
Abstract— The leading zero anticipator (LZA) is a vital block
in fast floating point addition and fused multiply-add (FMA)
operations. So far, there is only one decimal LZA proposed in
research literature. This paper introduces two decimal LZA
designs, then a comparison between the three designs, the two
proposed here and the previous proposed one, is performed.

Index Terms--- LZA, LZD, floating point, Decimal, FMA

I. INTRODUCTION
Although the binary system is widely used in computer

arithmetic designs, the need for the decimal computing arises
in many applications such as financial and scientific ones.
Some applications use the decimal processing in 50% to 90%
of their work [1]. Executing these applications in software
adds more delay as software libraries are much slower than
hardware designs (by a factor of 100x to 1000x performance
degradation) [1] [2]. This explains the need of the decimal
floating point (DFP) hardware units.

Since the inclusion of the DFP specifications in IEEE 754-
2008 standard [3], many architectures have been introduced
for the DFP addition [4] [5], multiplication [6] [7] [8], and
division [9] [10]. The only implemented decimal fused
multiply-add (DFMA) is introduced in [11] and a proposed
general design without implementation is introduced in [12].

One of the basic units in FP addition and FMA operations is
the leading zero detector (LZD). It waits for the result of the
adder to count the number of its leading zeros. This count is
then used to left shift the result to save precision and meet
standard specifications. The LZD increases the critical path
delay as shown in Figure 1(a). Replacing the sum LZD by a
leading zero anticipator (LZA) is vital to increase the
performance of FP processors [13]. The LZA anticipates the
leading zeros count of the result directly from the input
operands (with possible error of one bit in binary or one digit
in decimal). It works in parallel with the adder, so it eliminates
the leading zero detection from the critical path, Figure 1(b).

Although many binary LZAs were introduced [14]-[19], the
only decimal LZA is proposed by [4].

This paper is organized as follows. Section II surveys the
previous work on LZA in both binary and decimal. Section III
introduces two proposed decimal LZA designs. A comparison
between the three decimal LZA designs, the two proposed
here and that in [4], is performed in section IV. Finally, the
results of the work are concluded in section V.

II. PREVIOUS WORK
The LZA anticipates the leading zero count of the sum from

the input operands. This anticipation may have an error of one
bit in binary system or one digit in decimal system. In this
section we try to survey the attempts to correct this error both
in binary and in decimal.

A. Binary LZA Correction Designs

Five main architectures are proposed in binary to correct
this error without adding a large delay to the critical path.

The first one [14] is shown in Figure 2(a). It anticipates the
number of leading zeros by the LZA and decodes it to feed the
coarse shifter. The normalization operation is composed of
two shifters, the coarse shifter and the fine shifter. The one-bit
error is corrected by adding a compensation shifter after the
normalization stage. This compensation shifter is in the critical
path and has an estimated delay of 0.8 ns (on 0.5μm CMOS
technology) which is 10% of the total LZA delay [14].

 As the possible error in one bit depends on the carry to this
bit, the second architecture proposed in [15], [16] waits for the
carries from the adder to check the predicted LZC by a carry
select circuit to feed the shift correction circuit. This corrected
shift affects only the least significant bits in the normalization
stage and hence detection and correction are in parallel with
the normalization coarse shifter, but this correction circuit is in
the critical path as shown in Figure 2(b).

The third one is introduced in [19] and shown in Figure
2(c). It uses a LZA that generates a one-hot vector has the
same number of bits as the sum and has a '1' at the bit directly
adjacent to the leading zero bits (the leading one bit). It
corrects the error by a correction circuit which compares the
one-hot vector with the sum in parallel with the coarse shifter.
This comparison is simply a stage of AND gates followed by
an ORing stage. The comparison result which indicates
whether there is an error or not feeds the fine shifter to
produce the final normalized output.

The fourth architecture shown in Figure 2(d) [18] depends
on comparing the position of the leading one of the predicted
LZC with that of the sum. This leading one may be either in
an odd or even bit position. If this oddness is the same in both
the sum and the predicted LZC, the predicted LZC is correct;
otherwise, correction is needed. Although this design has the
same general block diagram of [19], the correction circuit is
out of the critical path. This is because comparing the oddness
feature of the leading one is simpler and faster than comparing
the whole predicted vector and the sum, and it is sufficient as
the prediction error lies only in one bit.

The fifth architecture shown in Figure 2(e) was introduced
by Bruguera and Lang [17]. It uses a detection tree in parallel

Efficient Decimal Leading Zero Anticipator Designs

Mohamed H. Amin, Ahmed M. Eltantawy, Alhassan F. Khedr, Hossam A. H. Fahmy, Ahmed A. Naguib

Figure 1: (a) LZD (b) LZA

139978-1-4673-0323-1/11/$26.00 ©2011 IEEE Asilomar 2011

with the prediction circuit. This design has a smaller delay as
the detection tree is out of the critical path, but it has the
disadvantage of the large consumed area. It has 80% larger
area than the LZA without parallel detection tree (first and
second architectures) [17].

B. Decimal LZA based on Correction Tree
Wang and Schulte are the only authors to our knowledge

who introduced a decimal LZA [4]. It is shown in Figure 3,
and based on the correction tree idea of [17].

 Unlike binary, in decimal we have to determine the LZC of
the result in both effective addition and effective subtraction.
This is because the operands in decimal are not normalized.

They divided the LZA into two completely separate parts,
one for effective addition and the other for effective
subtraction. Finally, the effective operation signal chooses
the correct one. These two LZAs are preceded by a parallel
array of 16 BCD Adders.

In effective addition LZA the LZC is calculated as:

 are the leading zero counts for the two inputs, and
is the correction signal.

The correction signal if the pattern is
detected. indicates a carry generate digit, indicates a
carry propagate digit, and indicates a zero digit. The three
signals are calculated for each sum digit. A 4-level tree (for
decimal64) is used to calculate in parallel with the
prediction.

In effective subtraction there are two cases
. Wang and Schulte followed [17] in using only

one anticipation unit and two separate correction trees. The
anticipation unit generates a binary string P with the same
LZC as the sum (with possibly an error of one digit to the left
or the right). The two correction trees generate two correction
signals, one for each case . Finally, they
use the signal to choose one of the two correction signals
to get the final effective subtraction correction signal .

Signal Condition
 Comparator CLA

 Carry propagate
 Carry generate
 zero

Signal

Case

Effective

 sub.

ـــــ

Effective
Add.

Figure 1 LZA based on (a) compensation shifter correction. (b) carry select correction (c) one hot vector (d) oddness detection (e)
parallel tree

Table 1: Signals in effective
subtraction LZA

Table 3: CLA generated signals

Table 2: Signals in effective addition LZA

Figure 3: Decimal64 LZA in [8]

140

III. PROPOSED DESIGNS
This paper introduces two decimal LZA designs. One is

based on the parallel detection tree method and the other is
based on the oddness detection method. Both methods were
described in section II.

A. Decimal LZA based on Parallel Detection Tree
The first Design is adapted from [4]. It optimizes the area and
the speed as will be shown in the comparison s ection. Unlike
[4] which is designed for a special adder design and assumes
decoded operands, this is a general LZA that can be used for
FP addition and FMA designs which follow the IEEE floating
point standard [3]. It consists of three main blocks, the pre-
encoding unit, the effective subtraction LZA, and the effective
addition LZA.

1. The Pre-encoding Unit
 The goal of the pre-encoding is to generate the signals
needed for the subtraction and addition trees as shown in
Table 1 and Table 2. We implemented this unit using two
mechanisms: CLA concept and direct comparisons
 CLA Pre-encoding
 It uses the same concept of the Carry Look- Ahead (CLA)
of generating the carry in a faster way (estimate of 3 gate
delays for one digit).
It generates the signals propagate and generate for each
bit in the digit where:

We assume here that the inputs A and B are pre-corrected
inputs, i.e. in the subtraction case is not changed and

, while in the addition case is not changed
and , and are the significants of the two
inputs after the alignment. For each digit we have:

These three signals have different meanings in effective
addition and effective subtraction cases. In effective
subtraction: means that both digits are equal, and

means that there is a carry from the subtraction which

indicates that . In effective addition, they are used by
their direct as shown in Table 3. The LZA with the CLA pre-
encoding is shown in Figure 4 (a).

Comparator Pre-encoding
 In this mechanism the pre-encoding stage will have two
units, one for effective subtraction and the other for effective
addition (as shown in Figures 4(b) and 4(c)). In effective
subtraction, an array of 16 four-bit comparators is used to
compare each digit of the two aligned inputs and hence
generate the signals indicating in which category is the input
A with respect to the second input B. Table 1 shows the
condition on A to set each signal.
In effective addition, we also use the two operands directly to
generate the signals shown in Table 3.

Sign Detection

In [4], Wang and Schulte assumed that the sign needed in
correction (as illustrated in Section II (B)) is detected after the
addition. However, it is not applicable in some architectures,
for example to use a combined add/round block the shift must
be performed prior to addition. So, the LZA cannot wait for
the addition result. Hence, we propose a simple sign detection
tree that operates in parallel with the correction tree and the
anticipation. We use the comparator to generate the vector
where indicates that digit is greater than digit .
This vector and the zero vector are used as inputs to the sign
detection tree shown in Figure 5.

Figure 5: S ign Detection Tree

Effective Addition LZA
The effective addition LZA shown in Figure 4(c) depends

on the comparator-based pre-encoding. Its architecture is very
similar to [4] as it is straight forward, can be used generally,
and finally it consumes a small area (less than 10% of the total
LZA area).

Figure 4: (a) LZA using the CLA pre-encoding (b) Effective Subtraction LZA (c) Effective Addition LZA

141

The anticipation unit uses equation (1) to get the predicated
effective addition LZC .

In parallel with this anticipation, the initial merging module
uses the signals generated by the pre-encoding unit

 to generate the arrays' initial values
 as illustrated in equations (2). These arrays

enter the tree logic of equations (3) to finally get the correction
signal [4].

Finally,

Effective Subtraction LZA
The effective subtraction LZA shown in Figure 4(b)

consists of two parallel units: the anticipation unit and the
detection unit. In effective subtraction we have two
possibilities (A>B) and (B<A). The anticipation unit is
combined for both cases as shown in equation (4). The
detection unit consists of the Flag Generation module and the
tree. The Flag Generation module uses the pre-encoded signals
to find out the arrays needed by the tree for the positive sum
(equations (5)) and the negative sum (equations (6)). We
combine them in equations (7) using the sign signal produced
from the sign detection module to have the arrays required for
the tree Where indicates a leading one digit,
indicates a zero digit, indicates a leading zeros terminate
digit. These combined vectors enter only one tree (equations
(8)) to get the effective subtraction correction signal . The
combined tree has the same area as only one correction tree in
[4] which saves the area of a complete correction tree (the
correction tree has an estimate of 150 gate count) without any
additional cost on delay.

Where in our combined tree:

and finally,

B. Decimal LZA based on Oddness Detection
 The binary oddness correction technique is modified to
work on decimal. In decimal we need only to indicate whether
each digit is zero or not, so each 4-bit digit can be represented
by only one bit, this is done by a parallel OR gates before the
oddness detection then perform the oddness detection by the
same circuit used in [18]. Figure 6 shows this detection circuit
for decimal64.

 We can see that for Decimal64 we need only three levels of
the A and B blocks to generate the correction signal, while in
Binary64 we need five levels to generate it which means that
the decimal oddness circuit will be faster. Also, it will
consume a less area which makes this technique very suitable
to decimal. This correction can be performed in parallel with
coarse shifters which operate on the preliminary value of LZC,
thus it adds no delay to the critical path of the adder. However,
the dependency of the correction on the sum limits the
flexibility of the architecture.

IV. COMPARISONS
 Three LZA designs were implemented in VHDL (the
previous proposed one and the two proposed here). Then, they
are synthesized by the Cadence RTL Compiler using
TSMC65LP Technology. Table 4 compares the one in 3.1,
with its two pre-encoding implementations, with that of [4] as
they depend on the same idea. The results show that at the
same area , the proposed design has 17.7% delay

Figure 6: Decimal64 Oddness Detection Circuit

142

improvement in CLA pre-encoding based design, and 15.3%
delay improvement in Comparator pre-encoding based design.
At the same delay the proposed LZA has 22% less
area in CLA pre-encoding based design, and 24.2% less area
in Comparator pre-encoding based. Also the critical path
delays on best performance case shows that the LZA in [4] has
24 FO4 inverter delays, while the proposed one has 19 FO4.
 The results show also that the CLA pre-correction LZA has
less delay than the Comparator pre-correction LZA, while the
second has less area. This is logical as the CLA unit generates
the carry in a faster way which improves the delay. However,
it consumes large area. So, if the LZA will be in the critical
path of the total architecture (FMA or adder), it is
recommended to use the CLA pre-encoding based design;
otherwise use the Comparator pre-encoding based design to
save the area.

Regarding the proposed LZA based on the oddness

detection, we synthesized the preliminary LZA circuit and the
oddness detection circuit separately. This is because the nature
of the design discussed in section III (B). Table 5 shows the
synthesis results. These results show that this design has the
advantage of very low area relative to the Parallel-Correction
based ones.

V. CONCLUSION

 Two new decimal LZA were proposed in this paper. One
of them is based on the oddness-detection idea, while the other
is based on the correction tree idea. The oddness based one is
very efficient in area and is not in the critical path, but it has a
limitation on design flexibility as the correction must wait the
addition result. The correction- tree based LZA proposed here
is implemented with two different pre-encoding mechanisms.
It decreases the area by more than 20% at the same delay of
the only previous proposed one. It also decreases the delay by
more than 15% at the same area.

REFERENCES
[1] M. F. Cowlishaw. Decimal floating-point: Algorism for computers. In
Proc. IEEE 16th Symposium on Computer Arithmetic, pages 104–111, July
2003.

[2] L.-K. Wang, C. Tsen, M. J. Schulte, D. Jhalani, “Benchmarks and
Performance Analysis for Decimal Floating-Point Applications,” IEEE
International Conference on Computer Design, October 2007.

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754-2008, Aug.
2008. 1–58.

[4] L.-K. Wang, M. J. Schulte, A Decimal Floating-Point Adder with Decoded
Operands and a Decimal Leading-Zero Anticipator, 19th IEEE Symposium on
Computer Arithmetic, pages 125 - 134 , June 2009.

[5] L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam, “Hardware
designs for decimal floating-point addition and related operations,” IEEE
Transactions on Computers, vol. 58, no. 3, pp. 322–335, Mar. 2009.

[6] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal floating-point
multiplication via carry-save addition,” in Proceedings of the IEEE
International Symposium on Computer Arithmetic, 25–27 June, 2007,
Montpellier, France.

[7] R. Raafat, A. M. Abdel-Majeed, R. Samy, T . ElDeeb, Y. Farouk, M.
Elkhouly, and H. A. H. Fahmy, “A decimal fully parallel and pipelined
floating point multiplier,” in Forty-Second Asilomar Conference on Signals,
Systems, and Computers, Asilomar, California, USA, Oct. 2008.

[8] A. Vazquez, E. Antelo and P. Montuschi, "Improved Design of High-
Performance Parallel Decimal Multipliers," IEEE Transactions on Computers,
Vol. 59, No. 5, pp. 679-693, May 2010.

[9] L.-K. Wang and M. J. Schulte, “A decimal floating-point divider using
Newton–Raphson iteration,” Journal of VLSI Signal Processing, vol. 49, no.
1, pp. 3–18, Oct. 2007.

[10] H. Nikmehr, B. Phillips, and C.-C. Lim, “Fast decimal floating-point
division,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 9, pp. 951– 961, Sep. 2006.

[11] R. Samy, H. A. H. Fahmy, R. Raafat, A. Mohamed, T . ElDeeb, Y.
Farouk, A Decimal Floating-Point Fused-Multiply-Add Unit, 53rd IEEE
International Midwest Symposium on Circuits and System, Pages 529 - 532,
Aug. 2010.

[12] A. Vázquez. High-Performance Decimal Floating-Point Units. Ph.D.
thesis, Universidade de Santiago de Compostela, 2009.

[13] M. S. Schmookler and K. J. Nowka. Leading Zero Anticipation and
Detection – A Comparison of Methods. In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, pages 7–16, June 2001.

[14] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko, T .Sumi,
“Leading-zero Anticipatory Logic for High-speed Floating Point Addition”,
IEEE Journal of Solid State Circuits, August , pp.1157-1164, 1996.

[15] E. Hokenek and R. Montoye, “Leading-Zero Anticipator (LZA) in the
IBM RISC System/6000 Floating Point Execution Unit”, IBM Journal of
Research and Development, pp. 71-77, 1990.

[16] N. Quach and M. Flynn, “Leading One Prediction – Implementation,
Generalization, and Application”, Technical Report CSL-TR-91-463, Stanford
University, March, 1991.

[17]J. Bruguera, E .Lang “Leading-One Prediction with Concurrent Position
Correction” IEEE Transactions on Computers, v. 48, No. 10, October 1999,
pp. 298-305.

[18] C.N. Hinds and D.R. Lutz. A Small and Fast Leading One Predictor
Corrector Circuit. In Proc. 39 Asilomar Conference on Signals, Systems and
Computers., pages 1181–1185. IEEE, 2005.

[19] R Rogenmoser and L. O’Donnell, “Method and apparatus to correct
leading one prediction,” US Patent application 2002-0165887, Nov 2002.

 LZA in [4] Proposed LZA

CLA pre-enc. Comparator pre-enc

Delay 0.85nm 0.7nm 0.72nm

Area

 preliminary LZA Oddness Detect. and Corr.
Area opt.
Delay opt. 0.28nm 0.1nm

Table 4: Comparison between different decimal LZA designs

Table 4: Optimized results for Oddness-Detection based LZA

143

