions

• Using specialized PEs is a norm in MPSoCs

• Dedicating a PE for the runtime monitoring

• faster detection of exceptional events → react in a timely 
manner

• PE can be further tailored to optimize the behavior of the 
monitoring techniques
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MPSoCs Challenges

1. Common assumption: 

“uncertainty in WCET does not come from the 
system itself; rather, it comes from our inability to 
measure (or compute) it with complete confidence”

• Well, this may not be completely true for MPSoCs

➢In SMPs, which core (or cores) executing a task 
does not affect its measured execution time.

➢In MPSoCs, this decision directly affects the level 
of certainty in its WCET:

Real-time vs High-performance PEs?

Use scratchpads vs caches?

14



MPSoCs Challenges

2. Scalability challenges associated with these 
scheduling and monitoring techniques. 

3. Mode switching in MPSoCs may incur task 
migrations or reassignment of heterogeneous cores to 
tasks 

➢ the effects of these decisions on the switching overhead 
need to be quantified. 
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MPSoC-Based 
MCS: 
Four Aspects

Traditional 
MCS Model

Timing 
Interference

Data Sharing Security
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Timing Interference

Challenge: operations of one PE affect the 
temporal behavior of other PEs, which 
complicates the timing analysis of the system. 

Most of the MCS scheduling techniques do not 
incorporate these interferences in their 
scheduling or analysis

Approaches focusing on shared resources 
mostly assume SMPs
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Timing Interference

Challenge: operations of one PE affect the 
temporal behavior of other PEs, which 
complicates the timing analysis of the system. 

Most of the MCS scheduling techniques do not 
incorporate these interferences in their 
scheduling or analysis

Approaches focusing on shared resources 
mostly assume SMPs

7.4.2.7 Where the software is to implement both safety 
and non-safety functions, then all of the software shall be 
treated as safety-related, unless adequate independence 

between the functions can be demonstrated in the design.
[IEC61508-3]
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MPSoCs
Opportunities

1. Which memory levels should be shared amongst which cores

• Does the GPU share the LLC with the CPU? 

2. How to distribute the cache architecture? 

• Would implementing a NUCA be adequate for MCS (e.g., helping in achieving 
different levels of isolation)? 

3. Different types of on-chip memories

• Both caches and SPMs 

• Most of the currently available approaches focus on a single type 

4. Different types of available off-chip memories

• DDR, GDDR, RLDRAM, LPDDR, QDR. 

• Investigating the cooperation of these types is also worth investigating

All about Flexibility
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MPSoCs Challenges

1. The interference exaggerates with the increase in 
the number of PEs

2. Understanding the architectural details of shared 
resources is inevitable to derive realistic bounds.

3. Each type of PEs has its own memory access 
behavior, which complicates the analysis, leading 
to more pessimism 
• Data-intensive PEs (e.g. multimedia/DSP processors) can 

saturate system queues

• A requirement- and criticality-aware arbitration is a 
must to deliver differential service to PEs
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Traditional Model Timing 
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

Deadline

Deadline

HI-cr task

LO-cr task

𝑡𝑎𝑠𝑘 = ,𝐶𝐿ۦ 𝐷,𝑊𝐶𝐸𝑇 ۧ𝐶𝐿

calculated/measured
in isolation
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Solution

Extending Traditional Model

𝑡𝑎𝑠𝑘 = ,𝐶𝐿ۦ 𝐷, ۧ𝑊𝐶𝐸𝑇 calculated/measured
in isolation

to account for shared resources 
interference in multicore

Bring the deadline and criticality 
down to the arbitration

𝑡𝑎𝑠𝑘 = ,𝐶𝐿ۦ 𝐷,𝑊𝐶𝐶𝑇 ۧ,𝑊𝐶 #𝑟𝑒𝑞𝑠,𝑊𝐶 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

guaranteed bound provided 
by the arbiter has to be less 

than this once

𝑊𝐶𝐸𝑇 𝐶𝐿 = 𝑊𝐶𝐶𝑇 +𝑊𝐶 # 𝑟𝑒𝑞𝑠 ×𝑊𝐶 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Execution time decomposition

Guaranteed bound by the 
core scheduling has to be 

less than this one

Timing 
Interference
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CArb: Criticality- and Requirement-Aware Arbiter

Combine tasks with same 
criticality into classes

1

Two-tier Hieratical arbitration to 
split inter- from intra-interference 

Harmonic WRR with optimal 
service assignment

2

3

✓ Criticality awareness

✓ Requirement awareness

Timing 
Interference
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CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

computation memory
𝐶1 𝐶1𝐶2 𝐶2𝐶3 𝐶3 𝐶3 𝐶3

𝐶𝑃2
normal mode + 

CArb

normal mode + 
PCArb

degraded mode
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CArb: Postponing (or Eliminating) Switching Timing
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CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

normal mode + 
CArb

normal mode + 
PCArb

degraded mode

✓ Lower-critical tasks are not 
suspended

✓Higher-critical tasks meet 
their requirement

✓Postponed switching; thus 
decreasing overheads

 Lower-critical tasks receive 
no memory guarantees
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CArb: Postponing (or Eliminating) Switching Timing
Interference

C(LO
)

C(HI
)

✓ Lower-critical tasks are not 
suspended

✓Higher-critical tasks meet 
their requirement

✓Postponed switching; thus 
decreasing overheads

 Lower-critical tasks receive 
no memory guarantees

How much increase 
in computation 

time?

A set of  schedules that provide some 
guarantees to 𝑙 tasks while mitigate 
execution-time increase in higher-CL 

tasks

✓ Memory guarantees for 
lower-critical tasks

C(LO
)

𝐶1 𝐶1𝐶2 𝐶2𝐶3 𝐶3 𝐶3 𝐶3

𝜏11 𝜏21 𝜏11 𝜏21𝜏11 𝜏21
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CArb: Postponing (or Eliminating) Switching Timing
Interference

Monitor Execution time

< 𝑊𝐶𝐸𝑇(𝐶𝐿)

< 𝑊𝐶𝐸𝑇𝑠𝑐ℎ2 (𝐶𝐿)

< 𝑊𝐶𝐸𝑇𝑚𝑎𝑥 (𝐶𝐿)

Normal CL-mode 

+ CArb

Normal CL-mode 

+ CArb sch2

Switch to

(CL+1) mode

Normal CL-mode 

+ pCArb

WCET
(LO)

WCET
(HI)
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MPSoC-Based 
MCS: 
Four Aspects

Traditional 
MCS Model

Timing 
Interference

Data Sharing Security



Common Approach Data Sharing

• Adopts an independent-task model → No communication 
amongst tasksIgnore

• Enforcing complete isolation between tasks. 

• At the shared cache: strict cache partitioning and coloring

• At the DRAM: bank privatization 
Prevent

23



Common Approach Data Sharing

• May result in a poor memory or cache utilization
• e.g.: a task has conflict misses, while other partitions may remain 

underutilized

• Does not scale with increasing number of cores
• e.g.: number of PEs ≤ number of DRAM banks

• Not viable in emerging systems due to increased functionality and 
massive data
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Solution:
No caching of shared data
[Hardy et al., RTSS’09] 

[Lesage et al., RTNS’10]
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Another Solution:
Task scheduling on 
shared data
[Calandrino and Anderson, ECRTS’09]

[Chisholm et al., RTSS’16]
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Coherence is the norm in COTS platforms Data Sharing

The mainstream solution is to provide shared 

memory and prevent incoherence through a 

hardware cache coherence protocol, making 

caches functionally invisible to software. 

25



Coherence is the Industry’s Choice Data Sharing
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Coherence is the Industry’s Choice Data Sharing



Unpredictability in Sharing Data Data Sharing

I

M S
OwnUPG

OtherGETS

OwnGETM

OwnGETS or 
OtherGETS

𝜏1𝜏2 𝜏3

+

Unpredictable
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Unpredictability in Sharing Data Data Sharing

I

M S
OwnUPG

OtherGETS

OwnGETM

OwnGETS or 
OtherGETS

𝜏1𝜏2 𝜏3

+

Unpredictable

 Inter-core coherence interference 
on same cache line 

 Inter-core coherence interference 
on different cache lines

 Inter-core coherence interference 
due to write hits 

 Intra-core coherence interference
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PMSI: Predictable Cache Coherence Data Sharing

Sh
ar

ed
 

ca
ch

e

Predictable Arbiter

L1L1

L1L1

PEPE

PEPE

Addr CID Msg State Tag Data

PR LUT

Shared Memory

Private Cache

Pred. Arb

PR
FIFO

PWB
FIFO

State Tag Data
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Performance Gains of Coherence Data Sharing

Uncache all Single core Uncache shared PMSI MSI MESI
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HourGlass: Cache Coherence for MCS Data Sharing

• Time-based Cache Coherence

• Configurable timers for critical/non-critical 

cores

• Fixed Priority Arbitration

• If both critical and non-critical requesting 

same cache line → critical gets it

• Allows for simultaneous data sharing 

• Both intra- and inter-criticality

• Bounds WCL for critical cores while 

improving the BW of non-critical cores 

30



MPSoC-Based 
MCS: 
Four Aspects

Traditional 
MCS Model

Timing 
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Data Sharing Security



Security

Security is a nightmare challenge on 
its own for all computing systems

It is even more scary for MCS

Three specific challenges for 
MPSoC-based MCS
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MPSoCs
Opportunities

MPSoCs open the door for customized solutions

ARM Cortex-M35P
with Physical Security

NXP’s QorIQ SoC
with Trust Architecture
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MPSoCs Challenges

CYBER-PHYSICAL 
NATURE OF MCS

HETEROGENEITY OF 
MPSOCS

SHARED COMPONENTS 
(AGAIN!) 
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Cyber-physical Nature

• MCS manage sensitive tasks in critical 
domains: power grids, cars, factories, nuclear 
plants

• Any security breach could lead to 
catastrophic consequences

• Hackers gained access to locked cars by only 
eavesdropping a single signal from the 
original remote keyless entry unit of the car



Heterogeneity of MPSoCs

• Each PE can be a 3rd-party IP (40% at Intel!)

• PEs share system components and interact 
with each other →new across-PEs threats

• Stuxnet attack exploited the 
authentication of the Siemens 
programmable logic controller to access a 
Windows machine 



Shared hardware components
in MPSoCs

• Historically, security was not considered as 
a concern for MCS because of isolation

• Not the case anymore

• Researchers were able to control sensitive 
(considered secure) engine control by 
compromising the (considered insecure) 
radio unit 
• Reason? Sharing the CAN



Possible 
Directions

Identifying new vulnerabilities of MPSoCs, 
which did not exist in traditional platforms

Developing cost- and performance-effective 
methodologies to prevent or mitigate them

Adopting security as a 
first-class citizen in 

designing MPSoCs for MCS 
(secure-by design concept). 

Scheduling techniques



Traditional 
MCS Model

Timing 
Interference

Data Sharing Security

Automotive

Computing systems 
→MCS

SoC is the choice for 
Automotive and IoT

Our focus so far has 
been in uniprocessors


