
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DISCO: Time-Compositional Cache Coherence
for Multi-core Real-Time Embedded Systems

Mohamed Hassan, Member, IEEE

Abstract—Tasks in modern embedded systems share data and communicate among each other. Nonetheless, the majority of
research in real-time systems either assumes that tasks do not share data or prohibits data sharing by design. Only recently, some
works investigated solutions to address this limitation and enable data sharing. However, we find these works to suffer from severe
limitations. In particular, proposed predictable cache coherence protocols increase the worst-case memory latency (WCL) quadratically
due to coherence interference and breaks compositionality by coupling the design and timing analysis of the coherence with the
underlying bus arbitration policy. In this paper, we argue that a protocol that distinguishes between non-modifying (read) and modifying
(write) memory accesses is key towards reducing the effects of coherence interference on WCL. Accordingly, we propose DISCO, a
discriminative coherence solution that capitalizes on this observation to 1) balance average-case performance and WCL, and 2) more
importantly, achieves compositionality in the existing of coherence by enabling the decomposition of the effects from coherence and
arbitration components. DISCO achieves 7.2× lower latency bounds compared to the state-of-the-art predictable coherence protocol.
DISCO also achieves up to 11.4× (5.3× on average) better performance than private cache bypassing for the SPLASH-3 benchmarks.

Index Terms—Cache Coherence, Real-Time Systems, Timing Behavior, Time Compositionality, Embedded Systems

✦

1 INTRODUCTION

U NLIKE the general trend in general-purpose computing sys-
tems, whose main focus is solely optimizing the average

performance, real-time systems are also mandated to achieve
timing predictability by guaranteeing that each task’s worst-case
execution time (WCET) does not exceed a designated deadline.
Moreover, with the increasing complexity of multi-core real-time
systems, it is often desirable to achieve timing compositionality
such that the system can be decomposed into components and the
timing behaviour of the whole system can be feasibly inferred
from the timing analysis of these components [1]. Composition-
ality, therefore, facilitates the reasoning about the system’s timing
properties; and hence, enables system’s certification, which is key
for domains such as automotive and avionics [2]. Compositionality
also enables the adoption of incremental design by allowing the
integration of new components without the need to re-analyze (and
hence, recertify) the old components. Incremental design is widely
used in avionics through integrated modular avionics (IMA) [3].

Despite this large volume of research towards proposing pre-
dictable system components for real-time systems, one demand
from the aforementioned applications is yet to be efficiently
addressed: allowing seamless, predictable, and high performance
data sharing among different running tasks. Unfortunately, most
prior works in real-time systems do not meet this demand. They
either assume tasks are not sharing data or prohibit data sharing
by design [4]. This is mainly because data sharing is problematic
and can lead to significant interference delays [5], [6] or even
unpredictable behaviors [7] if it is not carefully addressed.

On the other hand, researchers have already realized the
importance of enabling data sharing in the context of real-time
systems [4], [6], [7], [8]. The common approach followed by
these works is to allow data to be shared among tasks but prevent

• M. Hassan is with the Department of Electrical and Computer Engineer-
ing, McMaster University, ON, Canada.
E-mail: mohamed.hassan@mcmaster.ca

tasks from simultaneously accessing this shared data in an attempt
to accommodate for the data sharing demand, while ensuring
system predictability. As a result, large interference delays due to
this simultaneous access are avoided altogether. This is achieved
by either modifying the task-to-core mapping [4], data-aware
scheduling [6], [8], or bypassing caches [4], [5]. The main draw-
back of such approach is that by disallowing simultaneous access
to shared data, it can severely deteriorate the system performance.
To improve system performance and enable simultaneous access
to shared data, [7], [9], [10] propose predictable cache coherence
protocols. The problem with these protocols is that 1) they require
complex changes to cache controllers and coherence protocols,
which are well-known to be hard-to-verify [11]; 2) more impor-
tantly, they result in a significant increase in the worst-case latency
(WCL) upon accessing memory due to coherence interference; and
3) they couple coherence with the specifications of the underlying
interconnect arbitration scheme, and therefore, the derived bounds
are not applicable outside the assumed arbiters in these works.
This hinders time-compositionality since the system components
of bus arbiters and coherence protocols cannot be designed or
analyzed independently.

In this paper, we propose DISCO: a discriminative coherence
solution that addresses the aforementioned drawbacks. Towards
this target, in our preliminary step of this work [12], we ex-
haustively studied all possible access scenarios under coherence
protocols to distill the main sources of their large coherence
delays. As a result of our study we make the following important
observation. Significant coherence interference delays that arise
from the worst-case scenarios are exclusively due to cache lines
being modified in the private caches without an immediate update
to the shared cache. The other key observation that DISCO is
based on is that the number of memory writes usually represents
a small percentage of the total memory requests of applications.
We discuss these two observations in details in Section 5. Based
on these two observations, we proposed DISCO to prohibit the

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

caching of modified data in the cores’ private caches. All data
modifications are carried out at the shared cache. In other words,
DISCO intentionally discriminates against write memory requests
by forcing them to access the shared cache even if data already
exists in the requesting core’s private cache. In contrast, read
requests are allowed to hit in private caches if their data exists;
therefore, reads are managed exactly as in traditional coherence
approaches deployed in commodity systems. Since all writes are
treated equally, we call this version of the proposed solution,
DISCO-AllW. To further improve the system performance, we also
proposed another version of our solution that we call DISCO-
SharedW. DISCO-SharedW leverages information about tasks’
data (namely, whether data is shared or private). DISCO-SharedW
relaxes the constraint of DISCO-AllW by allowing private data to
be modified in the private caches. It allows both read and write hits
to the private data that is not shared among tasks since it causes no
coherence interference. Both DISCO-AllW and DISCO-SharedW
can be either implemented as a hardware cache coherence protocol
(Section 6) or realized in commodity platforms using already
available support on these platforms as we discuss in Section 6.4.

However, the preliminary version of this work in [12] faces
two limitations. 1) It only assumed a multi-core system with time
division multiplexing (TDM) arbitration, and hence, the analysis
is also only applicable to TDM-based buses. 2) It only considered
the simple Modified-Shared-Invalid (MSI) protocol. To address
these limitations, this paper makes the following contributions. 1)
We show that one of the main advantages of DISCO compared
to the existing works is that it achieves time-compositionality
by decoupling the timing behavior of cache coherence and bus
arbitration. DISCO achieves predictable and coherent data shar-
ing that independent of the details of the underlying arbitration
scheme. Thus, the delay components of each can be added in
a compositional fashion [1] as we discuss in Section 7. 2) To
emphasis this advantage, we show the operation of DISCO with
a wide set of bus arbiters. Namely, in addition to the TDM
arbitration covered in [12], we consider: Round Robin (RR), First-
Come First-Serve (FCFS), weighted RR (WRR), and Harmonic
schedulers. We also present the timing analysis these arbiters and
for DISCO-AllW and DISCO-SharedW (Sections 6.3 and 7). It
is important to note that these arbiters are shown as an example.
The analysis in Section 7 abstracts the latency terms resulting
from arbitration such that the WCL of any new arbiter can be
directly plugged into the analysis thanks to composability. 3) In
addition, we extend the approach at the cache coherence protocol
level by applying it to the Modified-Exclusive-Shared-Invalid
(MESI) protocol. MESI is adopted by several commercial-of-the-
shelf (COTS) multi-core platforms targeting embedded systems.
An example is the NXP’s T4080 [13] with its four E6500
cores, which found an adoption in the avionics domain [14].
Another example is the ARM’s advanced micro controller bus
architecture (AMBA) with its coherent hub interface (CHI). 4) We
conduct extensive experiments to evaluate each of the proposed
approaches, arbiters, and coherence protocols. We also compare
against two state-of-the-art competitive solutions: PMSI coherence
protocol [7] and cache bypassing [5], [15]. Our evaluation uses
both the SPLASH-3 [16] parallel data-sharing benchmarks as
well as synthetic experiments that are based on the EEMBC-
Auto benchmarks [17]. Results in Section 8 show the notorious
improvements that DISCO-AllW and DISCO-SharedW achieve
compared to both PMSI and cache bypassing. We summarize
these results in Table 1. Compared to [12], experiments to evaluate

TABLE 1: Summary of DISCO improvements over state-of-the-
art competitive approaches.

Per-request WCL Total WCL Avg. Performance
PMSI Bypass PMSI Bypass PMSI Bypass

analytical up to avg. up to avg. up to avg. up to avg.
DISCO-AllW 7.2× same 3.3× 2× 65% 42% 100% 12% 2.8× 1.5×

DISCO-SharedW 7.2× same 6× 3.5× 3.8× 1.5× 3.2× 1.6× 11.4× 5.3×

DISCO using the MESI protocol as well as an extensive study of
DISCO integration with different arbiters are included.

2 RELATED WORK

Recently, researchers recognized the importance of data sharing
in multi-core real-time systems and proposed solutions to handle
it [4], [5], [6], [7], [8], [9], [10]. We classify these works into
three groups according to their research direction: 1) data-aware
scheduling, 2) cache bypassing, and 3) cache coherence protocols.

1) Data-aware scheduling. The first direction incorporates
data-awareness in the task scheduling to avoid data interference.
This is achieved by one of the following means: 1.1) scheduling
tasks with shared data such that they never run in parallel [8];
hence, they do not compete for shared data; 1.2) assigning tasks
with shared data to the same core [4]; hence, they share the
same private cache(s) and do not suffer coherence interference
from each other; or 1.3) incorporating run-time performance
metrics collected through hardware counters to make data-wise
scheduling decisions that mitigate the data sharing effects [6].
This direction enforces new constraints on the system scheduler
interference, which deteriorates system schedulability [9]. Unlike
these solutions, DISCO does not require any modifications to the
system scheduler and coherently handles data sharing in hardware.

2) Cache bypassing. A second alternative is cache bypassing,
which was first utilized in the context of reducing the shared
cache conflict interference [18] but is then used to avoid coher-
ence interference of shared data [4], [5]. If private caches are
bypassed, coherence interference is eliminated, but at the expense
of degrading average-case performance.

3) Cache coherence. The third direction is to make data
sharing transparent to the application and the scheduler by han-
dling it completely in hardware either by proposing predictable
cache coherence protocols [7], [9], [10], [19], [20] or analyzing
coherence protocols in existing commercial-of-the-shelf (COTS)
embedded platforms [21], [22]. Cache coherence is notoriously
the main solution adopted by COTS multi-core architectures [23].
It has the advantage of enabling data sharing without imposing
any restrictions on the real-time scheduler compared to data-aware
scheduling solutions. It is also shown to provide high average-
case performance compared to both data-aware scheduling and
cache bypassing [7], [9]. On the other hand, it suffers a notably
high worst-case memory latency due to the introduced coherence
interference. For instance, PMSI [7] and CARP [10] have a worst-
case latency that is quadratic in the number of cores in the system.
We discuss both cache bypassing and cache coherence in more
details in Section 5 since they are the most related to this work.

3 SYSTEM MODEL

We assume a multi-core architecture, where tasks running on this
architecture can share data. The proposed solution does not depend
on the core architecture and can be seamlessly deployed for in-
order or out-of-order cores.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Memory Hierarchy. Each core has its own private cache(s)
and all cores share a last-level cache (LLC) accessed through
a shared bus. Data coherence is maintained using a hardware
cache coherence protocol. Unlike the preliminary version [12]
that focuses only on the MSI protocol, we show that DISCO is
independent of the coherence protocol details and hence can work
with other more sophisticated protocols. To exemplify, we show
the operation of DISCO with the MESI protocol. Cores can also
share an off-chip memory, whose interference can be bounded
using existing solutions orthogonal to this work [24]. Since the
focus of the paper is on cache coherence interference, we avoid
DRAM interference by assuming a perfect LLC such that all
requests hit into the LLC and do not visit the DRAM. This is
necessary to asses the validity of the analytically driven bounds in
Section 7. Our bounds and DRAM latency bounds driven by the
aforementioned orthogonal works can then be used to compose
the total WCETs of tasks [25]. Moreover, such assumption also
follows prior related works (e.g. [10], [20], [21]).

Bus Arbitration. Requests that miss in the private cache has
to be fetched from the LLC through a shared bus. Since multiple
requests from different cores can simultaneously require access to
the shared bus, a bus arbiter is a must to resolve this contention.
Compared to [12], which focuses solely on TDM arbitration, we
cover a wide variety of arbiters including RR, WRR, FCFS, and
harmonic arbitration. For all arbiters, we assume that once a
request is granted access to the bus by the arbiter, it consumes
LLCacc to finish accessing the LLC and transfer the data on the
bus to the requesting core.

Task Scheduling. We do not make any assumption on how the
executing tasks are scheduled on cores. The proposed approach is
orthogonal to task scheduling and should operate in tandem with
any schedule.

4 CACHE COHERENCE BACKGROUND

When multiple cores accessing the same data, the system has
to maintain data correctness. Data correctness is achieved when
all cores have access to the most up-to-date data. On the other
hand, data incorrectness occurs when a core accesses a stale data
that has been already changed in another location in the system
(e.g. another core’s cache). Modern multi-core systems deploy
cache coherence protocols to prevent such situation and preserve
data correctness. MSI is considered the baseline coherence proto-
col [11], where many of the commercial-off-the-shelf architectures
adopt protocols that inherit its three fundamental states: Modified
(M), Shared (S), and Invalid (I) such as the MESIF protocol
deployed in Intel’s i7 and the MOESI protocol deployed in AMD’s
Opteron. Therefore, we use it as a mean to explain the basics of a
coherence protocol.

If a cache line does not exist in the private cache or its data is
stale, its state will be I . The S state indicates that the data of this
cache line is valid and is not modified, while the M state indicates
that the data of this cache line is valid and modified. Therefore,
multiple cores can share a cache line in their private cache in the
S state, while only one core can have a cache line in the M state.
All other cores in this case will have this line in the I state. If
a core has a load/read request to a cache line in the I state, the
private cache controller of this core (or for simplicity we refer to
this throughout the paper as just the core) issues a GetS coherence
message on the bus to inform all other cores and the shared cache
about this request. Once the core receives the requested data, it

moves to the S state. Similarly, if a core has a write request to
a cache line in the I state, it issues a GetM message on the
bus and moves to the M state once data is received. The core is
not required to take any action upon observing messages of other
cores to a cache line that it has in the I state. Read requests to a
cache line in the S state are hits and no message is broadcasted
on the bus. In contrast, write requests to a cache line in the S
state has to broadcast an Upg message on the bus to ask other
cores to invalidate their local copies in their private caches since
it is going to modify it. A core takes no action upon receiving an
OtherGetS from another core to a line that it has in the S state
since multiple cores can simultaneously read the same cache line.
Read and write requests to a cache line in the M state are hits
and no message is broadcasted on the bus. If the core observes an
OtherGetS from another core requesting to read a cache line that
it has in the M state, it sends the modified data to the requesting
core and/or the shared memory and moves to the S state.

The Exclusive State. A commonly deployed optimization is
to add the Exclusive (E) state to the coherence protocol consti-
tuting the MESI protocol. MESI is adopted by several COTS
architectures targeting embedded systems such as the the NXP’s
T4080 [13] and the ARM’s CHI. The semantic meaning of this
state is as follows. If a cache line is in the E state, then it is
valid, non-modified, and exclusive (i.e. not cached by another
core). Two main advantages of the E state are as follows. 1) A
core that has a store request for a cache line in the E state, does
not need to wait for other cores to invalidate. Indeed, E carries
the information that no other core has the cache line in its private
cache. 2) In architectures where direct data transfer between cores’
private caches is enabled, a core with a cache line in the E state can
send this data directly to the requesting core. As a result, MESI
protocol offers in general a better performance compared to MSI.

Since one of the main aspects of DISCO is that it provides
predictability independent of the underlying protocol details, we
apply DISCO for both the MSI and MESI protocols as examples.

5 MOTIVATION

5.1 Performance Gains of Cache Coherence
Deploying cache coherence to orchestrate accesses to share data

in real-time systems provides high performance gains compared to
other approaches such as shared-data aware scheduling and private
cache bypassing [7], [20]. In Figure 1, we show the execution
time of both PMSI [7] and bypassing private caches entirely (or
simply bypassing1). The applications used in this experiment are
from the SPLASH3 benchmark suite [16], and the experimental
setup is discussed in details in Section 8. As Figure 1 illustrates,
PMSI outperforms bypassing for all benchmarks. Performance
improvements reach up to 3.7× (barnes) and 7× (radiosity) with a
geometric mean performance improvement across all benchmarks
of 2×. This clearly represents promising results that motivate us
to investigate cache coherence in the context of real-time systems.

5.2 Per-Request WCL
Despite its average-case performance gains, existing predictable
cache coherence solutions suffer from large worst-case delays due
to the introduced coherence interference [7], [10]. For instance,

1. Bypassing throughout this paper refers to skipping the access to the
private cache and access directly the shared cache.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

0
500

1000
1500
2000
2500
3000
3500
4000

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

PMSI ByPassAll

Fig. 1: Execution time.

TABLE 2: Worst-case latency components of private cache by-
passing and PMSI techniques.

Latency Component Bypassing PMSI
Arbitration Latency N · LLCacc N · LLCacc

Coherence Latency 0 N · (2 ·N + 1) · LLCacc

Access Latency LLCacc LLCacc

with bypassing, all cores pay the price of a shared cache access
delay once granted access to the bus by the arbiter, regardless of
the access pattern of other cores. This results in an access latency
of one TDM slot, which we denoted as LLCacc in Section 3 with
no coherence latency at all. In addition to this access latency,
for a system with N cores and a fair TDM arbiter, a request
can suffer an arbitration latency up to one full TDM period or
ArbLWC,TDM = N ·LLCacc. Table 2 summarizes these worst-
case values. This is notably lower than the worst-case scenario
under PMSI, where all cores compete to simultaneously access
the same shared cache line. As Table 2 illustrates, in addition
to the access latency and arbitration latency that is the same
as those of bypassing, a memory request under PMSI suffers
from a significant worst-case coherence latency. The value of this
latency directly follows from [7]. From Table 2, total WCL of both
bypassing and PMSI can be calculated as follows.

WCLPMSI
perReq = 2·N2 ·LLCacc+2·N ·LLCacc+LLCacc (1)

WCLByPass
perReq = N · LLCacc + LLCacc (2)

Figure 2a delineates this per-request WCL across different
number of cores, which shows the significant gap between WCLs
of cache coherent solution (PMSI) and bypassing solution due to
coherence interference.

5.3 Time Compositionality

From Table 2 and Equation 1, we can rewrite the worst-case
coherence as a function in arbitration latency as follows:

WCLPMSI,Coh
perReq = (2 ·N + 1) ·ArbLWC,TDM (3)

This shows a coupling between the coherence and arbitration
delays, where the coherence timing behavior is a function of the
arbitration mechanism. This is not limited to PMSI but is also
applicable to Other predictable protocols have similar dependency
on the assumed arbitration such as CARP [10] and PISCOT [19].
It is also worth noting that if the TDM scheme is to be replaced
by another arbiter, it is not necessarily that the only effect is to
substitute the value of ArbLWC,TDM in Equation 3. The deriva-
tion itself, as indicated in these works is fundamentally dependent
on the assumed arbitration policy and hence the relationship in
Equation 3 will likely change as well. This clearly breaks timing
compositionality of coherence since coherence timing behavior
cannot be decomposed, studied and assessed in isolation of the
arbitration, which is a requirement to achieve compositionality [1].

0

2000

4000

6000

8000

0 2 4 6 8

Pe
r R

eq
ue

st
 W

CL
 [c

yc
]

Number of Cores

PMSI
ByPass

(a) Per-request WCL across different
number of cores.

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Ef
fe

ct
iv

e
W

CL
 [c

yc
]

% of Shared Data

PMSI
ByPass

(b) Effective WCL for various per-
centage of shared data.

Fig. 2: Per-request WCLs (Equations 1 and 2) and effective WCLs
(Equation 6).

Req
arrives at
private
cache

controller

R or
W?

Hit, perform LD

is
su

e
re

q

modifie
d by

others?
Other
core
WB

Req/WB
slot?

perform
WB

get Data,
perform
LD/ST

R or
W?

Invalidate
all others

R

W

Hit Req slot

No

Modified
?

yes

Hit or
Miss?

Hit or
Miss?

Hit

Hit, perform ST

Wait for
slot

issue req

Modified/
requested By

Others?

1

2

3
No

W
B

 s
lo

t

4

5

6

7 yesWait for
slotHit or

Miss? Wait for
slot

Wait for
WB

Fig. 3: PMSI flow diagram.

5.4 Total task’s WCL
To bound the task’s total Worst-Case Execution Time (WCET),
the cumulative WCL over all requests generated by the task under
analysis has to be computed. Towards this target, we are interested
in calculating the total memory WCL suffered by the total number
of memory requests generated by a core during a period of time t,
M(t) or simply M 2.

For bypassing, it is straightforward since all requests are
serviced from the shared memory, every request can suffer the
same WCL that is indicated in Equation 2. Therefore, the total
WCL for by passing is computed as:

WCLBypass
tot = M ·WCLBypass

perReq = M ·LLCacc ·(N+1) (4)

For PMSI, it is more involved since requests to private (non-
shared) cache lines need to be differently handled compared to
requests to shared cache lines as the former will not suffer from
coherence interference. Considering a partitioned cache hierarchy,
where private and shared data are located in separate set such
that shared data will not cause any conflict interference to private
data, it is safe to assume that the access pattern (private hits and
misses) to private cache lines (those not shared with other cores)
can be analyzed in isolation and remains the same when the core
suffers interference from other N−1 cores. Additionally, with this
partitioning, from the task’s analysis in isolation (either statically
or experimentally), one can compute the number of requests to
private cache lines (let it be Mprivate), and the number of requests
to shared cache lines (Mshared) by examining the addresses of
memory requests. Moreover, accesses to private cache lines can
be further classified into hits and misses to the private cache,
which we denote as Mprivate

hits and Mprivate
misses , respectively. Unlike

Mprivate, it is not possible to statically determine the hits or
misses to the shared cache lines since this depends on the access
behavior of other cores during run time, which can also access
these shared lines. Therefore, the WCL has to be assumed for
all accesses to shared lines. Assume the access latency to the
core’s private cache is Lacc

priv and recall that the WCL to access a

2. For readability, we drop the usage of t from the remainder of the paper.
For instance, we use W instead of W (t) to refer to the number of total writes
generated by a core during time t.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Rx(A) WB(A) RX(A) WB(A) RX(A)

St(A)
50 40

50 4050 40 3040 30

St(A)
40 30

St(A)
30 20

C0’s coherence interference C1’s coherence interference

C0: St(A)
C1: St(A)
C2: St(A)

Shared Cache

Arbitration Schedule

Fig. 4: Coherence interference in case of writes for PMSI. C2 is
the core under analysis and it has to wait for both C0 and C1
before it gains access to block A.

0%
20%
40%
60%
80%

100%

private W% shared W% private R% shared R %

Fig. 5: Breakdown of Splash benchmark memory requests.

shared cache line (which includes coherence interference if exists)
is WCLPMSI

perReq as calculated by Equation 1. Accordingly, the
cumulative total worst-case memory latency suffered by the task,
WCLtot, can be computed as:

WCLPMSI
tot = Mprivate

hits · Lacc
priv +Mprivate

misses · (N + 1) · LLCacc

+Mshared ·WCLPMSI
perReq (5)

Dividing Equation 5 by the total number of task requests, we get
the effective WCL of a single request (WCLeff) as in Equation 6,
which can be considered as the average WCL suffered by a single
request to the cache.

WCLeff = %Mprivate
hits · Lacc

priv +%Mprivate
misses · (N + 1) · LLCacc

+%Mshared ·WCLPMSI
perReq (6)

To visualize this effect, Figure 2b plots the effective WCL
for both bypass and PMSI for different percentage of accesses
to shared data. Figure 2b shows that with increased percentage
of shared data accesses, the gap between PMSI and bypass
significantly increases. The reason for this behavior is that since
the WCLshared

perReq of PMSI (Equation 1) is much larger than that of
bypass (Equation 2), increasing shared data accesses, this latency
component will dominate the total WCL.

5.5 Distilling Coherence Effects on WCL

Now, our target is to reduce this high WCL resulting from
cache interference. In doing so, we study carefully the effect of
coherence across all access scenarios. We find that the high WCL
is resulting from a pathological scenario and does not apply to all
cases even for accesses to shared lines. This is a key observation
and one of the main contributions of this paper; therefore, this
subsection will discuss it in detail. We study all possible access
scenarios in the existence of coherence, and plot these scenarios
in Figure 3. Figure 3 follows the design guidelines of PMSI [7].

Hit Scenario. In case of a read hit (shown as event 1 in
Figure 3) or a write hit to an already modified cache line in
the private cache (at 2), the core proceeds with the load/store
instruction without any arbitration or coherence delays. On the
other hand, if the request is a write hit to a non-modified cache
line (at 3), the core has to wait for a slot to access the shared bus

as writes require to exchange coherence messages to invalidate
copies of this line in all other private caches.

Miss Scenario. If the request is not available in the core’s
private cache, the core has to wait for its slot to issue this request
on the shared bus. Once the core is granted a slot, it issues the
request (4 in Figure 3 in case of a read, and 5 for a write). If the
requested cache line is not modified in another core’s private cache
and no write requests are pending to this line, the core receives the
data from the shared memory in the same slot and proceed to finish
the load/store instruction. This is the scenario highlighted as 6 in
Figure 3. On the other hand, if one of these two conditions is not
satisfied, the core has to wait for all pending writes (if exist) to
same line to finish first and the data to be updated in the shared
memory (through a write back by another core) before it can obtain
the requested line in its private cache. This is the scenario at 7 in
Figure 3. As Figure 3 illustrates, the scenario at 7 is the one that
triggers coherence interference and causes the largest delays.

Worst-Case Scenario. Based on this discussion, the patholog-
ical worst-case scenario is to assume that all cores in the system
simultaneously ask to modify the same cache line. Accordingly,
the request under analysis in the worst case has to wait for all other
cores, where each core performs its access to obtain the cache line
in its private cache, modifies it (performs the store instruction), and
writes the new data back to the shared memory. This requires two
memory transfers per each core of the other N − 1 cores before
the core under analysis is able to proceed with its access. Figure 4
depicts this scenario for a system with three cores, where the core
under analysis is C2 and it has to wait for store requests from the
other two cores before it can issue its own request. Under TDM
scheduling, each transfer can wait for a complete TDM period
(arbitration effects) before it can gain access to bus, where a TDM
period is a function of N . This explains the quadratic effect of
coherence interference on WCL.

Bypassing avoids this scenario by directly accessing the shared
memory for every memory request, which eliminates the need
for write backs, and hence, the coherence interference. However,
this comes at the expense of not utilizing the private caches at
all making every request suffering the large shared cache access
time. This explains the performance degradation of bypassing
compared to PMSI as discussed in 5.1. In contrast, we observe
that the explained scenario can be avoided if only writes are made
visible instantaneously to the shared memory, while reads do not
cause any additional coherence interference. In Figure 4, if cores
write directly to the shared memory, the resulting effect will be
completely equivalent to bypassing independent of how reads are
handled. The other important observation is that writes represent
usually a small percentage of applications. Our analysis shows
that across the SPLASH3 suite, writes represent on average 30%
of the memory requests of the application as Figure 5 illustrates.
The same observation holds for other benchmarks as well. For
instance, we find that the PARSEC benchmark [26] suite and the
EEMBC-auto [17] suite have on average 21% and 32% writes
per application, respectively. We find the same observation proves
true across the different SPEC benchmark suites (int and fp) and
versions (2006 and 2017) as shown in [27].

6 PROPOSED SOLUTION

Motivated by the observations we made in Section 5, we propose
DISCO: a time-compositional discriminative coherence approach.
The contributions of DISCO are three-fold. 1) It eliminates by

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

design the worst-case scenarios covered in the previous section,
and therefore, avoid its significant coherence delays. 2) It still
maintains a high average-case performance by employing co-
herence and enabling simultaneous access to shared data. 3) It
decouples the timing behavior of cache coherence and bus arbitra-
tion. Therefore, it enables time-composability in data-coherence
real-time systems. This is achieved by providing time bounds
of coherence interference that are independent of the details of
the underlying bus arbitration policy. These three objectives are
achieved by intentionally discriminating write memory requests
by forcing them to update the shared memory immediately with
any write (new) data from any core. This significantly simplifies
the coherence protocol as it eliminates all the transient states
needed because of data being updated privately by other cores
such as in conventional protocols including MSI and MESI [11]
or in predictable ones such as PMSI [7]. It is worth noting that
MSI has 18 transient states and MESI has 20+ states. This
originally created the uncertainties in the execution behavior,
which either led to the unpredictable behavior of MSI and MESI
protocols or with extremely pessimistic latency bounds for their
predictable versions [20]. Figure 6 shows the simplifications that
DISCO introduces to MSI and MESI protocols. Figure 6(a)/(c)
is the original MSI/MESI protocol, while Figure 6(b)/(d) shows
the effective protocol that MSI/MESI reduces to under DISCO.
For readability, Figures 6(a) and 6(c) abstracts all the transient
states between the stable states. It is worth noting that there
are two different ways to realize DISCO, either by 1) realizing
this simplified protocol in hardware, or 2) achieving the write
bypass in already existing platforms through available support in
these platforms. For now, we will detail the operation of DISCO,
while we explain the required support in existing architectures
that can allow for the realization of DISCO without redesigning
the coherence protocol in Section 6.4. As Figures 6(b) and 6(d)
illustrate, the M state is completely obsoleted since no core will
have a cache line modified in its private cache without updating the
shared cache. In addition, all transient states are also obsoleted. In
other words, those states will never be visited under the operation
of DISCO. This as shown as shaded states in the figures and
corresponding transitions are dashed.

In addition to voiding certain states and transitions, DISCO
effectively results in new transitions. These are shown in black in
Figures 6(b) and (d) and are explained next. 1) If the request is a
write to a line in the I state, it modifies this line directly into the
shared cache and it does not allocate it to the private cache. Hence,
it remains in the I state. Although allocating the cache line in the
private cache might improve average performance by potentially
allowing future read hits to this line, it requires an additional data
transfer from the shared cache to the core, which increases the
WCL. In particular, the slot width of the shared bus arbiter has
to accommodate for two memory transfers instead of one. As a
result, we choose not to allocate the line in this case to improve
WCL. As explained in Section 4, a core with a cache line in the
I state makes no change to its state as a response to events on
this line by other cores. 2) If the core has a write request to a line
that is in the S or E state, it has to issue a GetM message on
the bus to invalidate copies of this line in all other private caches
and perform the write to its private cache as well as to the shared
cache to keep it updated.

Leveraging these effective simplifications of the underlying
coherence protocol, DISCO eliminates the large coherence delays
due to write requests that modify data in private caches of cores

while not being reflected on the shared memory. In other words,
the long path in Figure 3 due to the modified/requested by
others condition (the scenario at 7) is eliminated since this
condition will be always false (no cache line will be modified in a
core’s private cache). Figure 7 illustrates the operation of DISCO.
Since all writes are handled equally, we denote this approach as
DISCO-AllW.

6.1 DISCO-AllW: Discriminative Coherence for All
Cache Lines
A request to a cache line can be classified according to three
factors.
1) Request type. With regard to the the instruction type, a request

can be either a read (e.g. from a load instruction), or a write
(e.g. from a store instruction).

2) Data type. This is related to the nature of the data stored in this
cache line, it can be one of two possibilities: a private cache
line (only accessed by the current task), or a shared cache line
across tasks.

3) Line state. Finally, a request can be either a hit if the requested
data exists (and is valid) in the private cache of the requesting
core or a miss otherwise.

This results in a total of eight possibilities for any such request.
DISCO-AllW operates on these cases based on four rules:

Rule 1. Operating Rules of DISCO-AllW.
(A) It does not distinguish between shared and private lines, both

are treated equally.
(B) It treats all writes equally by sending them to the shared

cache.
(C) Read hits are allowed and can proceed without requesting an

access to the shared bus.
(D) Read misses have to wait for an access to the shared bus to

obtain data from the shared cache.

Based on these rules, the aforementioned eight cases are
reduced to only three scenarios under DISCO-AllW as illustrated
in Figure 7a. Figure 8b depicts a flow chart for the operation of
DISCO-AllW in all these three scenarios.
1) Scenario 1 : A Read Hit in the Private Cache. Read hits are

allowed immediately in the private caches and operate similar
to traditional coherence protocols. This is because they do not
require an access to the shared bus and do not result in any
modification in the coherence state of the requested cache line.

2) Scenario 2 : A Read Miss in the Private Cache. If the
requested line is a read miss in the private cache, it has to be
requested from the shared memory. Thus, the core has to wait
for its slot and then issue its request on the shared bus. Since all
writes are reflected immediately in the shared cache, the shared
cache will always have the up-to-date data. Accordingly, the
core will receive its requested line in the same slot and perform
its load operation.

3) Scenario 3 : A Write Request. As Figure 8b shows, any write
request has to wait for an access slot to the shared bus to update
the shared cache with the new data. In addition, all copies of
the requested cache line in other cores’ private caches have to
be invalidated (since it is now outdated).

6.2 DISCO-SharedW: Discriminative Coherence for
Shared Lines Only
DISCO-AllW operation does not make any assumption about the
cache lines; in particular, it does not rely on the knowledge of

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

M

S

I

ST/OwnGetM

OtherGetM or
OwnPutM

LD/issue GetS

OtherGetM

ST
/O

w
n

G
e

tM

LD/Hit

LD or ST/Hit

OtherGetS

M/I

transient

states

S/I

transient

states

S/M

transient

states

M

S

IE

ST/OwnGetM

OtherGetM
Or OwnPutM

ST
/S

ile
n

t

OtherGetS LD/issue GetS
 (Mem not in I)

LD/issue GetS
 (Mem in I)

OtherGetM

OtherGetM

ST
/O

w
n

G
et

M

OtherGetM or
OtherGetS

LD/Hit

LD/Hit

LD or ST/Hit

OtherGetS

O
th

er
G

et
S/

U
p

da
te

M
em

M/I

transient

states

S/I

transient

states

S/I

transient

states

OtherGetM or
OtherGetS

S

I

LD/Issue GetS

OtherGetM

OtherGetM or
OtherGetS

LD/Hit
OtherGetS

ST/IssueGetM
& UpdateMem

ST/IssueGetM
& UpdateMem

S

IE

OtherGetS LD/Issue GetS
 (Mem not in I)

LD/Issue GetS
 (Mem in I)

OtherGetM

OtherGetM

OtherGetM or
OtherGetSLD/Hit

LD/Hit OtherGetS

ST/IssueGetM
& UpdateMem

ST/IssueGetM
& UpdateMem

ST/IssueGetM
& UpdateMem

(c) Original MESI protocol

(a) Original MSI protocol (b) Effective simplified MSI with DISCO

(d) Effective simplified MESI protocol with DISCO

Fig. 6: Proposed DISCO coherence approach.

Req type

WriteRead

Data type

PrivateShared

Data type

PrivateShared

Line state

MissHit

Line state

MissHit

3Scenario 1 2Scenario Scenario

(a) Different access scenarios.

Req arrives
at private

cache
controller

R or W?

Hit, perform LD

Wait for slot
Write to
shared
cache

Invalidate
all others

R

W

Hit or
Miss?

Hit

Wait for slot issue req

issue req

get Data,
perform

LD

1

2Miss

3

(b) Flowchart of operations.

Fig. 7: Proposed DISCO-AllW coherence approach.

Req type

WriteRead

Data type

SharedPrivate

Data type

PrivateShared

Line state

MissHit

Line state

MissHit

31 2

Line state

MissHit

54Scenario Scenario Scenario Scenario Scenario

(a) Different access scenarios.

Req arrives
at private

cache
controller

R or W?

Hit, perform LD

Wait for slot

get Data,
perform

LD/ST

R

W

Hit or
Miss?

Hit

Wait for slot issue req

issue req

Private?

Write to
shared
cache

get Data,
perform LD

Invalidate
all others

Hit or
Miss?

Hit, perform ST

Wait for slot
private

Hit

sh
ar

ed

Miss

Miss

1

2

3

4

5

(b) Flowchart of operations.

Fig. 8: Proposed DISCO-SharedW coherence approach.

which lines are shared, which facilitates its adoption if such
knowledge is not made available during execution. On the other
hand, if such knowledge is available, we can improve the per-
formance of the solution. This can be done by leveraging the
fact that if a line is private for a task (and hence not shared
among tasks), DISCO can safely allow write hits to this line
without worrying about coherence interference. In doing so, we
introduce another alternative to DISCO-AllW that we call DISCO-
SharedW. Figure 9 illustrates the details of DISCO-SharedW,
which operates according to the following rules.

Rule 2. Operating Rules of DISCO-SharedW.
(A) Read hits are allowed to both private and shared lines and

can proceed without requesting an access to the shared bus.
(B) Read misses have to wait for an access to the shared bus to

obtain data from the shared cache.

(C) Write hits are allowed only to private lines that are not shared
with other tasks. Those hits can proceed without requesting
an access to the shared bus.

(D) Write misses to private lines has to wait for an access slot to
the bus since it has to be requested from shared memory.

(E) Writes to shared lines have to go the shared cache.

According to these rules, DISCO-SharedW handles reads
exactly as in DISCO-AllW. On the other hand, writes are handled
differently based on whether they are targeting a private or a
shared cache line. This results in the following five scenarios of
any memory request as depicted in Figure 8a.
1) Scenario 1 : A Read Hit in the Private Cache.
2) Scenario 2 : A Read Miss in the Private Cache. As illus-

trated in Figure 9 (compared to Figure 7), DISCO-SharedW
handles Scenarios 1 and 2 exactly the same as DISCO-AllW.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

ArbL=(N)*LLCacc
LLCacc

getM(A)

C0:I → I

C0: ST A

in Mem

getM(A)

C1: ST A

in Mem

C1: I → I

C0: I

getM(A)

C2: I → I

C2: ST A

in Mem

C1: I
C0: I

(a) Composable (non work-
conserving) TDM.

ArbL=(N)*LLCacc
LLCacc

getM(B)

C0:I → I

C0: ST B

to Mem

getM(A)

C0:I → I

C0: ST A

in Mem

getM(A)

C1: ST A

in Mem

C1: I → I

C0: I

getM(A)

C2: I → I

C2: ST A

in Mem

C1: I
C0: I

(b) TDM.

ArbL=(N-1)*LLCacc
LLCacc

getM(A)

C0:I → I

C0: ST A

in Mem

getM(A)

C1: ST A

in Mem

C1: I → I

C0: I

getM(A)

C2: I → I

C2: ST A

in Mem

C1: I
C0: I

(c) RR.

ArbL=(N-1)*PR*LLCacc LLCacc

getM(A)

C0:I → I

getM(A)getS(A)

C0: ST A

in Mem

C1: I → S

C1: LD A

from Mem

C2: I → I

C2: ST A

in Mem

getM(A)

C1: ST A

in Mem

getM(C)

C0:ST C

in Mem

C0: I C0:I → I

C1: S → S

C0: I
C1: S → I
C0: I

(d) FCFS.

LLCacc

getM(A)

C0:I → I

getM(A)getS(A)

C0: ST A

in Mem

C1: I → S

C1: LD A

from Mem

C2: I → I

C2: ST A

in Mem

getS(B) getM(A)

C0:LD B

from Mem

C1: ST A

in Mem

getM(C)

C0:ST C

in Mem

C0: I C0:I → I

C1: S → S

C0: I C0:I → I
C1: S → I
C0: I C0

Slots
 owners:

C1

C2

(e) WRR.

getM(A)

C0:I → I

getM(A)getS(A)

C0: ST A

in Mem

C1: I → S

C1: LD A

from Mem

C2: I → I

C2: ST A

in Mem

LLCacc

getS(B)getM(A)

C0:LD B

from Mem

C1: ST A

in Mem

getM(C)

C0:ST C

in Mem

C0: I C0:I → I

C1: S → S

C0: I C0:I → I
C1: S → I
C0: I

(f) HRR.

Fig. 9: Worst-case scenarios under different arbitration schemes. Core under analysis is C2.

3) Scenario 3 : A write hit in the private cache for a private
cache line. Write hits to private lines are allowed based on
Rule 2(C) and they execute immediately without the need to
exchange any coherence messages.

4) Scenario 4 : A write miss in the private cache for a private
cache line. Write misses to private cache lines are managed
according to Rule 2(D) and they have to wait for an access slot
to be sent to the shared memory.

5) Scenario 5 : A write to a shared cache line. Write hits
to shared lines are still not allowed so as to avoid the high
coherence delays resulting from it. Therefore, a write request
to a shared cache line has to wait for an access slot to the
shared bus since it has to update the shared cache (Rule 2(E)).

6.3 Bus Arbitration

Unlike state-of-the-art solutions offering predictable co-
herency [7], [9], [10], [19], [20], which are tightly coupled with
a certain bus arbitration policy, DISCO is completely decoupled
from the underlying arbitration scheme and can work seemingly
with any predictable arbiter. To show this aspect, we deploy
DISCO with various commonly used bus arbitration schemes and
show both analytically and experimentally this independence. In
particular, we focus the discussion on five arbitration techniques:
TDM, RR, WRR, HRR, and FCFS. Figure 14 visualizes the
operation of each of these arbiters in the worst-case scenario.
Non work-conserving TDM in Figure 9a assigns a slot to each
core, if the corresponding core does not have a request during
this slot, the slot will remain idle. On the other hand, work-
conserving TDM in Figure 9b will assign idle slots to the next
core with a ready request. Both TDM versions have the same
WCL discussed in Section 5 as also highlighted in the figures. RR
in Figure 9c is more dynamic and it maintains a cyclic list for cores
with ready requests resulting in a request suffering interference in
worst case from N − 1 other requests. For FCFS (Figure 9d) and
assuming out-of-order cores with maximum number of possible
pending requests of PR, a request has to wait in worst case for
PR requests from N − 1 other cores. Figure 9d exemplifies with

PR = 2, and hence a request from C2 has to wait for 4 requests
from other cores in worst case. The WRR in Figure 9e assumes
each core Ci is assigned a number of slots in the period equal
to its weight wi, and therefore, a request from a core j has to
wait for

∑N−1
i=0 wi requests from other cores, where i ̸= j. In

the example in Figure 9e, w is 3, 2, and 1 for cores C0, C1,
and C2, respectively. Hence a request from C2 has to wait for
3 + 2 = 5 requests from cores C0 and C1, respectively in worst
case. Finally, for HRR schedule (Figure 9f with a hyperperiod
HP and wi slots in the period for every core Ci, a request from
core Ci might need to wait in worst case for ⌈HP

wi
⌉ − 1 requests

before it can gain access. For example, in Figure 9f, a request
from C2 waits for 5 slots before it can conduct the data transfer
because HP = 6, and w is 3, 2, and 1 for cores C0, C1, and C2,
respectively. Equations 7–11 dictates the worst-case arbitration
latency resulting from each of these arbiters.

ArbLWC,TDM = N · LLCacc (7)

ArbLWC,RR = (N − 1) · LLCacc (8)

ArbLWC,FCFS = (N − 1) · PR · LLCacc (9)

ArbLWC,WRR
i =

N−1∑
j=0
j ̸=i

wj · LLCacc (10)

ArbLWC,HRR
i =

(
⌈HP

wi
⌉
)
· LLCacc (11)

6.4 Realization
A key advantage of DISCO is that it significantly simplifies the
coherence protocol, while maintaining the average-case benefit
of allowing tasks to simultaneously access coherent data. In this
section we discuss how to realize DISCO. Since DISCO-AllW
and DISCO-SharedW requires different supports, we separate the
discussion on supporting each of the proposed two solutions as
follows.

6.5 Realizing DISCO-AllW

There are different ways to enable DISCO-AllW.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

6.5.1 Pure hardware implementation:
DISCO-AllW notably reduces the complexity of the coherence pro-
tocol as it eliminates all the transient states needed because of data
being updated privately by other cores. Accordingly, this reduces
the coherence protocol to the simple SI (or sometimes referred
to as VI) protocol [11]. So, if a system is to be re-architected,
one way to realize DISCO-AllW to achieve predictable, yet high-
performance, coherence is to deploy the simple SI protocol.

6.5.2 Utilizing support in existing architectures:
Platforms supporting write-through caches natively support
DISCO-AllW since all writes have to update the shared memory.
Modern architectures allows users to configure memory regions
with write-through caching. For instance, ARM allows the user
to switch to write-through caches using a special register named
Cache Behavior Override Register [28]. It is important to notice
that this register controls the core’s private cache only and is inde-
pendent of the shared cache as implemented in the ARM1176JZ-S
processor [28], which is again exactly the same behavior needed
for DISCO. Intel processors also provides various control registers
to support setting caches to different cache types including write-
through [29]; nonetheless, it seems to apply the setting for all
cache levels, which forces writes to be sent to the main memory.

6.6 Realizing DISCO-SharedW

Compared to DISCO-AllW, DISCO-SharedW requires additional
support. This is because it requires to handle shared data (among
cores) and private data (accessed by a single core) differently.
Therefore, the trade-off here is providing better average perfor-
mance at the expense of additional required support. DISCO-
SharedW can be realized as a hardware/software codesign ap-
proach. Task/application developers need to have the ability to tag
certain memory pages/regions as shared or private (or equivalently
for DISCO-SharedW as write-back or write-through). We find
that in many cases, shared data is an artifact of the application
and can be identified statically. Examples of such cases include if
such shared data is a concurrent/shared data structure in a parallel
application [30]. Modern programming languages and operating
systems also enable programmers to identify shared memory
regions. An example is the shmget() and mmap() offered
by Unix-based OSes and can be leveraged in C language. From
embedded systems perspective, we foresee identifying shared data
is also more amenable than in general-purpose systems due to
the nature of the data flow in the system. Taking the automotive
domain as an example, data coming from sensors and cameras
are usually initially preprocessed by the corresponding processors
associated to these sensors/cameras and then shared with other
tasks that need to consume this data (to decide whether an action
needs to be taken), which usually follows the model of a producer-
consumer shared data pattern. In that case, the memory regions
dedicated to this data (Whether in the form of a shared mailbox,
queues, or buffers) can be tagged as shared.

The hardware, hence, need to have the support to configure,
store, and then consume these tagged bits and perform the correct
action: write-back for private data to increase performance, and
write through for shared data to maintain tight latency bounds.
Some modern architectures enable these extra tag bits per page
as part of the Memory Managment Unit (MMU) or Translation
Lookaside Buffer (TLB). The WIMG bits from NXP work as an
example of such bits [31].

Furthermore, to be able to leverage the static cache analysis
(hit vs miss rate) for private data, the latter has to be isolated
from the shared data. Otherwise, shared data can impose additional
misses to private data. Therefore, cache partitioning schemes are
also required if improved task-level bounds are to be desired. More
discussion about this is provided in Section 7.2.

Finally, if there are dynamic shared data that is not possible
to know statically (due to non-trivial dynamic thread spawning or
complex access patterns), in that case, DISCO would have to be
conservative and assume all of this data is shared (to be safe from
the analytical bound perspective).

7 WORST-CASE LATENCY

In this section, we derive both the per-request as well as the total
WCL for a system that deploys DISCO to manage shared data in
its cache hierarchy.

7.1 Per-Request Worst-Case Latency

From the previous discussion, any memory request in either
DISCO-AllW or DISCO-SharedW requires in the worst case only
one memory transfer between the shared cache and the requesting
core. For read requests, the shared cache sends data to the core,
while for writes, the core sends updated data to the shared
cache. Consequently, any memory request suffers only access and
arbitration latencies. The excessive coherence delays discussed in
Section 5 are completely eliminated.

Lemma 1. (Per-Request Worst-case Coherence Latency). A re-
quest from core Ci to a cache hierarchy deploying either versions
of DISCO encounters a latency of at most LLCacc from the time
it is granted access to the bus until it receives its data regardless
of the specifications of the deployed bus arbitration policy.

WCLDISCO
perReq = LLCacc (12)

Proof. The proof directly follows from the fact that under both
versions of DISCO, the requested data for a request that misses
in its private cache is always ready at the shared memory and by
definition the access latency of the shared cache is LLCacc.

Lemma 2. (Total Per-Request Worst-Case Memory Latency).
A request from core Ci to a cache hierarchy deploying either
versions of DISCO encounters a latency that is at most:

WCLperReq = ArbLWC
i +WCLDISCO

perReq (13)

7.2 Total Task’s Worst-Case Memory Latency

Although both DISCO-AllW and DISCO-SharedW have the same
per-request WCL, DISCO-SharedW improves the total WCL
compared to DISCO-AllW. This is because leveraging the distinc-
tion between private and shared lines, a core’s hit rate for private
writes under interference from competing tasks is maintained the
same as it is calculated in isolation. This is true since private
lines by definition are not shared among tasks, and hence, do
not experience interference from requests of tasks running on
other cores. It is important to notice that although DISCO-AllW
assumes that the knowledge of shared vs private lines is not made
available to the hardware online upon execution, we can still use
this information offline to derive the total WCL of the task.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Lemma 3. Total worst case memory latency incurred by any task
under DISCO-AllW can be calculated as:

WCLDISCO-AllW
tot = Rprivate

hits · Lprivate
acc

+ (Rprivate
misses +Rshared +W) ·WCLperReq

(14)

Proof. Based on the discussion of DISCO-AllW in Section 6.1, we
prove Lemma 3 as follows.

Since all writes are treated equally, we denote write requests
as simply W . By design, each one of these W requests has to wait
for the corresponding core’s slot to update the shared cache. Thus,
they suffer the worst case scenario in Lemma 2 and each of them
can have a WCL of WCLperReq .

For the read requests to shared lines, denoted as Rshared: from
Lemma 2, each one of those requests under DISCO-AllW suffers
a WCL of WCLperReq . Finally, since tasks do not interfere on
private cache lines as aforementioned, tasks maintain the same hit
rate calculated in isolation for read requests to these private lines.
Accordingly, the number of read hits and misses to the private
lines remain the same. Each one of the Rprivate

hits encounters a hit
latency of the private cache, Lprivate

acc , while every read miss has
to access the shared cache encountering the scenario of Lemma 2
with a WCL of WCLperReq . This constructs WCLDISCO-AllW

tot

in Equation 14.

Lemma 4. Total worst case memory latency incurred by any task
under DISCO-SharedW can be calculated as:

WCLDISCO-SharedW
tot = Mprivate

hits · Lprivate
acc

+ (Mprivate
misses +Mshared) ·WCLperReq

(15)

Proof. In DISCO-SharedW, requests (whether reads or writes)
to private lines maintain their hit rate calculated in isolation.
This entails any memory request to suffer one of three pos-
sible worst case scenarios as follows. Hits to private lines,
Mprivate

hits = Rprivate
hits +W private

hits , encounter the favorable private
cache hit latency Lprivate

acc . Misses to private lines, Mprivate
misses , still

has to wait for a slot to access the shared cache, and thus, suffers
the WCL of WCLperReq as per Lemma 2. Finally, Requests
to shared lines, Mshared, also suffer the WCL of WCLperReq

since we cannot decide whether they are misses or hits as they
are susceptible to interference from other tasks accessing same
lines. Adding the WCL of these three scenarios lead to the
WCLDISCO-SharedW

tot in Equation 15.

7.3 On the Derivation of the Total WCL
7.3.1 Private and Shared Data
Equations 5, and 14–15, which derive the total WCL for PMSI,
DISCO-AllW, and DISCO-SharedW, respectively, make an im-
plicit assumption. They assume no conflict interference between
shared and private data in the core’s private cache (e.g. L1). As
aforementioned, this can be achieved by partitioning the cache
such that private and shared data are mapped to different memory
spaces (e.g. different sets). Splitting memory address space to
private and shared locations is an already existing approach to
mitigate interference in the cache hierarchy [32]. However, if such
partitioning is not possible, the analysis conducted in isolation to
derive the miss and hit rates of a task’s private data cannot be used.
When running in a contending environment, private cache lines
suffer additional conflict interference from shared data as they can

be evicted because of the access pattern of shared cache lines that
are mapped to the same cache line (under a direct mapped cache)
or same set (under a set-associative cache). Therefore, to derive
a safe bound, all private lines have to be declared misses. In this
case, the total WCL will change to:

WCLDISCO
tot =M ·WCLperReq (16)

Equation 16 can also be used when no information is available
about the requests classification (i.e., misses or hits), and therefore,
all requests have to be assumed misses. Finally, it is important to
highlight that this only affects the calculated analytical total WCL,
and it has no effect on the actual operation of different solutions
during run time. In other words, it does not affect the average-
case performance of DISCO. Per-request WCL also remains as
previously calculated in Equation 13.

7.3.2 Reads and Writes
Another assumption that is made by Equation 14 is that it assumes
the knowledge of the number of read and write requests made by
the task. This information can be obtained from the task analysis
(statically or dynamically) to obtain the number of load and store
instructions [33]. Nonetheless, if such information is not available,
Equation 16 can be used instead. Again, this does not affect the
run-time behavior (and hence, average performance) of DISCO-
AllW. It only affects the tightness of its derived bounds.

7.3.3 Effect of Write-backs in DISCO-SharedW
Since DISCO-SharedW allows write hits to private cache lines,
those lines become dirty: they are modified in the core’s private
cache and are not updated in the shared cache. Hence, those lines
need to be written to the shared memory at some point before they
are evicted from the private cache due to replacement. The analysis
in Section 7 for DISCO-SharedW does not take into account the
effect of the write-back of these lines. Here, we discuss possible
alternatives to account for this additional delay.

1) At the Request Level. In worst case, a miss request to
the private cache initiates a replacement to a dirty cache line.
This dirty line has to be written back to the shared memory
before fetching the newly requested data. Moreover, this write
back has to wait until the requesting core is granted access to the
shared bus. As a result, a miss request encounters an additional
arbitration latency due to this write back of the evicted line.
This adds ArbLWC cycles to the WCLperReq in Equation 13
in case of DISCO-SharedW. However, this delay is unnecessarily
pessimistic since not every request is going to cause a replacement.

2) At the Task Level. Recall that the number of write-backs
are because of writes in the private cache that are not updated
at the shared memory. This number is obtainable for the task
in isolation by using static analysis or experimental means since
private cache is not shared among tasks running on other cores.
We refer to the total number of write-backs initiated by a core
during a period of time t as WB. For instance, a safe, but rather
pessimistic, bound for WB is the total number of issued write
requests to private cache lines during the same period t. This
is true because write backs are initiated only because of dirty
cache lines that are evicted, which in turn is bounded by the
total number of writes to private lines. Shared lines cannot be
dirty under DISCO-SharedW since similar to DISCO-AllW, they
have to be sent directly to the shared memory. As a consequence,
WB = W private is a safe bound. We say that this bound can be
pessimistic, and hence, can be further tightened since a line can

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

be written multiple times before it is evicted. However, obtaining
an accurate value of the maximum number of WB is the concern
of the analysis of the task in isolation, and is outside the scope of
this paper. Lemma 5 calculates the new total WCL under DISCO-
SharedW, while accounting for the delay effect of the write-backs
due to cache replacement.

Lemma 5. Total worst case memory latency incurred by any core
Ci under DISCO-SharedW can be calculated as:

WCLDISCO-SharedW
tot = Mprivate

hits · Lprivate
acc

+ (Mprivate
misses +Mshared) ·WCLperReq

+ArbLWC
i ·WB (17)

Proof. The proof directly follows from Lemma 4, while adding
the last term to account for the write-backs effect. Since each one
of those write-backs requests an access to the shared memory, it is
subject to arbitration interference, which in worst case can result in
a delay of ArbLWC

i . This gives a total delay of ArbLWC
i ·WB,

which is the last term in Equation 17.

It is worth noting that even with adding the write-back delays
to the total WCL, DISCO-SharedW still provides a lower total
WCL compared to DISCO-AllW. Comparing Equation 14 with 17,
this is true for two reasons. 1) WB ≤ W private as previously
explained, and 2) WCLPerReq > ArbLWC .

8 EVALUATION

To quantitatively evaluate the behavior of DISCO and compare
it with state-of-the-art solutions, we simulate the behavior of a
multi-core system with in-order pipelines, 8KB direct-mapped L1
per-core private cache, and a 1MB L2 shared cache across all
cores. Cores are connected to the shared cache using a shared
bus. Accesses to this shared bus are managed using a predictable
arbiter. For a fair comparison with existing works, we use a
TDM arbiter similar to them. In section 8.5, we study the effect
of integrating both DISCO solutions with the different arbiters
discussed in Section 6.3. The access latency of the L1 cache is 2
cycles, while access latency of the L2 is 50 cycles. To eliminate
the large delays of off-chip memory access, similar to existing
solutions [7], [10], we set L2 to be a perfect cache, i.e. all requests
to L2 are hits. As discussed in Section 3, this is necessary to
eliminate the effects of off-chip memory interference on the total
execution time, which are orthogonal to this work. This is key
to enable us to evaluate and scrutinize the analytically driven
bounds in our experiments. Although a prefect LLC will affect
average-performance results, we make the same assumption for
all compared solutions. So, the average performance results should
still be indicative of the trade-offs of different solutions. We deploy
both versions of DISCO: DISCO-AllW and DISCO-SharedW. In
addition, we also implement PMSI [7] and ByPassAll solutions
discussed in Section 5. We use benchmarks from the SPLASH3
multi-threaded benchmark suite [17] as well as the EEMBC-Auto
suite [17]. The simulation environment integrates with the Intel
PIN tools [34] as follows. We run each benchmark through the
PIN tool and collect execution traces that we run through the
environment. For the SPLASH3 benchmarks, we run them using
four threads in four cores (a thread for each core). For the EEMBC
benchmarks, we use them to emulate a synthetic scenario that
stresses the coherence effect. This is done by executing each of
the EEMBC-auto benchmarks through the PINtool and feed the

collected trace to each of the four cores in the environment. Doing
so, all data is shared across all cores, which signifies the coherence
interference.

8.1 Per-Request Worst-Case Latency
Figure 10 delineates the WCL for any request to the cache

hierarchy in a four-core system for both SPLASH3 (Figure 10a)
and EEMBC (Figure 10b). The figure shows both the analytical
WCL bounds (T bars) and the the observed (experimental) WCL
(colored solid bars) for both PMSI and the two versions of
DISCO. From this experiment, we make the following observa-
tions. 1) DISCO reduces the analytical WCL by 7.2× compared
to PMSI. The analytical WCL of PMSI is 2050 cycles compared
to 250 cycles in DISCO. 2) PMSI incurs a large gap between
experimental and analytical WCLs. In the SPLASH3 benchmarks
(Figure 10a), this gap ranges from 70% (barnes and ocean) and
reaches up to 3.4× (cholesky and radix). This is because PMSI’s
analytical WCL assumes a pathological worst-case scenario that
is hard to construct in real applications as explained in Section 5.
Even with the synthetic experiments of EEMBC (Figure 10a),
the gap is more than 45% for most benchmarks. On the other
hand, DISCO’s analytical and experimental WCLs are identical
indicating the bound tightness. DISCO achieves this tightness by
deliberately avoiding the large-latency scenarios created by write
requests in private caches without updating the shared memory.
3) It is worth noting that DISCO achieves the same WCL as
BypassAll solution (not shown in Figure 10), while still allowing
read hits to the private caches, which improves both total WCL
and average performance as we discuss in the next subsections.

8.2 Total WCL
Figure 11 delineates the total WCL of all the evaluated approaches
for the SPLASH-3 benchmarks. To facilitate readability, all results
in Figure 11 are normalized to the total WCL of the ByPassAll
approach. Recall that the total WCL is the worst-case memory
latency that is suffered by a core during a time period t and is
calculated in Equations 4, 5, 14, and 17 for ByPassAll, PMSI,
DISCO-AllW, and DISCO-SharedW, respectively. Figure 11 in-
troduces several interesting observations.

1) PMSI encounters the largest total WCL. This is due to
the quadratic effect of coherence interference as we discussed in
details in Section 5. The normalized PMSI’s total WCL varies per
benchmark based on the percentage of shared data. For instance,
the radix benchmark suffers the maximum value of PMSI’s total
WCL (3.3× ByPassAll’s). Investigating the reason for this, we
found that radix has the maximum percentage of shared data
(around 38%). Accordingly, from Equation 5, the term that suffers
the maximum latency of WCLPMSI

perReq dominates the total WCL.
Interestingly, there are cases where PMSI has a lower total WCL
than ByPassAll. Namely, this is the case for the fft and radiosity
benchmarks in Figure 11. Analyzing both benchmarks, we found
that both benchmarks in contrast to the radix benchmark have the
maximum percentage of private (non-shared) data: 94% and 96%
for fft and radiosity, respectively. This enables PMSI to leverage
hits to this non-shared data, which gives it an advantage over
ByPassAll, which forces all requests to go to the shared memory.
2) Compared to PMSI, DISCO-SharedW achieves up to 6x tighter
total WCL (barnes) and 3.5x on average. DISCO-AllW, on the
other hand, has up to 3.3x tighter total WCL (fmm) and 1.95x
on average. PMSI has a lower total WCL than DISCO-AllW in

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0

500

1000

1500

2000

2500
W

CL
 [c

yc
]

PMSI DISCO-AllW(MSI) DISCO-SharedW(MSI) DISCO-AllW(MESI) DISCO-SharedW(MESI) ByPassShared

(a) Splash3.

0

500

1000

1500

2000

2500

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

W
CL

 [c
yc

]

PMSI DISCO-AllW(MSI) DISCO-SharedW(MSI) DISCO-AllW(MESI) DISCO-SharedW(MESI) ByPassShared

(b) EEMBC.

Fig. 10: Both analytical (T bars) and experimental (solid bars) per-request WCL.

0
0.5

1
1.5

2
2.5

3
3.5

no
rm

al
ize

d
To

ta
l W

CL

PMSI DISCO-AllW(MSI) DISCO-SharedW(MSI) DISCO-AllW(MESI) DISCO-SharedW(MESI) ByPassAll

Fig. 11: Total worst-case latency of Splash3.

0

1000

2000

3000

4000

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

PMSI DISCO-AllW(MSI) DISCO-SharedW(MSI) DISCO-AllW(MESI) DISCO-SharedW(MESI) ByPassAll

13
15

8

14
45

0

13
15

8

Fig. 12: Execution time.

case of fft and radiosity benchmarks for the same reasons as in
observation 1 because DISCO-AllW does not allow write hits. An
extended discussion about the behavior of these two benchmarks
is provided in Section 8.4. 3) Although DISCO-AllW and DISCO-
SharedW offer the same per-request WCL of ByPassAll, both
proposed approaches provide a tighter total WCL than ByPassAll.
The reason for that is that both solutions allow read hits in cores’
L1 caches, while DISCO-SharedW also allows write hits to core’s
private (non-shared) cache lines. This improves the total WCL
since as proved in Lemmas 3-5, those hits will not suffer the
arbitration latency due to contention on the shared bus. This en-
ables DISCO-AllW to provide up to 65% (barnes benchmark) and
42% on average tighter total WCL than ByPassAll. Furthermore,
DISCO-SharedW provides up to 3.8× (radiosity) and 1.5× on
average tighter WCL compared to ByPassAll.

8.3 Average Performance: Execution Time
Figure 12 depicts the overall execution time for SPLASH3 bench-
marks under four different approaches: PMSI, ByPassAll (all
requests access L2), and both versions of DISCO. From this
experiment, we make the following observations. 1) Compared
to ByPassAll, DISCO-AllW improves performance (reduced ex-
ecution time) by up to 2.8× and 1.5× on average. Recall from
Section 8.1 that DISCO achieves same WCL as ByPassAll, this
verifies the ability of DISCO to balance WCL and performance.
2) DISCO-AllW also has a better overall performance compared
to PMSI (up to 100% and 12% better performance on average).

0

20

40

60

80

100

120

Av
er

ag
e

La
te

nc
y

[c
yc

]

PMSI DISCO-AllW(MSI) DISCO-SharedW(MSI) DISCO-AllW(MESI) DISCO-SharedW(MESI)

Fig. 13: Average latency of Splash3.

Nonetheless, PMSI has better performance than DISCO-AllW for
four benchmarks: barnes, fft, radiosity, and water nsquared. We
discuss the reasons behind these results in more details later in
Section 8.4. 4) Figure 12 clearly illustrates the benefits of DISCO-
SharedW. DISCO-SharedW outperforms all other approaches for
all benchmarks: it achieves up to 3.2× and 1.6× on average better
performance than PMSI, more than 11× and 5× on average
better performance than ByPassAll, and 2× on average better
performance than DISCO-AllW. Again, using either version of
DISCO depends on the system capabilities. If the system has
the capabilities (either in software or hardware) that isolates
between shared and unshared data, DISCO-SharedW represents
a promising design choice. Contrarily, if the system is not able to
distinguish shared data, DISCO-AllW is the best available choice.

8.4 Average Performance: Average- Memory Latency
To further study the average-case performance behavior of DISCO
compared to PMSI, we show the average-case memory latency
for SPLASH3 benchmarks in Figure 13. Figure 13 confirms the
same behavior observed in the execution time in Figure 12. 1)
DISCO-AllW outperforms PMSI on average by 18%, while
PMSI achieves better performance for some benchmarks; namely,
barnes, and fft. 2) DISCO-SharedW, on the other hand, consid-
erably outperforms PMSI and achieves up to 12× and 5.8× on
average less average latency. The intuition behind such behavior
of benchmarks where PMSI outperforms DISCO-AllW is that
they exhibit larger number of write hits to private cache lines
compared to other benchmarks. Because DISCO-AllW forces all
writes to access the shared cache, it does not leverage this temporal
locality characteristic of such benchmarks; hence, it incurs worse
overall performance. In contrast, DISCO-SharedW does leverage
this locality by allowing write hits to private cache lines and
hence, achieves better performance. To investigate this theory,
we deploy performance counters in the simulation environment
to count the number of write hits both to private and shared cache
lines under PMSI. Data collected from these counters confirm
our explanation that PMSI achieves better performance for those
benchmarks that exhibit high number of write hits to private

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

lines. Nonetheless, for those benchmarks, DISCO-SharedW still
achieves better performance than PMSI.

8.5 DISCO with Different Arbitration Policies

As aforestated, one of the main advantages of DISCO over state-
of-the-art coherent solutions [7], [9], [10], [19], [20] is that it is
time-compositional and decouples the effects of coherence from
the specifics of the deployed arbitration policy. To investigate this
advantage, we deploy both versions of DISCO: DISCO-AllW and
DISCO-SharedW on systems implementing different arbitration
policies. Namely, we test the operation of DISCO using the
following arbiters: TDM, RR, WRR, HRR, and FCFS. Figure 14
delineates both the measured as well as analytical worst-case
latencies for each of these arbiters using a four-core system and the
EEMBC setup discussed before. The core under analysis in this
figure is C0. Since WRR, HRR, and FCFS can be configured using
different service assignments. We pick the following assignment
for each of them. For WRR, WRR-4444 indicates that each of
the four cores gets four consecutive slots to access the bus. For
HRR, HRR-2211 indicates that cores C0 and C1 are granted two
slots each in the harmonic period, while cores C2 and C3 are
granted one slot each. Finally, for FCFS, FCFS-4 indicates that
each OOO cores is allowed to have a maximum of four-requests
in-flight. We make the following observations from Figure 14. 1)
All observed latencies are within their corresponding analytical
bounds. This confirms that DISCO provides the promised bounds
when combined with any of these arbiters. 2) For RR, TDM, and
HRR-2211, the analytical latency was observed during execution,
which means these arbiters offer tight latency bounds for core
C0. This is because under each of these arbiters, C0 has to wait
for only one request from every other core (plus one in case of
TDM), which is a scenario that is likely to happen in practice.
3) For both WRR-4444 and FCFS-4, we observe a gap between
observed and analytical latencies. This is because the analytical
bound has to consider the worst-possible scenario: a request from
Core C0 has to wait for 4 requests from each other core. Although
this is a possible scenario, it is less likely to happen compared to
the one discussed in observation 2. Since WRR, HRR, and FCFS
depends on how service assignment is allocated among cores, we
conduct another set of experiments exploring the effect of different
assignments on the worst-case latency both experimentally and
analytically. Results of these experiments are shown in Figure 15.
Similar to the previous experiment, core under analysis is C0.
For WRR and HRR (Figures 15(a) and (b)), the number in the
legend refers to the number of slots assigned to each core, C0-
C4, respectively, in the schedule. For example, HRR-3111 means
that C0 gets three slots in the period, while every other core
gets only a single slot. Please note that assigning one slot per
core for all cores, reduces WRR (WRR-1111) and HRR (HR-
1111) to normal RR. Therefore, in Figure 15(a) for WRR, we
experiment with assigning more than one slot per core: WRR-
2222 and WRR-4444. We also experiment with uneven slot
distribution. In particular, we configure WRR to give two slots
to C0 (core under analysis) vs. one slot to every other core.
From the results in Figure 15(a), we observe that WRR does
not indeed improve the WCL of the C0 regardless of the slot
distribution. Intuitively, this is because as far as every other core
is granted at least one slot in the schedule to access the bus, the
best WCL that can be achieved is equivalent to this guaranteed
by RR: waiting for one request from every other core in worst

0

100

200

300

400

500

600

700

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

RR TDM HRR-2211 WRR-4444 FCFS-4

Fig. 14: Measured (solid colored bars) and analytical (T-sharp
bars) WCL for different arbiters (y-access is in cycles) .

case. In contrast, HRR (Figure 15(b)) is capable of improving
the WCL of the core under analysis thanks to its distribution
of the slot assignment as explained in Section 6.3. For instance,
HRR-3111 in Figure 15(b) has a WCL of 100 cycles for C0’s
requests. This is because in this schedule C0 is granted access
to the bus every other slot, i.e. a request from C0 has to wait
in worst case for only a single request (coming from another
core). It is important to notice that the trade-off here is that such
schedule loses fairness since it penalizes other cores. Such unfair
schedulers are commonly used in mixed-criticality systems, where
cores have different criticalities [35]. Finally, for FCFS, we sweep
the maximum number of allowed pending requests from each core
as 1, 2, or 4. AS Figure 15(c) shows, increasing the number of
possible pending requests increases the unpredictability in the
system by 1) increasing the analytical bound, and 2) increasing
the gap between the maximum observed latencies in practice
compared to the analytical bound.

8.6 Effect of Non-Perfect LLC

In this experiment, we study the effect of a non-perfect LLC on the
different predictable solutions. In doing so, we experiment with the
same setup as before, except with the following changes: 1) LLC
is a non perfect 8-way set associative cache and deploys a least
recently used (LRU) cache replacement policy, and 2) misses from
the LLC goes to a main memory. We model this main memory as
a fixed latency with a 200 cycles access time. Figure 16 shows the
results of the different solutions for this experiment. Results show
that Similar trend as in Figure 12, where ByPassAll has the worst
and DISCO-SharedW has the best execution time.

9 CONCLUSION

We propose DISCO: a discriminative coherence protocol that
significantly reduces the coherence delays, and hence, provides
tighter bounds than existing predictable coherence protocols.
DISCO also achieves a high average-case performance by al-
lowing tasks to simultaneously cache and access data in the
cores’ private caches. This is achieved by eliminating the sce-
narios that cause high coherence interference under traditional
coherence protocols. We discuss the realization of DISCO using
features offered by commodity systems. DISCO achieves up to
7.2× tighter latency bounds than existing predictable coherence
protocols, while improving performance by up to 11.4× (5.3× on
average) compared to competitive cache bypassing techniques.

REFERENCES

[1] S. Hahn, J. Reineke, and R. Wilhelm, “Towards compositionality in ex-
ecution time analysis: definition and challenges,” ACM SIGBED Review,
vol. 12, no. 1, pp. 28–36, 2015.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

0

100

200

300

400

500

600

700

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

WRR-2111 WRR-2222 WRR-4444

(a) WRR.

0

50

100

150

200

250

300

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

HRR-1111 HRR-2211 HRR-3111

(b) HRR.

0

100

200

300

400

500

600

700

FCFS-1 FCFS-2 FCFS-4

a2time01 aifirf01 basefp01
cacheb01 empty iirflt01
pntrch01 rspeed01 ttsprk01

(c) FCFS.

Fig. 15: Measured (solid colored bars in (a) and (b), and solid lines in (c)) and analytical (T-sharp bars in (a) and (b), and diamond
black dots in (c)) worst-case latencies (y-access is in cycles) with different arbiter parameters .

0

500

1000

1500

2000

2500

3000

3500

barnes cholesky fft fmm lu_non_contig ocean radix water_nsquared water_spatial

Ex
ec
ut
io
n
tim

e
[c
yc
 in

 M
ill
io
ns
]

ByPassAll_NPLLC PMSI_NPLLC DISCO‐AllW_NPLLC DISCO‐SharedW_NPLLC

Fig. 16: Execution time under non-perfect LLC.

[2] K. Yang and Z. Dong, “Mixed-criticality scheduling in compositional
real-time systems with multiple budget estimates,” in Proceedings of the
41st IEEE Real-Time Systems Symposium (RTSS), 2020.

[3] C. H. Fleming and N. G. Leveson, “Improving hazard analysis and certifi-
cation of integrated modular avionics,” Journal of Aerospace Information
Systems, vol. 11, no. 6, pp. 397–411, 2014.

[4] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and
F. D. Smith, “Reconciling the tension between hardware isolation and
data sharing in mixed-criticality, multicore systems,” in IEEE Real-Time
Systems Symposium (RTSS), 2016.

[5] A. Bansal, J. Singh, Y. Hao, J.-Y. Wen, R. Mancuso, and M. Cac-
camo, “Cache where you want! reconciling predictability and coherent
caching,” arXiv preprint arXiv:1909.05349, 2019.

[6] G. Gracioli and A. A. Fröhlich, “On the design and evaluation of a real-
time operating system for cache-coherent multicore architectures,” ACM
SIGOPS Oper. Syst. Rev., 2015.

[7] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable cache coherence
for multi-core real-time systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017.

[8] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in IEEE Euromicro Conference on Real-Time
Systems (ECRTS), 2016.

[9] N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel, “Enabling
predictable, simultaneous and coherent data sharing in mixed criticality
systems,” 2019.

[10] A. M. Kaushik, P. Tegegn, Z. Wu, and H. Patel, “Carp: A data commu-
nication mechanism for multi-core mixed-criticality systems,” in IEEE
Real-Time Systems Symposium (RTSS), 2019.

[11] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, 2011.

[12] M. Hassan, “Discriminative coherence: Balancing performance and la-
tency bounds in data-sharing multi-core real-time systems,” in Euromicro
Conference on Real-Time Systems (ECRTS), Jul. 2020, pp. 1–22.

[13] Freescale semicondutor, “QorIQ T2080 Reference Manual,” 2016, Also
supports T2081. Document Number: T2080RM. Rev. 3, 11/2016.

[14] D. Radack et al. (Rockwell Collins), “Civil Certification of Multi-core
Processing Systems in Commercial Avionics,” 2018.

[15] B. Lesage, D. Hardy, and I. Puaut, “Shared Data Caches Conflicts
Reduction for WCET Computation in Multi-Core Architectures.” in
International Conference on Real-Time and Network Systems, 2010.

[16] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
2016 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 2016, pp. 101–111.

[17] J. Poovey et al., “Characterization of the EEMBC benchmark suite,”
North Carolina State University, 2007.

[18] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET
estimates for multi-core processors with shared instruction caches,” in
IEEE Real-Time Systems Symposium (RTSS), 2009.

[19] S. Hessien and M. Hassan, “The Best of All Worlds: Improving
Predictability at the Performance of Conventional Coherence with No
Protocol Modifications,” in IEEE Real-Time Systems Symposium (RTSS),
Oct. 2020, pp. 1–12.

[20] A. M. Kaushik, M. Hassan, and H. Patel, “Designing Predictable Cache
Coherence Protocols for Multi-Core Real-Time Systems,” IEEE Trans-
actons on Computers (TC), pp. 1–23, Oct. 2020.

[21] N. Sensfelder, J. Brunel, and C. Pagetti, “Modeling cache coherence to
expose interference,” in ECRTS 2019, 2019.

[22] ——, “On how to identify cache coherence: Case of the nxp qoriq t4240,”
in 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[23] M. M. MARTIN, M. D. HILL, and D. J. SORIN, “Why on-chip cache
coherence is here to stay,” Communications of ACM, 2012.

[24] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel, “A comparative study of
predictable dram controllers,” ACM Transactions on Embedded Comput-
ing Systems (TECS), 2018.

[25] S. Hahn, M. Jacobs, and J. Reineke, “Enabling compositionality for
multicore timing analysis,” in Proceedings of the 24th international
conference on real-time networks and systems, 2016, pp. 299–308.

[26] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques. ACM, 2008, pp. 72–81.

[27] A. Limaye and T. Adegbija, “A workload characterization of the spec
cpu2017 benchmark suite,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2018,
pp. 149–158.

[28] ARM, “ARM arm1176jz-s technical reference manual,” 2013.
[29] Intel, “Intel 64 and IA-32 architectures software developer’s manual,”

Volume 3A: System Programming Guide, Part, vol. 1, no. 64, 64.
[30] M. Moir and N. Shavit, “Concurrent data structures.” Handbook of Data

Structures and Applications, vol. 47, pp. 1–47, 2004.
[31] NXP, “Memory Management Unit,” https://www.nxp.com/docs/en/

supporting-information/TPQ2CH09.pdf, 2021.
[32] B. Lesage, I. Puaut, and A. Seznec, “PRETI: Partitioned real-time shared

cache for mixed-criticality real-time systems,” in Proceedings of the 20th
International Conference on Real-Time and Network Systems (RTNS),
2012.

[33] S.-K. Kim, S. L. Min, and R. Ha, “Efficient worst case timing analysis of
data caching,” in Proceedings Real-Time Technology and Applications.
IEEE, 1996, pp. 230–240.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Acm sigplan notices,
vol. 40, no. 6. ACM, 2005, pp. 190–200.

[35] M. Hassan and H. Patel, “Criticality- and requirement-aware bus arbi-
tration for multi-core mixed criticality systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2016.

Mohamed Hassan is an Assistant Professor at McMaster University,
Hamilton, ON, Canada. He received the M.Sc. degree from Cairo Uni-
versity, Egypt; and the Ph.D.degree from the University of Waterloo,
Waterloo, Canada. His current research interests include real-time em-
bedded systems, computer architecture, memory systems, hardware
validation, and security.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2022.3193624

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: McMaster University. Downloaded on September 09,2022 at 16:04:46 UTC from IEEE Xplore. Restrictions apply.

