
Abstract— The leading zero anticipator (LZA) is a vital block 
in fast floating point addition and fused multiply-add (FMA) 
operations. So far, there is only one decimal LZA proposed in 
research literature. This paper introduces two decimal LZA 
designs, then a comparison between the three designs, the two 
proposed here and the previous proposed one, is performed.  
 
Index Terms--- LZA, LZD, floating point, Decimal, FMA 

I. INTRODUCTION 
Although the binary system is widely used in computer 

arithmetic designs, the need for the decimal computing arises 
in many applications such as financial and scientific ones. 
Some applications use the decimal processing in 50% to 90% 
of their work [1]. Executing these applications in software 
adds more delay as software libraries are much slower than 
hardware designs (by a factor of 100x to 1000x performance 
degradation) [1] [2]. This explains the need of the decimal 
floating point (DFP) hardware units. 

Since the inclusion of the DFP specifications in IEEE 754- 
2008 standard [3], many architectures have been introduced 
for the DFP addition [4] [5], multiplication [6] [7] [8], and 
division [9] [10]. The only implemented decimal fused 
multiply-add (DFMA) is introduced in [11] and a proposed 
general design without implementation is introduced in [12]. 

One of the basic units in FP addition and FMA operations is 
the leading zero detector (LZD). It waits for the result of the 
adder to count the number of its leading zeros. This count is 
then used to left shift the result to save precision and meet 
standard specifications. The LZD increases the critical path 
delay as shown in Figure 1(a). Replacing the sum LZD by a 
leading zero anticipator (LZA) is vital to increase the 
performance of FP processors [13]. The LZA anticipates the 
leading zeros count of the result directly from the input 
operands (with possible error of one bit in binary or one digit 
in decimal). It works in parallel with the adder, so it eliminates 
the leading zero detection from the critical path, Figure 1(b). 

Although many binary LZAs were introduced [14]-[19], the 
only decimal LZA is proposed by [4]. 

This paper is organized as follows. Section II surveys the 
previous work on LZA in both binary and decimal. Section III 
introduces two proposed decimal LZA designs. A comparison 
between the three decimal LZA designs, the two proposed 
here and that in [4], is performed in section IV. Finally, the 
results of the work are concluded in section V. 

II. PREVIOUS WORK 
The LZA anticipates the leading zero count of the sum from 

the input operands. This anticipation may have an error of one 
bit in binary system or one digit in decimal system. In this 
section we try to survey the attempts to correct this error both 
in binary and in decimal. 

 
 

 
 
 
 
 

 

 

 

A. Binary LZA Correction Designs 

Five main architectures are proposed in binary to correct 
this error without adding a large delay to the critical path.  

The first one [14] is shown in Figure 2(a). It anticipates the 
number of leading zeros by the LZA and decodes it to feed the 
coarse shifter. The normalization operation is composed of 
two shifters, the coarse shifter and the fine shifter. The one-bit 
error is corrected by adding a compensation shifter after the 
normalization stage. This compensation shifter is in the critical 
path and has an estimated delay of 0.8 ns (on 0.5μm CMOS 
technology) which is 10% of the total LZA delay [14]. 

 As the possible error in one bit depends on the carry to this 
bit, the second architecture proposed in [15], [16] waits for the 
carries from the adder to check the predicted LZC by a carry 
select circuit to feed the shift correction circuit. This corrected 
shift affects only the least significant bits in the normalization 
stage and hence detection and correction are in parallel with 
the normalization coarse shifter, but this correction circuit is in 
the critical path as shown in Figure 2(b). 

The third one is introduced in [19] and shown in Figure 
2(c). It uses a LZA that generates a one-hot vector has the 
same number of bits as the sum and has a '1' at the bit directly 
adjacent to the leading zero bits (the leading one bit). It 
corrects the error by a correction circuit which compares the 
one-hot vector with the sum in parallel with the coarse shifter. 
This comparison is simply a stage of AND gates followed by 
an ORing stage. The comparison result which indicates 
whether there is an error or not feeds the fine shifter to 
produce the final normalized output. 

The fourth architecture shown in Figure 2(d) [18] depends 
on comparing the position of the leading one of the predicted 
LZC with that of the sum. This leading one may be either in 
an odd or even bit position. If this oddness  is the same in both 
the sum and the predicted LZC, the predicted LZC is correct; 
otherwise, correction is needed. Although this design has the 
same general block diagram of [19], the correction circuit is 
out of the critical path. This is because comparing the oddness 
feature of the leading one is simpler and faster than comparing 
the whole predicted vector and the sum, and it is sufficient as 
the prediction error lies only in one bit. 

The fifth architecture shown in Figure 2(e) was introduced 
by Bruguera and Lang [17]. It uses a detection tree in parallel 
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with the prediction circuit. This design has a smaller delay as 
the detection tree is out of the critical path, but it has the 
disadvantage of the large consumed area. It has 80% larger 
area than the LZA without parallel detection tree (first and 
second architectures) [17]. 

B. Decimal LZA based on Correction Tree 
Wang and Schulte are the only authors to our knowledge 

who introduced a decimal LZA [4]. It is shown in Figure 3, 
and based on the correction tree idea of [17]. 

 Unlike binary, in decimal we have to determine the LZC of 
the result in both effective addition and effective subtraction. 
This is because the operands in decimal are not normalized. 

They divided the LZA into two completely separate parts, 
one for effective addition and the other for effective 
subtraction. Finally, the effective operation signal  chooses 
the correct one. These two LZAs are preceded by a parallel 
array of 16 BCD Adders. 

In effective addition LZA the LZC is calculated as:  
 

 are the leading zero counts for the two inputs, and 
is the correction signal. 

The correction signal  if the pattern   is 
detected.  indicates a carry generate digit,  indicates a 
carry propagate digit, and  indicates a zero digit.  The three 
signals are calculated for each sum digit. A 4-level tree (for 
decimal64) is used to calculate  in parallel with the 
prediction.  

In effective subtraction there are two cases
. Wang and Schulte followed [17] in using only 

one anticipation unit and two separate correction trees. The 
anticipation unit generates a binary string P with the same 
LZC as the sum (with possibly an error of one digit to the left 
or the right). The two correction trees generate two correction 
signals, one for each case . Finally, they 
use the  signal to choose one of the two correction signals 
to get the final effective subtraction correction signal . 
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Figure 1  LZA based on (a) compensation shifter correction. (b) carry select correction (c) one hot vector (d) oddness detection  (e) 
parallel tree 

Table 1: Signals in effective  
subtraction LZA 

Table 3: CLA generated signals 

Table 2: Signals in effective addition LZA 

Figure 3: Decimal64 LZA in [8] 
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III. PROPOSED DESIGNS 
This paper introduces two decimal LZA designs. One is 

based on the parallel detection tree method and the other is 
based on the oddness detection method. Both methods were 
described in section II. 

A. Decimal LZA based on Parallel Detection Tree 
The first Design is adapted from [4]. It optimizes the area and 
the speed as will be shown in the comparison s ection. Unlike 
[4] which is designed for a special adder design and assumes 
decoded operands, this is a general LZA that can be used for 
FP addition and FMA designs which follow the IEEE floating 
point standard [3]. It consists of three main blocks, the pre-
encoding unit, the effective subtraction LZA, and the effective 
addition LZA. 

1. The Pre-encoding Unit 
      The goal of the pre-encoding is to generate the signals  
needed for the subtraction and addition trees as shown in 
Table 1 and Table 2. We implemented this unit using two 
mechanisms: CLA concept and direct comparisons  
 CLA Pre-encoding 
     It uses the same concept of the Carry Look- Ahead (CLA) 
of generating the carry in a faster way (estimate of 3 gate 
delays for one digit). 
It generates the signals propagate  and generate  for each 
bit  in the digit  where: 

 
 

We assume here that the inputs A and B are pre-corrected 
inputs, i.e. in the subtraction case  is not changed and

, while in the addition case  is not changed 
and  ,  and are the significants of the two 
inputs after the alignment. For each digit  we have:  
 

 
 

 

 
These three signals have different meanings in effective 
addition and effective subtraction cases. In effective 
subtraction: means that both digits are equal, and 

means that there is a carry from the subtraction which 

indicates that . In effective addition, they are used by 
their direct as shown in Table 3. The LZA with the CLA pre-
encoding is shown in Figure 4 (a).

Comparator Pre-encoding 
      In this mechanism the pre-encoding stage will have two 
units, one for effective subtraction and the other for effective 
addition (as shown in Figures 4(b) and 4(c)). In effective 
subtraction, an array of 16 four-bit comparators is used to 
compare each digit of the two aligned inputs and hence 
generate the signals indicating in which category is the input 
A with respect to the second input B. Table 1 shows the 
condition on A to set each signal. 
In effective addition, we also use the two operands directly to 
generate the signals  shown in Table 3. 
 
Sign Detection 

In [4], Wang and Schulte assumed that the sign needed in 
correction (as illustrated in Section II (B)) is detected after the 
addition. However, it is not applicable in some architectures, 
for example to use a combined add/round block the shift must 
be performed prior to addition. So, the LZA cannot wait for 
the addition result. Hence, we propose a simple sign detection 
tree that operates in parallel with the correction tree and the 
anticipation. We use the comparator to generate the vector   
where   indicates that digit   is greater than digit  . 
This vector and the zero vector are used as inputs to the sign 
detection tree shown in Figure 5. 

 
Figure 5: S ign Detection Tree 

Effective Addition LZA 
The effective addition LZA shown in Figure 4(c) depends 

on the comparator-based pre-encoding. Its architecture is very 
similar to [4] as it is straight forward, can be used generally, 
and finally it consumes a small area (less than 10% of the total 
LZA area).  

Figure 4: (a) LZA using the CLA pre-encoding (b) Effective Subtraction LZA (c) Effective Addition LZA 
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The anticipation unit uses equation (1) to get the predicated 
effective addition LZC . 

In parallel with this anticipation, the initial merging module 
uses the signals generated by the pre-encoding unit 

 to generate the arrays' initial values 
 as illustrated in equations (2). These arrays 

enter the tree logic of equations (3) to finally get the correction 
signal  [4]. 

 
 

 
 

 
 

 
 

Finally, 

Effective Subtraction LZA 
The effective subtraction LZA shown in Figure 4(b) 

consists of two parallel units: the anticipation unit and the 
detection unit. In effective subtraction we have two 
possibilities (A>B) and (B<A). The anticipation unit is 
combined for both cases as shown in equation (4). The 
detection unit consists  of the Flag Generation module and the 
tree. The Flag Generation module uses the pre-encoded signals 
to find out the arrays needed by the tree for the positive sum 
(equations (5)) and the negative sum (equations  (6)). We 
combine them in equations (7) using the sign signal produced 
from the sign detection module to have the arrays required for 
the tree  Where  indicates a leading one digit,  
indicates a zero digit,  indicates a leading zeros terminate 
digit. These combined vectors enter only one tree (equations 
(8)) to get the effective subtraction correction signal . The 
combined tree has the same area as only one correction tree in 
[4] which saves the area of a complete correction tree (the 
correction tree has an estimate of 150 gate count) without any 
additional cost on delay. 

 

 

 

 

 

 

 
Where in our combined tree: 

and finally, 

 

B. Decimal LZA based on Oddness Detection  
  The binary oddness correction technique is modified to 
work on decimal. In decimal we need only to indicate whether 
each digit is zero or not, so each 4-bit digit can be represented 
by only one bit, this is done by a parallel OR gates before the 
oddness detection then perform the oddness detection by the 
same circuit used in [18]. Figure 6 shows this detection circuit 
for decimal64. 

 We can see that for Decimal64 we need only three levels of 
the A and B blocks to generate the correction signal, while in 
Binary64 we need five levels to generate it which means that 
the decimal oddness circuit will be faster. Also, it will 
consume a less area which makes this technique very suitable 
to decimal. This correction can be performed in parallel with 
coarse shifters which operate on the preliminary value of LZC, 
thus it adds no delay to the critical path of the adder. However, 
the dependency of the correction on the sum limits the 
flexibility of the architecture. 

IV. COMPARISONS 
        Three LZA designs were implemented in VHDL (the 
previous proposed one and the two proposed here). Then, they 
are synthesized by the Cadence RTL Compiler using 
TSMC65LP Technology. Table 4 compares the one in 3.1, 
with its two pre-encoding implementations, with that of [4] as 
they depend on the same idea. The results show that at the 
same area  , the proposed design has 17.7% delay 

Figure 6: Decimal64 Oddness Detection Circuit 
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improvement in CLA pre-encoding based design, and 15.3% 
delay improvement in Comparator pre-encoding based design. 
At the same delay  the proposed LZA has 22% less 
area in CLA pre-encoding based design, and 24.2% less area 
in Comparator pre-encoding based. Also the critical path 
delays on best performance case shows that the LZA in [4] has 
24 FO4 inverter delays, while the proposed one has 19 FO4. 
     The results show also that the CLA pre-correction LZA has 
less delay than the Comparator pre-correction LZA, while the 
second has less area. This is logical as the CLA unit generates 
the carry in a faster way which improves the delay. However, 
it consumes large area. So, if the LZA will be in the critical 
path of the total architecture (FMA or adder), it is 
recommended to use the CLA pre-encoding based design; 
otherwise use the Comparator pre-encoding based design to 
save the area.  

 
Regarding the proposed LZA based on the oddness 

detection, we synthesized the preliminary LZA circuit and the 
oddness detection circuit separately. This is because the nature 
of the design discussed in section III (B). Table 5 shows the 
synthesis results. These results show that this design has the 
advantage of very low area relative to the Parallel-Correction 
based ones. 

 

V. CONCLUSION 

      Two new decimal LZA were proposed in this paper. One 
of them is based on the oddness-detection idea, while the other 
is based on the correction tree idea. The oddness based one is 
very efficient in area and is not in the critical path, but it has a 
limitation on design flexibility as the correction must wait the 
addition result. The correction- tree based LZA proposed here 
is implemented with two different pre-encoding mechanisms. 
It decreases the area by more than 20% at the same delay of 
the only previous proposed one. It also decreases the delay by 
more than 15% at the same area. 
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 LZA in [4] Proposed LZA 

CLA pre-enc. Comparator pre-enc 

Delay 0.85nm 0.7nm 0.72nm 

Area    

 preliminary LZA Oddness Detect. and Corr. 
Area opt.   
Delay opt. 0.28nm 0.1nm 

Table 4: Comparison between different decimal LZA designs 

Table 4: Optimized results for Oddness-Detection based LZA 
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