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Abstract—Delta-Sigma analog to digital converters are vital 
components for mixed-signal systems. So, testing this type of 
converters is extremely important. This paper studies the low-
cost testing of first-order and second-order delta-sigma ADCs. 
Moreover; only catastrophic faults are considered such as 
open/short passive components and stuck-at faults in digital 
components. It is proven that the minimal test set consists of only 
two values that detect all faults in the assumed fault set. The 
effect of using different types of counters in the digital subcircuit 
is investigated and it is found that the two-value test set still 
detects all faults. Finally, the effect of passive component 
tolerances is analyzed. All the results are analytically proven and 
verified by simulations. 
 

Index Terms—Delta-Sigma ADC, mixed signal circuit, testing, 
fault model, second order ADC. 

I. INTRODUCTION 
nlike Nyquist rate converters, such as successive 
approximation ADCs [1] and flash ADCs [2], which 

provide low to medium resolution for high bandwidth, delta-
sigma converters can achieve high resolution for low to 
medium bandwidths. Although the delta-sigma conversion 
method has been known for many years, its importance 
increased after the exceptionally high speeds achieved with 
modern VLSI technologies [3]. 

A delta-sigma ADC simplifies system integration with 
modern technologies as it, in contrast to other conversion 
types, does not depend on a bulky analog circuit. It does not 
need the anti-aliasing filters nor the sample and hold circuitry 
found in other types. Another advantage is the low-cost 
conversion as it can convert analog signals to the digital 
domain using only 1-bit ADC and a simple analog circuit [4]. 

Because of the importance of the delta-sigma ADC, it is 
crucial to develop a high-quality low-cost test procedure. 
Unlike the Built-In Self-Test (BIST) techniques as the one 
described in [5], a low cost test method was described in [6] 
for a simple implementation of a first-order delta-sigma ADC. 
The test set consisted of only two test values. In addition, no 
BIST circuitry was required. In this paper, a different 
implementation of the first-order delta-sigma is studied and it 
will be shown that the same two test values mentioned in [6] 
still detect all the faults in the assumed fault set. The effect of 
passive component tolerances is then investigated and it is 
found that the suggested test set can still detect all faults for 
certain combinations of component values. Finally, an 
implementation of a second-order delta-sigma ADC is 

analyzed and it will be proven that the same two test values 
detect all the faults in the assumed fault set even if the passive 
components deviate somehow from their nominal values due 
to the inherent tolerances. 

This paper is organized as follows. Section II describes the 
operation of a basic first-order delta-sigma converter and 
previous work in the context of testing. Section III studies a 
slightly different implementation of this ADC and investigates 
components tolerances. In section IV, testing a second order 
version of delta-sigma ADC is explained. Finally, the work is 
concluded in section V. 

 
II. PREVIOUS WORK 

Basic Delta-sigma ADC Operation 
The basic first order delta-sigma ADC is shown in Figure 1.  

The heart of this conversion is the modulator. The modulator 
is a feedback loop that has a quantizer and a low pass filter. 
The analog input voltage signal is connected to the input of an 
integrator, producing a voltage slope at the output 
corresponding to the magnitude of the input. This ramping 
voltage is then compared with a ground potential by a 
comparator. The comparator acts as a one-bit ADC, producing 
a one-bit output depending on whether the integrator output is 
positive or negative. The comparator output is then latched in 
a D-type flip-flop. The output of the D-FF is then converted 
into analog form through the feedback to be subtracted from 
the input and drive the integrator again. 

The output of the D-FF is used to enable a counter that 
provides a final digital output proportional to the D-FF output 
pulse width. 

In [6], it was shown that all the faults in the analog part of 
the circuit could be detected with one analog input value, 
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Figure 1: First Order Delta-sigma ADC tested in [6]
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namely Vcc/2. Applying an input value of Vcc/2 to the Delta-
sigma converter under test will produce a digital output of 
(11000000) for the fault-free case. This value is different from 
all the faulty outputs considered; hence, all faults are 
detectable. 

Concerning the digital part, all the faulty outputs 
corresponding to an analog input of Vcc/2 are also different 
from the fault-free output (11000000) except Q7-stuck-at-1 
fault (Q7 being the most significant bit of the counter). 
Therefore, this fault cannot be detected using the analog input 
Vcc/2. Another analog test value (−Vcc/2 as an example) had 
to be applied to detect this fault. 

All the results were derived analytically and the entire 
circuit was simulated using Orcad simulator. The analytical 
proofs and the simulation results were identical. The fault set 
consisted of the following catastrophic faults: open (short) 
resistors and capacitors, stuck-at-Vcc and stuck-at-(−Vcc) for 
the op-amp and stuck-at-1(0) faults for digital components [7]. 
Only a single fault was assumed at a time. 

So, in [6], a 46-fault set was assumed. One analog input 
value (Vcc/2) was proven to detect the entire fault set except 
for one fault. For the 8-bit delta-sigma ADC under test, the 
coverage was 97.83%. If the number of bits were increased, 
there would have been only one undetectable fault (the 
counter’s MSB stuck-at-1), which means a higher coverage. If 
the full coverage is required, an additional analog test input is 
required.  

III. DIFFERENT IMPLEMENTATION OF THE FIRST-ORDER 
DELTA-SIGMA ADC 

In this section, a slightly different implementation of the 
delta-sigma ADC is investigated and passive component 
tolerances are studied. 

The digital subcircuit is implemented using a synchronous 
counter [8], shown in Figure 2, instead of the asynchronous 
counter in [6] to study the effect of this implementation on the 
minimal test set. The Q output of the flip-flop is used to gate 
the clock such that the number of output clock pulses depends 
on the active periods of the Q output. The fault set will be 
augmented by the faults in the AND gates. 

  
 
 
 
 

 
 
 
 
 

 
 

Each AND gate has two potential faults: its output stuck-at-
0 or stuck-at-1 (see Table I). If the output of the first AND 
gate (call it AND1) is stuck-at-1, then Q2 will toggle every 
clock pulse and hence the six most significant bits (Q1 to Q7) 
will act as a 6-bit counter separate from Q0 and Q1. This will 

change the correct output of 11000000 which corresponds to 
192 clock pulses to be (00000000). As the first two bits Q1Q0 
will have the correct value of 00 and the remaining 6-bit 
counter (Q2 to Q7) will count 192 counts which correspond to 
(000000). The same case exists if the outputs of AND2, 
AND3, AND4 or AND5 are stuck-at-1.  

If the output of AND1 is stuck-at-0, Q2 will retain its old 
value with no change. Hence the input to the fourth flip-flop 
will be '0' keeping Q3 with no change and so on. Assuming 
initially that all the flip-flops were cleared, then the output will 
be always 00000000. The same case also exists if the output of 
AND2, AND3, AND4, or AND5 is stuck-at-0.  

If the output of AND6 is stuck-at-1, then Q7 will toggle for 
192 counts which means it will be finally a '0', while (Q0 to 
Q6) will have the correct value of (1000000). This leads to a 
final faulty output of (01000000). 

If the output of AND6 is stuck-at-0, Q7 will retain its old 
value with no change which is initially a '0'. (Q0 to Q6) will 
have the correct value of (1000000). This leads to a final 
faulty output of (01000000). 

 
Table 1: Test results in synchronous implementation 

Fault output 
Output of AND1 stuck-at-0 00000000 
Output of AND1 stuck-at-1 00000000 
Output of AND2 stuck-at-0 00000000 
Output of AND2 stuck-at-1 00000000 
Output of AND3 stuck-at-0 00000000 
Output of AND3 stuck-at-1 00000000 
Output of AND4 stuck-at-0 00000000 
Output of AND4 stuck-at-1 00000000 
Output of AND5 stuck-at-0 00000000 
Output of AND5 stuck-at-1 00000000 
Output of AND6 stuck-at-0 01000000 
Output of AND6 stuck-at-1 01000000 

 
In the analog subcircuit, the effect of component tolerances 

is investigated next. In an attempt to study the effect of 
component tolerances on the testing procedure under study in 
this research, the circuit is investigated with all the passive 
components’ values reduced by 20% from their nominal 
values. This is part of the well-known vertex analysis [9]. The 
circuit is then investigated with the components’ values 
increased by 20% from their nominal values. In both cases, it 
is found that the delta-sigma ADC behaves correctly for the 
fault-free case and the test set remains the same.  

IV. TESTING OF A SECOND ORDER DELTA-SIGMA ADC 
 

One way of improving the signal to noise ratio (SNR) is to 
increase the order of the ADC. Usually, it is considered in 
delta-sigma ADCs that orders higher than two have a stability 
problem [4]. In this section, a basic design of a second order 
delta-sigma ADC is studied and tested. It will be shown that 
the analog input of Vcc/2 is still sufficient to detect all faults 
of the analog part for the second order delta-sigma ADC 
shown in Figure 3 [10]. Table II shows possible faults and 
their erroneous output corresponding to an input of Vcc/2. In 

Figure 2: 4-bit Synchronous Counter 
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the following paragraphs, the analytical proofs of the faults 
shown in Table II are described in more details. 

 If the output of op-amp 1 is stuck-at-Vcc, the output of the 
first integrator will keep discharging to –Vcc. The output of 
subtractor (op-amp 3) is: v3=−(v2+v5) and v5=−Vcc 
assuming   that the D-FF is initially reset. Hence, v3 will be 
−2Vcc which is impossible, so it saturates at –Vcc. The 
second integrator will also discharge to –Vcc, resulting in a 
comparator's output of Vcc and Q=1. In the feedback path, v5 
will toggle to Vcc making the op-amp 3 output equal to 0V. A 
zero input to the integrator will not change its output and the 
D-FF will keep its value '1', resulting in a final digital output 
of (11111111). The same scenario applies if op-amp2 is stuck-
at-(–Vcc). 

On the other hand, if op-amp 1 is stuck-at-(–Vcc), the 
output of op-amp 2 will charge to Vcc. Output op-amp 3 (the 
subtractor) will be zero which will not change the integrator's 
output, v4, keeping the initial state of Q=0. The digital output 
in this case is (00000000). The same scenario applies if op-
amp 2 is stuck-at-Vcc. 

If the output of op-amp 3 is stuck-at-Vcc, the integrator op-
amp 4 will discharge to −Vcc leading to a comparator output 
of Vcc and Q=1. The final digital output will be (11111111). 
The same scenario applies if op-amp 4 is stuck-at-(–Vcc) or if 
op-amp 5 is stuck-at-Vcc.  

The opposite of this scenario happens if op-amp 4 is stuck-
at-Vcc or if op-amp 5 is stuck-at-0V. In this case, the digital 
output will be (00000000). 

If op-amp 6 is stuck-at-Vcc, the output of the first subtractor 
(op-amp1) will be (v1=Vcc/2 – Vcc= −Vcc/2). This negative 
value will make v2 charge to Vcc. This is similar to the case 
of op-amp 2 output stuck-at-Vcc; hence, the digital output is 
(00000000). 

If op-amp 6 is stuck-at-(−Vcc), the output of the first 
subtractor (op-amp1) will be (v1=Vcc/2 + Vcc= 3Vcc/2), 
which is impossible, so v1 will saturate to Vcc. This is also 
similar to op-amp 1 output stuck-at-Vcc scenario; hence, the 
digital output is (11111111). 

If R1 is short-circuited, op-amp 1 will be a scaled subtractor 
whose output is: v1= 2Vin−v5, which will initially saturate at 
Vcc and v3 will discharge to –Vcc. The second subtractor 
output will be: v3= – (−Vcc−Vcc)= 2Vcc, which is impossible 
and hence saturates at Vcc. v4 will discharge to –Vcc resulting 
in a comparator's output of Vcc and Q=1. In the feedback 
path, v5 will toggle to Vcc making v1 equal to zero. This will 
not change the integrator output as stated before. The digital 
output will be (11111111). The same scenario exists if R2 is 
open-circuited. 

If R1 is open-circuited, the first subtractor equation will be 
v1=−v5 which implies that v1=Vcc initially. v2 will discharge 
to –Vcc. The second subtractor output will be: 
v3=−(−Vcc−Vcc)= 2Vcc, which is impossible and hence 
saturates at Vcc. v4 will discharge to –Vcc resulting in a 
comparator's output of Vcc and Q=1. In the feedback path, v5 
will toggle to Vcc, hence v1 will toggle to –Vcc and the whole 
situation is reversed leading to Q=0. Q will alternate between 
0 and 1 and the final digital output will be half of the full 
range (i.e., 10000000). The same scenario exists if R2 is short-
circuited. 

Table II: Test results of the analog subcircuit for a second order 
delta-sigma ADC 

Fault output 
Op-amp 1 stuck at Vcc 11111111 
Op-amp 1 stuck-at-(−Vcc) 00000000 
Op-amp 2 stuck-at-Vcc 00000000 
Op-amp 2 stuck-at-(−Vcc) 11111111 
Op-amp 3 stuck-at-Vcc 11111111 
Op-amp 3 stuck-at-(−Vcc) 00000000 
Op-amp 4 stuck-at-Vcc 00000000 
Op-amp 4 stuck-at-(−Vcc) 11111111 
Op-amp 5 stuck-at-Vcc 11111111 
Op-amp 5 stuck-at-0 00000000 
Op-amp 6 stuck-at-Vcc 00000000 
Op-amp 6 stuck-at-(−Vcc) 11111111 
R1 short circuit 11111111 
R1 open circuit 10000000 
R2 short circuit 10000000 
R2 open circuit 11111111 
R3 short circuit 11111111 
R3 open circuit 10000000 
R4 short circuit 10000000 
R4 open circuit 11111111 
R5 short circuit 10000000 
R5 open circuit Noise-Dependent 
R6 short circuit 00000000 
R6 open circuit 10000000 
R7 short circuit 10000000 
R7 open circuit 10000000 
R8 short circuit 10000000 
R8 open circuit 10000000 
R9 short circuit 10000000 
R9 open circuit Noise-dependent 
C1 short circuit 10000000 
C1 open circuit 10000000 
C2 short circuit 00000000 
C2 open circuit 10000000 
 
If R3 is short-circuited, op-amp1 will behave like a buffer, 

v1=Vcc/4. The first integrator will charge to −Vcc. This case 
is similar to op-amp 2 is stuck at –Vcc and the final output is 
(11111111). The same scenario applies if R4 is open-circuited. 

If R5 is short-circuited or C1 is open-circuited, op-amp 2 
will behave like a comparator. Similarly, if R9 is short-
circuited or C2 is open-circuited op-amp4 will behaves like a 
comparator. In both cases, the final output will be (10000000).  

If R5 is open-circuited, op-amp2 will be a comparator with 
a floating inverting input. The noise on this floating point will 
force v2 to be Vcc or –Vcc. In both cases the output will be 
noise-dependent and the possibility of the system output being 
equal to the error-free case is very low; hence, it is considered 
to be a detectable fault. The same scenario happens with op-
amp4 if R9 is open-circuited. 
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If R6 is short-circuited, op-amp 3 will be a buffer with a 
zero output. The input of the integrator is zero, which will not 
change its output; the digital output is (00000000). 

If R6 is open-circuited, op-amp 3 will act as a comparator 
with an initial output of Vcc, results in Q=1. In the feedback 
path, v5 will toggle and op-amp3 becomes –Vcc resulting in 
Q=0 and so on. The digital output is (10000000). The same 
scenario exists if R8 or R7 is short-circuited. 

If R7 is open-circuited the second subtractor’s equation will 
be v3=−v5. Initially, v3 is Vcc; this produces Q=1 which will 
toggle v5 and v3 will be –Vcc producing Q=0 and so on. The 
digital output is (10000000). 

If R8 is open-circuited, the second subtractor’s equation 
will be v3=−v2. A scenario similar to the previous one exists 
and the digital output is (1000000).  

If C1 is short-circuited, op-amp 2 acts as a buffer and v2=0.  
v3=−v5 which will be Vcc initially, leading to Q=1, v5 will 
then toggle to Vcc and v3 becomes −Vcc and the whole case 
is reversed and Q=0 and so on. The digital output will be 
(10000000).  

If C2 is short circuited, op-amp 4 acts as a buffer and v4=0. 
The comparator op-amp5 has both inputs grounded. Ideally, 
when both inputs of the comparator are equal, the output will 
be zero and the final digital output is (00000000). However, 
considering practical comparators, the output will be noise-
dependent and the possibility of the system output being equal 
to the error-free case is very low. 

As the digital subcircuit of the Delta-Sigma ADC for the 
first order and the second order are the same, all faults will be 
detected by Vcc/2 and −Vcc/2. 

All the results are verified by simulations. The simulation 
results and the analytical analysis are identical. 

Finally, the issue of passive component tolerances is 
studied. Fault-free circuits are analyzed with all passive 
component nominal values increased by 20% then decreased 
by 20%; in both cases, the fault-free circuit operates correctly 
and the two test values detect all faults. 

 
V. CONCLUSIONS AND FUTURE WORK 

In this paper, it is proven, for one fault at a time, that two 
test values can detect all catastrophic faults in a first-order 

delta-sigma ADC with a synchronous counter used in the 
digital subcircuit. These two values are Vcc/2 and –Vcc/2. 
Moreover, if the passive components are all 20% over (or 
under) their nominal values, the circuit will operate correctly 
in the fault-free case and all faults will be detected by Vcc/2 
and –Vcc/2. 

 Next, a second-order delta-sigma ADC is investigated. The 
same catastrophic fault set is assumed and again, one fault at a 
time. It is found that the same test set (Vcc/2 and –Vcc/2) 
detects all faults in the assumed fault set. Also, passive 
component tolerances of 20% are investigated; it is observed 
that if all components are above (below) their nominal values 
by 20%, the circuit behaves correctly in the fault-free case and 
the two test values detect all faults. 

The same procedure presented in this paper is currently 
being investigated for switched-capacitor delta-sigma ADC 
implementations. 
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Figure 3: A second order delta-sigma ADC
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