MPSoCs for Mixed-Criticality Systems:
Challenges and Opportunities

Mohamed Hassan

NIVERSITY
ngUELPH

IBM’s Acorn

1989

Smart Phones

2010s

Automotive

Colossus

Ve

-

WA

a3y
¥

1B y=mS\ 3
o=
fmy .

2000s

Wearables

Smart Phones Automotive

IBM’s Acorn

Colossus Wearables

.......

|
Nsor
ToCessor
W ntral CPU
Processor Cluster Processo
nsor

Cer
>

........ KA
=
i)

@ Easy Tasks of Yesterday and the Challenges of Tomorrow Aumwmoﬁve

Up until recent years: From today onwards:

S
o)

Large inputs, image/video processing
Very deep networks

No/limited real-time use cases Safe, real-time embedded apps

None of today’s hardware can solve the challenges we are facing

- October 4, 2017

Marton Feher

* No longer solely hosting isolated safety-critical tasks

» Execute tasks with different criticalities *
 Criticality a consequences of failure to meet requirements

(@ ©) &)
r\

Mixed Criticality Systems

* No longer solely hosting isolated safety-critical tasks
« Execute tasks with different criticalities
 Criticality a consequences of failure to meet requirements

e

* Medium-criticality tasks
* Navigation System -
* Instrument Cluster
e Cruise Control

Mixed Criticality Systems

* No longer solely hosting isolated safety-critical tasks

» Execute tasks with different criticalities *
 Criticality a consequences of failure to meet requirements

(@@) ‘B
(R % o)

Mixed Criticality Systems

Enabling’ A Mixed Safety-
Criticality Future with Increased need for

Cortex-A/6AE performance and mixed
criticality as we move from

assisted to autonomous
driving systems

Mixed Criticality Systems

Key Requirements of Automotive-Grade IP

Reduce Risk and Accelerate Qualification for Automotive SoCs

Challenges Facing Autonomous Vehicles

Accelerate ISO 26262 functional safety assessments to help
ensure designers reach target ASIL lg

Exploding Performance
Requirements

Real-Time Processing
of Sensors

Ultra-High Safety
& Reliability

Functional Safety

LGUELTY

ngh performance compute for automotive applications

Infotainment
Cluster
Driver assist

SYnops!

Vehicle interface
Compute, Control, Sense

Real-time control
Safe
Secure

User experience

Responsive
Reliable
Fast boot

Cost Quality Ecosystem Temperature
18 ©ARM 2016 ARM

Mixed Criticality Systems

Shared 10

* Low cost

* High performance

* Energy Efficiency

* Low time-to-market (39 party IPs)
e Simplicity and Modularity

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

MPSoCs MOTIVATION

Shared 10

Why DSAs Can Win (no magic)

Tailor the Architecture to the Domain

» More effective parallelism for a specific domain:
+ SIMD vs. MIMD
* VLIW vs. Specutative, out-of-order

» More effective use of memory bandwidth
« User controlled versus caches

« Eliminate unneeded accuracy

+ |EEE replaced by lower precsion FP
« J2-64 bit bit integers 10 8-16 bit integers

« Domain specific programming language

Shared cache(s)

Memory

Controller
Hennessy & Patterson, Turing Lecture,
A New Golden Age for Computer Architecture

MPSoCs
f

Shared 10

MPSoCs SIEC

Shared cache(s) Shared cache(s)

Memory Memory
Controller Controller

Off-chip Off-chip
Memory/i Memory/i

Heterogenous MPSoCs

Shared 10

* Variety of processing capabilities
— Best-suits MCS conflicting

reqUIrementS Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Heterogenous MPSoCs MOTIVATION

Complementary SoC processor requirements

High performance compute
Infotainment
Cluster
Driver assist
Vehicle interface
User experience

Compute, Control, Sense

Real-time control
Safe
Secure

Responsive
Reliable
Fast boot

Cost Quality Ecosystem Temperature B
18 ©ARM20I6 AR”l

Automotive Applications Require Different SoC
Architectures

« LPDDR4, Ethernet AVB, MIPI, HDMI, PCle,
SATA, ADC + USB, LPDDR4, Ethernet AVB, MIPI, HDMI,

- Embedded Vision PCle, SATA, ADC, UFS, eMMC ; ;
« Real-time Multimedia « IP: Ethernet 10/100/1000, ADC, I/F peripherals

« Security 7 * Medium Density NVM
+ Sensor Fusion . ::zz::yFusion
+ Requires Functional Safety

2016 Synopsys. Inc. 8 SYnoprsys®

Translating System-Level Requirements - SoC Level

Exploding
Performance
Requirements

4 Rise of heterogeneous architectures & right-sized compute
4 Cache coherency & End-to-end QoS of critical importance

{ Real-Time
\ Sensor
\ Processing

4 Different IPs with differing requirements
4 Ensuring communication happens without any deadlocks

Ultra-High
Safety &
Reliability

4 Pressure to comply to industry standards - IS0 26262
4 Functional Safety - Performance - Area Tradeoffs

Need For Heterogeneous Computing

Noise removal « Smaller amounts of data * Lots of data
« Highly structured data + Simple computation/item
« Complex computation/item + Massive parallelism

Image pyramids

Optical flow ' —
Feature Edge detecti

Extraction ge defection CPU DSP, Accel GPU, ISP

Image

Acquisition Pixel processing

Gradient detection

Segmentation & filtering { Feedback loop |

>

Feature Object tracking

Processing

Object detection

Feature reduction

Pattern
Recognition

| Ed
Feature classification

Augmentation i\iohjec

Computation & processing

Feedback and

] Fi Kkl
Action eedback loop

Avoidance signalling

inley Autenomous HW Conference 2017 | ® Copyright 2017 NetSpeed Systems

Complementary SoC processor requirements

High performance compute
Infotainment
Cluster
Driver assist
Vehicle interface
User experience

Compute, Control, Sense .
Real-time control

Computation Sensing

Automation

Cost

Quality Ecosystem

18 ©ARM2016

Translating System-Level Requirement:

Exploding

4 Rise of het
Performance

Requirements [

Safety and Security CPU

Real-Time
Sensor
Processing

4 Different ||
4 Ensuring ¢

Ultra-High
Safety &
Reliability

4 Pressure to comply to industry standards - IS0 26262
4 Functional Safety - Performance - Area Tradeoffs

Linley Autonomous HW Conference 2017 1 © Copyright 2017 NetSpeed System

Automotive Applications Require Different SoC
Architectures

High-End ADAS Infotainment MCU

K =

Control
Actuation

Communication

R4, Ethernet AVB, MIPI, HDMI,
\,ADC, UFS, eMMC

fultimedia « IP: Ethernet 10/100/1000, ADC, I/F peripherals

* Medium Density NVM

=

ion

SYnopsys

omputing

« Smaller amounts of data
« Highly structured data
« Complex computation/item

* Lots of data
+ Simple computation/item
* Massive parallelism

GPU, ISP

Noise removal |
,,,,,, R T

DSP, Accel

ARM

Feature reduction

Pattern

o Feature classification
Recognition

Augmentation B

Computation & processing ion | i Object detection |

Feedback and
Action

Feedback loop

Avoidance signalling

Saurce: Extreme Tech,

Linley Autonomous HW Conference 2017 | © Capyright 201

Application @

ARM Processors ';] Power Management
-

64-bit Quad-Core \ Multiple Power Domains

-
Cortex A53 with Virtuslization — Power Gated Islands

Real-Tim s . . o2
ARM =] e oo ISO Safety & Reliability
rocessors e ' : IEC61508, 1S026262

‘ Cortex R5 JZANE Duahrote E System Isolation &
- l_ (; Error Mitigation, Lockstep

Application Offload

-

‘ .lna'. Graphics/Video
B e N o

H.265/264 CODECs

Security

Information Assurance,

Trust, Anti-Tamper, TrustZone
Key and Vault Management

‘_

UltraScale

FPGALogic
UltraRAM, PCle Gend, Runtime SW & Tools }
O Remet AN o] OS. RTOS, AMP, Hypervisor

Development, Heterogeneous Debug,
Hardware/Software Profiling &
Performance Analysis

High Speed
Peripherals

USB 3.0, PCle Gen2, GbE
SATA3.0, DisplayPort

Heterogenous MPSoCs with Real-time
Processors

g —— I-.........-..-.-..-....-....-....-..-....-..i..-....-..-.-.......-....-..-.-..-........J:. e ——————— .
i Appllcatmn Domain - ,

EF‘LI Cluster L'J

ﬂ";‘*ﬁthertPﬁ
AR B

'éﬂeal-tlme CPU

' h Core || Core ﬂ

I] .

A T3]

5 ﬁ Core || Core ﬂ

1R 3 -ﬂ%

&

i 125 + SCU

3
l Other IPs Other 1Ps

On-Chip Interconnect

!

LPDORA Controller B - eisT Contraller

Heterogenous MPSoCs with Real-time

Processors

Where Are We?

WMC13-17

Uniprocessor:
Multiprocessor: 19 45%

Where Are We?
WMC13-17

Uniprocessor:
Multiprocessor: 19 45%
> Shared Resources: mis ~31%

Where Are We?
WMC13-17

Uniprocessor:
Multiprocessor: 19 45%
> Shared Resources: mis ~31%
»> SoCs: ~2%

Where Are We?
WMC13-17

Multiprocessor

Since Vestal’s 2007 paper,
there has been a series of
publications. Most of these 2 7 0/
papers address single ~ O
processor platforms and

independent components.

Where Are We?

Overall, MCS review[Burns and Davis]

Shared
Resources

~13%

Where Are We?
Overall, MCS review[Burns and Davis]

Where Are We?
Overall, MCS review[Burns and Davis]

o
e
O

Timing
Interference

63%
Traditional
MPSoC-Based MCS Model
MCS:
Four Aspects =
—

Data Sharing

Security

WCET
(LO)
- T normal mode
WCET degraded mode
(LO)

WCET __ WCET
(LO) (HI)
A

i

WCET
(LO)

- | X

normal mode

degraded mode

e Lower-criticality tasks are suspended upon
switching to a higher-mode (not acceptable in
industry [P. Graydon and I. Bate, WMC 2013])

e Switching leads to huge overheads (usually

Ove rheads overlooked) [L. Sigrist et al, RTAS 2015]

Sources of
Uncertainty

e Of special importance for MPSoCs (more next)

Problems with the Model

1. MPSoCs create switching alternatives

e Different modes of operation at different
cluster of PEs?

MPSoCs

Opportunities

®

1. MPSoCs create switching alternatives

e Different modes of operation at different
cluster of PEs?

I\/I P S O C S Non;za;ﬁcE;:r:)::IL ® ASIL D applications
1+ Software complexity increases with
O p p O rt u n Itl eS mixed criticality applications —

Safety RTOS

Safety certified

Split-Lock on Cortex-A76AE is designed
to be transparent to software

Armv8.2 architectural support for

virtualization and Type-2 hypervisors

=

MPSoCs

Opportunities

1. MPSoCs create switching alternatives

e Different modes of operation at different cluster of PEs?
e Migrate instead of switching?

e Dynamic Reconfiguration (IEC61508—7)

C.3.13 Dynamic reconfiguration

The logical architecture of the system has to be such that it can be mapped
onto a subset of the available resources of the system. The architecture
needs to be capable of detecting a failure in a physical resource and then
remapping the logical architecture back onto the restricted resources left
functioning. Although the concept is more traditionally restricted to
recovery from failed hardware units, it is also applicable to failed software
units if there is sufficient ‘run-time redundancy’ to allow a software re-try
or if there is sufficient redundant data to make the individual and isolated
failure be of little importance. This technique must be considered at the first
system design stage.

1. MPSoCs create switching alternatives

e Different modes of operation at different cluster of PEs?
e Migrate instead of switching?

MPS50Cs 2. MPSoCs open the door for customized
Opportunities solutions

e Using specialized PEs is a norm in MPSoCs
e Dedicating a PE for the runtime monitoring
e faster detection of exceptional events = react in a timely

manner

e PE can be further tailored to optimize the behavior of the
monitoring techniques

MPSoCs Challenges

1. Common assumption:

“uncertainty in WCET does not come from the

system itself; rather, it comes from our inability to

measure (or compute) it with complete confidence”
* Well, this may not be completely true for MPSoCs

»In SMPs, which core (or cores) executing a task
does not affect its measured execution time.

»In MPSoCs, this decision directly affects the level
of certainty in its WCET:

Real-time vs High-performance PEs?
Use scratchpads vs caches?

MPSoCs Challenges

2. Scalability challenges associated with these
scheduling and monitoring techniques.

3. Mode switching in MPSoCs may incur task
migrations or reassignment of heterogeneous cores to
tasks

» the effects of these decisions on the switching overhead
need to be quantified.

MPSoC-Based
MCS:
Four Aspects

IS
Ng\s
raditi Timing
del Interference
—
=

Data Sharing

Security

. operations of one PE affect the
temporal behavior of other PEs, which
complicates the timing analysis of the system.

Most of the MCS scheduling techniques do not
incorporate these interferences in their
scheduling or analysis

Approaches focusing on shared resources
mostly assume SMPs

Timing Interference

(15)
' r J e.

7.4.2.7 Where the software is to implement both safety
and non-safety functions, then all of the software shall be
treated as safety-related, unless adequate independence
between the functions can be demonstrated in the design.
[IEC61508-3]

- rﬁdstly assume SMPs .

Timing Interference

1. Which memory levels should be shared amongst which cores

e Does the GPU share the LLC with the CPU?

2. How to distribute the cache architecture?

e Would implementing a NUCA be adequate for MCS (e.g., helping in achieving
I\/| PSOCS different levels of isolation)?

Opportunities

3. Different types of on-chip memories

e Both caches and SPMs
e Most of the currently available approaches focus on a single type

4. Different types of available off-chip memories

e DDR, GDDR, RLDRAM, LPDDR, QDR.
* |[nvestigating the cooperation of these types is also worth investigating

MPSoCs Challenges

1. The interference exaggerates with the increase in
the number of PEs

2. Understanding the architectural details of shared
resources is inevitable to derive realistic bounds.

3. Each type of PEs has its own memory access

behavior, which complicates the analysis, leading
to more pessimism

* Data-intensive PEs (e.g. multimedia/DSP processors) can
saturate system queues

* A requirement- and criticality-aware arbitration is a
must to deliver differential service to PEs

task = (CL,DWCET(CL)) WCET WCET
(LO) (I-il) Deadline

calculated/measured
in isolation WCET

(LO) Deadline

LO-cr task - T T

Traditional Model nterfare e

to account for shared resources
interference in multicore

Bring the deadline and criticality
down to the arbitration

Guaranteed bound by the
COIS schedulmg.has e Execution time decomposition
less than this one

WCET(CL) = WCCT + WC #reqs X WC Interference S O | u t i O n

Timing

EXtending TraditiOnaI |V|Od€| Interference

Combine tasks with same

criticality into classes

Tier 1:
Inter-class WRR

Two-tier Hieratical arbitration to
split inter- from intra-interference

v’ Criticality awareness

! | !
Tier2: i NP3 = N
Intra-class WRR , ! ' T35 @
‘ L ; ; Harmonic WRR with optimal
service assignment

v’ Requirement awareness

Timing

CArb: Criticality- and Requirement-Aware Arbiter [y AT AT

normal mode +
CArb

normal mode +
PCArb

degraded mode

Timing
Interference

CArb: Postponing (or Eliminating) Switching

normal mode +
e CArb

<< >
memory
- C, - Cy - C, - Cy normal mode +
memory PCArb
degraded mode

Timing
Interference

CArb: Postponing (or Eliminating) Switching

I rormalmode

<L> CArb

normal mode +
PCArb

W.CET degraded mode

Timing
Interference

CArb: Postponing (or Eliminating) Switching

normal mode +
CArb

normal mode +
PCArb

degraded mode

CArb: Postponing (or Eliminating) Switching

WCET
(LO)

WCET
(H)

WCET
(LO)

v’ Lower-critical tasks are not
suspended

v’ Higher-critical tasks meet
their requirement

v’ Postponed switching; thus
decreasing overheads

X Lower-critical tasks receive
NO memory guarantees

Timing
Interference

v’ Lower-critical tasks are not
suspended

How much increase
in computation

time? v Higher-critical tasks meet

WCET their requirement

(HI)
T ; v’ Postponed switching; thus
i decreasing overheads

X Lower-critical tasks receive
Nno memory guarantees

Timing
Interference

CArb: Postponing (or Eliminating) Switching

v’ Lower-critical tasks are not
A set of schedules that prowg.some Suspended
guarantees to [tasks while mitigate

execution-time increase in higher-CL
tasks v’ Higher-critical tasks meet

their requirement

WCET WCET
(HI)

T ; v’ Postponed switching; thus
i decreasing overheads

X Lower-critical tasks receive
Nno memory guarantees

Timing
Interference

CArb: Postponing (or Eliminating) Switching

A set of schedules that provide some v’ Lower-critical tasks are not
guarantees to [tasks while mitigate suspended

execution-time increase in higher-CL
tasks

v Higher-critical tasks meet
WCET. WCET their requirement

(LO) (/1/)
ﬁ T V TW T v’ Postponed switching; thus

decreasing overheads

/‘
~

v Memory guarantees for
lower-critical tasks

Timing
Interference

CArb: Postponing (or Eliminating) Switching

Timing
Interference

CArb: Postponing (or Eliminating) Switching

Monitor Execution time

[Normal CL-mode]

+ CArb
4

\ < WCETS"2 (CL)

4[Normal CL-mode]
+ pCArb

T < WCET™ (CL

< WCET(CL)

WCET
(HI)
AN

[Switch to]
(CL+1) mode

Timing
Interference

CArb: Postponing (or Eliminating) Switching

SS

raditi Timip?

MPSoC-Based del INNFEEnce

MCS:

Four Aspects
Security

Data Sharing

N\

e Adopts an independent-task model 2 No communication
amongst tasks

e Enforcing complete isolation between tasks.
e At the shared cache: strict cache partitioning and coloring
e At the DRAM: bank privatization

Prevent

Common Approach Data Sharing

 May result in a poor memory or cache utilization
* e.g.: atask has conflict misses, while other partitions may remain
underutilized
* Does not scale with increasing number of cores
e e.g.: number of PEs < number of DRAM banks

* Not viable in emerging systems due to increased functionality and
massive data

electronic control unit
-

wheel speed sensor

Common Approach Data Sharing

v/ Simpler timing analysis
X Hardware changes
X Long execution time

Solution:

No caching of shared data

[Hardy et al., RTSS'09]
Lesage et al., RTNS'10]

v Private cache hits on shared data
v/ No hardware changes

X Limited multi-core parallelism

X Changes to OS scheduler

Another Solution:

Task scheduling on

shared data
[Calandrino and Anderson, ECRTS’09]

[Chisholm et al., RTSS’16]

BOL10 A48/ 2200340 2200288

On-chip hardware coherence can scale
gracefully as the number of cores increases.

Why On-Chip
Cache

oherencels
Here to Stay

SHARED MEMORY 15 the dominant low-level
communication paradigm in today's mainstream
multicore processors. In a shared-memory system,
the (processor) cores communicate via loads and
stores to a shared address space. The cores use caches
to reduce the average memory latency and memory
traffic. Caches are thus beneficial, but private caches
lead to the possibility of cache incoherence. The
mainstream solution is to provide shared memory
and prevent incoherence through a hardware cache
coherence protocol, making caches functionally
invisible to software. The incoherence problem and
basic hardware coherence solution are outlined in
the sidebar, “The Problem of Incoherence,” page 86.
Cache-coherent shared memory is provided by
mainstream servers, desktops, laptops, and mobile
devices and is available from all major vendors,
including AMD, ARM, IBM, Intel, and Oracle (Sun).

ED NN EAT |G GF THE REN VOB

ALY 383

oherence is the norm in COTS platforms Data Sharing

Heterogeneous compute requires coherency

« Flexible heterogeneous architecture
« Blend compute and acceleration for
target solution

» Fast, reliable transport to shared
memory

« Maximize throughput, minemize bitency Coherent backplane

« Accelerate SoC deployment)
+ IP designed, optimized and validated Corelight
for systerms
CANT 2

Coherence is the Industry’s Choice Data Sharing

0day's SoCs include a mix of CPU cores,
computing clusters, GPUs and other
computing resources and specialized
accelerators.

Getting heterogeneous processors to
communicate efficiently is a daunting
design challenge. A popular approach
is to use high-performance and
power-efficient shared-memory
communication and a sophisticated
on-chip cache-coherent
interconnect. This presentation will
introduce a new technology that
automates the architecture design
process, supports CHI and ACE in one
design, and uses advanced machine-
learning algorithms to create an optimal
pre-verified cache-coherent solution.

Coherency: The New Normal in SoCs
Anush Mohandass

anush@netspeeasysiem:

Coherence is the Industry’s Choice Data Sharing

Autonomous driving requirements are
mandating the simultaneous use of
multiple types of processing units to
efficiently execute sophisticated image
processing, sensor fusion, and machine
learning/Al algorithms.

This presentation introduces new
coherency platform technology
that enables the integration of
heterogeneous cache coherent
hardware accelerators and CPUs,
using a mixture of ARM ACE, CHI, and
CHI Issue B protocols, into systems
that meet both the requirements of
high compute performance and ISO
26262-compliant functional safety.

ARTERISIZ

Enabling Mixed-Protocol
Heterogeneous Cache Coherency
and I1ISO 26262 Functional Safety

@

Coherence is the Industry’s Choice Data Sharing

Unpredictability IN Sharing Data Data Sharing

X |nter-core coherence interference
on same cache line

X |nter-core coherence interference
on different cache lines

X |nter-core coherence interference
due to write hits

X |ntra-core coherence interference

Unpredictability in Sharing Data Data Sharing

PE
L1

Predictable Arbiter

Addr | cID | Msg

PMSI: Predictable Cache Coherence Data Sharing

10.00

(0] 0)]
© e .m
S U -
- P
= N
s o
S Bz
- o
r_I
N
=
g
)
.mP
MI
QD
B O
= C
= -
D]
< Q
5 C
= @
- @)
(-
o @)
S W
@ =
o0 (¢
=
7 O,
;0 K
= -
=
c-m a
S -
m -
> O
S
B O
al

UMOPMO[S

Time-based Cache Coherence
« Configurable timers for critical/non-critical
cores
Fixed Priority Arbitration
* |f both critical and non-critical requesting
same cache line = critical gets it
Allows for simultaneous data sharing
* Both intra- and inter-criticality
Bounds WCL for critical cores while
improving the BW of non-critical cores

cr |**°] »~ner
"
¢ c;

LS

|
| Shareld bu

Shared
memory

ST PR [PO
A: SendData c,™
S Sl oo
> H iy 1
3 2. SELINY a
1
- SendData ¢ 9]
| A STIEN L C3

HourGlass: Cache Coherence for MCS

Data Sharing

SS

raditi Timip?

MPSoC-Based del INNFEEnce

MCS:

Four Aspects
Security

Security is a nightmare challenge on
its own for all computing systems

It is even more scary for MCS
Three specific challenges for
MPSoC-based MCS

Security

MPSoCs open the door for customized solutions

ARM Cortex-M35P
with Physical Security

NXP’s QorlQ SoC
with Trust Architecture

TrustZone for Armv8-M Battery Back-up

MPSoCs
Opportunities

vectored Walke-up
t controller interrupt controller

CPU
ArmivB-M Mainline

Memory protection unit
2% AHBS
ITM trace

Instruction
Cache

ETM trace

DsP
[Data
watchpoint

Breakpoint
unit

Serial wire

MTE trace

Tamper SDIMMC]
Detect(s) p) DUART ¢ *+—
IFC USB SATA +—|

CCSRGPIO +

Ein, Perf
AIOP PCI Monitor

Security Data-path
sub-system sub-system

MPSoCs Challenges

CYBER-PHYSICAL HETEROGENEITY OF SHARED COMPONENTS
NATURE OF MCS MPSOCS (AGAIN!)

Co™ USENIX SECURIY SYMPOSIOM

Lock It and Still Lose It —on the

: (In)Security of Automotive Remote
Cy ber- P hys ical Nature Keyless Entry Systems

* MCS manage sensitive tasks in critical
domains: power grids, cars, factories, nuclear
plants

* Any security breach could lead to
catastrophic consequences

* Hackers gained access to locked cars by only
eavesdropping a single signal from the
original remote keyless entry unit of the car

Heterogeneity of MPSoCs

e Each PE can be a 3"-party IP (40% at Intel!) |

* PEs share system components and interact
with each other >new across-PEs threats

e Stuxnet attack exploited the
authentication of the Siemens
programmable logic controller to access a
Windows machine

| THE VERGE

Jeep hackers at it again, this
Shared hardware components time taking control of steering

In MPSoCs and braking systems

Y

* Historically, security was not considered as -
a concern for MCS because of isolation e 3P

* Not the case anymore

* Researchers were able to control sensitive
(considered secure) engine control by
compromising the (considered insecure) \ S
radio unit - S

« Reason? Sharing the CAN 1Kl S

ldentifying new vulnerabilities of MPSoCs,
which did not exist in traditional platforms

Possible
Directions

Developing cost- and performance-effective
methodologies to prevent or mitigate them

. . designing MPSoCs for MCS
v= Adoptlng Securlty das d (secure-by design concept).

first-class citizen in Sehee Ui e s

cel |

el

-

=
(7p]
=
Q
o+
(%]
>
(7))
o0
C
e
-
(OR
-
o
@)

Traditional

|4
C

MCS Model

““Automotiverand loT |

‘ ’vum, M. PCie Gend,] |
100G Ethernet, AMS

Our focus so far has
been in uniprocessors

