
Mohamed Hassan

WMC

MPSoCs for Mixed-Criticality Systems:

Challenges and Opportunities

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

1

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

1

Towards Mixed Criticality

Colossus

Smart Phones AutomotiveIBM’s Acorn

NEC’s UltaLite Wearables

1943

2000s Now-Near1981

1989 2010s

IoT/Smart Homes

1

Mixed Criticality Systems MOTIVATION

• No longer solely hosting isolated safety-critical tasks

• Execute tasks with different criticalities

• Criticality 𝛼 consequences of failure to meet requirements

• High-criticality tasks

• Airbag Control Unit (ACU)

• Anti-lock Braking System (ABS)

• Engine Control Unit (ECU)

2

Mixed Criticality Systems MOTIVATION

• No longer solely hosting isolated safety-critical tasks

• Execute tasks with different criticalities

• Criticality 𝛼 consequences of failure to meet requirements

• Medium-criticality tasks

• Navigation System

• Instrument Cluster

• Cruise Control

2

Mixed Criticality Systems MOTIVATION

• No longer solely hosting isolated safety-critical tasks

• Execute tasks with different criticalities

• Criticality 𝛼 consequences of failure to meet requirements

• Low-criticality tasks

• Air Conditioning Unit

• Connectivity Box

• Infotainment Unit

2

Mixed Criticality Systems MOTIVATION

3

Mixed Criticality Systems MOTIVATION

4

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)
• Simplicity and Modularity

5

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Hennessy & Patterson, Turing Lecture,
A New Golden Age for Computer Architecture

5

Heterogenous MPSoCs MOTIVATION

MPSoCs

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO
Heterogenous MPSoCs

GPU

DSP

ASIC2

CPU

FPG
A

ASIC1

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

6

Heterogenous MPSoCs MOTIVATION

MPSoCs

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO
Heterogenous MPSoCs

GPU

DSP

ASIC2

CPU

FPG
A

ASIC1

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why Heterogenous
MPSoCs?
• Variety of processing capabilities
→Best-suits MCS conflicting

requirements

6

7

7

Heterogenous MPSoCs with Real-time
Processors MOTIVATION

7

Heterogenous MPSoCs with Real-time
Processors MOTIVATION

7

Where Are We?
WMC13-17

Uniprocessor:

Multiprocessor: 45%

8

Where Are We?
WMC13-17

Uniprocessor:

Multiprocessor: 45%

23

19

8

Where Are We?
WMC13-17

Uniprocessor:

Multiprocessor: 45%

➢ Shared Resources: ~31%

23

19

13

8

Where Are We?
WMC13-17

Uniprocessor:

Multiprocessor: 45%

➢ Shared Resources: ~31%

➢ SoCs: ~2%

23

19

13

1

8

Where Are We?
Overall, MCS review[Burns and Davis]

Multiprocessor

~27%

Where Are We?
Overall, MCS review[Burns and Davis]

Shared

Resources

~13%

Where Are We?
Overall, MCS review[Burns and Davis]

SoCs

~4%

MPSoC-Based
MCS:
Four Aspects

Traditional
MCS Model

Timing
Interference

Data Sharing Security

10

Traditional Model

WCET
(LO)

WCET
(LO)

normal mode

degraded mode

11

Traditional Model

WCET
(LO)

WCET
(HI)

WCET
(LO)

normal mode

degraded mode

11

Problems with the Model MODEL

• Lower-criticality tasks are suspended upon
switching to a higher-mode (not acceptable in
industry [P. Graydon and I. Bate, WMC 2013])

Suspension

• Switching leads to huge overheads (usually
overlooked) [L. Sigrist et al, RTAS 2015]Overheads

• Of special importance for MPSoCs (more next)
Sources of

Uncertainty

12

MPSoCs
Opportunities

1. MPSoCs create switching alternatives

• Different modes of operation at different
cluster of PEs?

13

MPSoCs
Opportunities

1. MPSoCs create switching alternatives

• Different modes of operation at different
cluster of PEs?

13

MPSoCs
Opportunities

1. MPSoCs create switching alternatives
• Different modes of operation at different cluster of PEs?

• Migrate instead of switching?

• Dynamic Reconfiguration (IEC61508-7)

C.3.13 Dynamic reconfiguration
The logical architecture of the system has to be such that it can be mapped
onto a subset of the available resources of the system. The architecture
needs to be capable of detecting a failure in a physical resource and then
remapping the logical architecture back onto the restricted resources left
functioning. Although the concept is more traditionally restricted to
recovery from failed hardware units, it is also applicable to failed software
units if there is sufficient ‘run-time redundancy’ to allow a software re-try
or if there is sufficient redundant data to make the individual and isolated
failure be of little importance. This technique must be considered at the first
system design stage.

13

MPSoCs
Opportunities

1. MPSoCs create switching alternatives

• Different modes of operation at different cluster of PEs?

• Migrate instead of switching?

2. MPSoCs open the door for customized
solutions

• Using specialized PEs is a norm in MPSoCs

• Dedicating a PE for the runtime monitoring

• faster detection of exceptional events → react in a timely
manner

• PE can be further tailored to optimize the behavior of the
monitoring techniques

13

MPSoCs Challenges

1. Common assumption:

“uncertainty in WCET does not come from the
system itself; rather, it comes from our inability to
measure (or compute) it with complete confidence”

• Well, this may not be completely true for MPSoCs

➢In SMPs, which core (or cores) executing a task
does not affect its measured execution time.

➢In MPSoCs, this decision directly affects the level
of certainty in its WCET:

Real-time vs High-performance PEs?

Use scratchpads vs caches?

14

MPSoCs Challenges

2. Scalability challenges associated with these
scheduling and monitoring techniques.

3. Mode switching in MPSoCs may incur task
migrations or reassignment of heterogeneous cores to
tasks

➢ the effects of these decisions on the switching overhead
need to be quantified.

14

MPSoC-Based
MCS:
Four Aspects

Traditional
MCS Model

Timing
Interference

Data Sharing Security

10

Timing Interference

Challenge: operations of one PE affect the
temporal behavior of other PEs, which
complicates the timing analysis of the system.

Most of the MCS scheduling techniques do not
incorporate these interferences in their
scheduling or analysis

Approaches focusing on shared resources
mostly assume SMPs

15

Timing Interference

Challenge: operations of one PE affect the
temporal behavior of other PEs, which
complicates the timing analysis of the system.

Most of the MCS scheduling techniques do not
incorporate these interferences in their
scheduling or analysis

Approaches focusing on shared resources
mostly assume SMPs

7.4.2.7 Where the software is to implement both safety
and non-safety functions, then all of the software shall be
treated as safety-related, unless adequate independence

between the functions can be demonstrated in the design.
[IEC61508-3]

15

MPSoCs
Opportunities

1. Which memory levels should be shared amongst which cores

• Does the GPU share the LLC with the CPU?

2. How to distribute the cache architecture?

• Would implementing a NUCA be adequate for MCS (e.g., helping in achieving
different levels of isolation)?

3. Different types of on-chip memories

• Both caches and SPMs

• Most of the currently available approaches focus on a single type

4. Different types of available off-chip memories

• DDR, GDDR, RLDRAM, LPDDR, QDR.

• Investigating the cooperation of these types is also worth investigating

All about Flexibility

16

MPSoCs Challenges

1. The interference exaggerates with the increase in
the number of PEs

2. Understanding the architectural details of shared
resources is inevitable to derive realistic bounds.

3. Each type of PEs has its own memory access
behavior, which complicates the analysis, leading
to more pessimism
• Data-intensive PEs (e.g. multimedia/DSP processors) can

saturate system queues

• A requirement- and criticality-aware arbitration is a
must to deliver differential service to PEs

17

Traditional Model Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

Deadline

Deadline

HI-cr task

LO-cr task

𝑡𝑎𝑠𝑘 = ,𝐶𝐿ۦ 𝐷,𝑊𝐶𝐸𝑇 ۧ𝐶𝐿

calculated/measured
in isolation

18

Solution

Extending Traditional Model

𝑡𝑎𝑠𝑘 = ,𝐶𝐿ۦ 𝐷, ۧ𝑊𝐶𝐸𝑇 calculated/measured
in isolation

to account for shared resources
interference in multicore

Bring the deadline and criticality
down to the arbitration

𝑡𝑎𝑠𝑘 = ,𝐶𝐿ۦ 𝐷,𝑊𝐶𝐶𝑇 ۧ,𝑊𝐶 #𝑟𝑒𝑞𝑠,𝑊𝐶 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

guaranteed bound provided
by the arbiter has to be less

than this once

𝑊𝐶𝐸𝑇 𝐶𝐿 = 𝑊𝐶𝐶𝑇 +𝑊𝐶 # 𝑟𝑒𝑞𝑠 ×𝑊𝐶 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Execution time decomposition

Guaranteed bound by the
core scheduling has to be

less than this one

Timing
Interference

18

CArb: Criticality- and Requirement-Aware Arbiter

Combine tasks with same
criticality into classes

1

Two-tier Hieratical arbitration to
split inter- from intra-interference

Harmonic WRR with optimal
service assignment

2

3

✓ Criticality awareness

✓ Requirement awareness

Timing
Interference

19

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

computation memory
𝐶1 𝐶1𝐶2 𝐶2𝐶3 𝐶3 𝐶3 𝐶3

𝐶𝑃2
normal mode +

CArb

normal mode +
PCArb

degraded mode

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

computation memory
𝐶1 𝐶1𝐶2 𝐶2𝐶3 𝐶3 𝐶3 𝐶3

𝐶𝑃2
normal mode +

CArb

normal mode +
PCArb

degraded mode

computation memory

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

computation memory
𝐶2 𝐶2𝐶3 𝐶3 𝐶3 𝐶3

𝐶𝑃2

WCET
(LO)

WCET
(HI)

WCET
(LO)

normal mode +
CArb

normal mode +
PCArb

degraded mode

computation memory

computation memory

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

WCET
(LO)

normal mode +
CArb

normal mode +
PCArb

degraded mode

✓ Lower-critical tasks are not
suspended

✓Higher-critical tasks meet
their requirement

✓Postponed switching; thus
decreasing overheads

 Lower-critical tasks receive
no memory guarantees

20

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

✓ Lower-critical tasks are not
suspended

✓Higher-critical tasks meet
their requirement

✓Postponed switching; thus
decreasing overheads

 Lower-critical tasks receive
no memory guarantees

How much increase
in computation

time?

20

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

✓ Lower-critical tasks are not
suspended

✓Higher-critical tasks meet
their requirement

✓Postponed switching; thus
decreasing overheads

 Lower-critical tasks receive
no memory guarantees

A set of schedules that provide some
guarantees to 𝑙 tasks while mitigate
execution-time increase in higher-CL

tasks

20

CArb: Postponing (or Eliminating) Switching Timing
Interference

WCET
(LO)

WCET
(HI)

✓ Lower-critical tasks are not
suspended

✓Higher-critical tasks meet
their requirement

✓Postponed switching; thus
decreasing overheads

A set of schedules that provide some
guarantees to 𝑙 tasks while mitigate
execution-time increase in higher-CL

tasks

✓ Memory guarantees for
lower-critical tasks

20

CArb: Postponing (or Eliminating) Switching Timing
Interference

C(LO
)

C(HI
)

✓ Lower-critical tasks are not
suspended

✓Higher-critical tasks meet
their requirement

✓Postponed switching; thus
decreasing overheads

 Lower-critical tasks receive
no memory guarantees

How much increase
in computation

time?

A set of schedules that provide some
guarantees to 𝑙 tasks while mitigate
execution-time increase in higher-CL

tasks

✓ Memory guarantees for
lower-critical tasks

C(LO
)

𝐶1 𝐶1𝐶2 𝐶2𝐶3 𝐶3 𝐶3 𝐶3

𝜏11 𝜏21 𝜏11 𝜏21𝜏11 𝜏21

20

CArb: Postponing (or Eliminating) Switching Timing
Interference

Monitor Execution time

< 𝑊𝐶𝐸𝑇(𝐶𝐿)

< 𝑊𝐶𝐸𝑇𝑠𝑐ℎ2 (𝐶𝐿)

< 𝑊𝐶𝐸𝑇𝑚𝑎𝑥 (𝐶𝐿)

Normal CL-mode

+ CArb

Normal CL-mode

+ CArb sch2

Switch to

(CL+1) mode

Normal CL-mode

+ pCArb

WCET
(LO)

WCET
(HI)

21

MPSoC-Based
MCS:
Four Aspects

Traditional
MCS Model

Timing
Interference

Data Sharing Security

Common Approach Data Sharing

• Adopts an independent-task model → No communication
amongst tasksIgnore

• Enforcing complete isolation between tasks.

• At the shared cache: strict cache partitioning and coloring

• At the DRAM: bank privatization
Prevent

23

Common Approach Data Sharing

• May result in a poor memory or cache utilization
• e.g.: a task has conflict misses, while other partitions may remain

underutilized

• Does not scale with increasing number of cores
• e.g.: number of PEs ≤ number of DRAM banks

• Not viable in emerging systems due to increased functionality and
massive data

23

Solution:
No caching of shared data
[Hardy et al., RTSS’09]

[Lesage et al., RTNS’10]

24

Another Solution:
Task scheduling on
shared data
[Calandrino and Anderson, ECRTS’09]

[Chisholm et al., RTSS’16]

24

Coherence is the norm in COTS platforms Data Sharing

The mainstream solution is to provide shared

memory and prevent incoherence through a

hardware cache coherence protocol, making

caches functionally invisible to software.

25

Coherence is the Industry’s Choice Data Sharing

26

Coherence is the Industry’s Choice Data Sharing

Coherence is the Industry’s Choice Data Sharing

Unpredictability in Sharing Data Data Sharing

I

M S
OwnUPG

OtherGETS

OwnGETM

OwnGETS or
OtherGETS

𝜏1𝜏2 𝜏3

+

Unpredictable

27

Unpredictability in Sharing Data Data Sharing

I

M S
OwnUPG

OtherGETS

OwnGETM

OwnGETS or
OtherGETS

𝜏1𝜏2 𝜏3

+

Unpredictable

 Inter-core coherence interference
on same cache line

 Inter-core coherence interference
on different cache lines

 Inter-core coherence interference
due to write hits

 Intra-core coherence interference

27

PMSI: Predictable Cache Coherence Data Sharing

Sh
ar

ed

ca
ch

e

Predictable Arbiter

L1L1

L1L1

PEPE

PEPE

Addr CID Msg State Tag Data

PR LUT

Shared Memory

Private Cache

Pred. Arb

PR
FIFO

PWB
FIFO

State Tag Data

28

Performance Gains of Coherence Data Sharing

Uncache all Single core Uncache shared PMSI MSI MESI

29

HourGlass: Cache Coherence for MCS Data Sharing

• Time-based Cache Coherence

• Configurable timers for critical/non-critical

cores

• Fixed Priority Arbitration

• If both critical and non-critical requesting

same cache line → critical gets it

• Allows for simultaneous data sharing

• Both intra- and inter-criticality

• Bounds WCL for critical cores while

improving the BW of non-critical cores

30

MPSoC-Based
MCS:
Four Aspects

Traditional
MCS Model

Timing
Interference

Data Sharing Security

Security

Security is a nightmare challenge on
its own for all computing systems

It is even more scary for MCS

Three specific challenges for
MPSoC-based MCS

31

MPSoCs
Opportunities

MPSoCs open the door for customized solutions

ARM Cortex-M35P
with Physical Security

NXP’s QorIQ SoC
with Trust Architecture

32

MPSoCs Challenges

CYBER-PHYSICAL
NATURE OF MCS

HETEROGENEITY OF
MPSOCS

SHARED COMPONENTS
(AGAIN!)

33

Cyber-physical Nature

• MCS manage sensitive tasks in critical
domains: power grids, cars, factories, nuclear
plants

• Any security breach could lead to
catastrophic consequences

• Hackers gained access to locked cars by only
eavesdropping a single signal from the
original remote keyless entry unit of the car

Heterogeneity of MPSoCs

• Each PE can be a 3rd-party IP (40% at Intel!)

• PEs share system components and interact
with each other →new across-PEs threats

• Stuxnet attack exploited the
authentication of the Siemens
programmable logic controller to access a
Windows machine

Shared hardware components
in MPSoCs

• Historically, security was not considered as
a concern for MCS because of isolation

• Not the case anymore

• Researchers were able to control sensitive
(considered secure) engine control by
compromising the (considered insecure)
radio unit
• Reason? Sharing the CAN

Possible
Directions

Identifying new vulnerabilities of MPSoCs,
which did not exist in traditional platforms

Developing cost- and performance-effective
methodologies to prevent or mitigate them

Adopting security as a
first-class citizen in

designing MPSoCs for MCS
(secure-by design concept).

Scheduling techniques

Traditional
MCS Model

Timing
Interference

Data Sharing Security

Automotive

Computing systems
→MCS

SoC is the choice for
Automotive and IoT

Our focus so far has
been in uniprocessors

