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ABSTRACT
DRAM memory controllers (MCs) in COTS systems are designed

primarily for average performance, offering no worst-case guar-

antees, while real-time MCs provide timing guarantees at the cost

of a significant average performance degradation. For this reason,

hardware vendors have been reluctant to integrate real-time solu-

tions in high-performance platforms. In this paper, we overcome

this performance-predictability trade-off by introducing DuoMC,
a novel memory controller that promotes to augment COTS MCs

with a real-time scheduler and run-time monitoring to provide

predictability guarantees. Leveraging the fact that the resource is

barely overloaded, DuoMC allows the system to enjoy the high-

performance of the conventional MCmost of the time, while switch-

ing to the real-time scheduler only when timing guarantees risk

being violated, which rarely occurs. In addition, unlike most exist-

ing real-time MCs, DuoMC enables the utilization of both private

and shared DRAM banks among cores to facilitate communication

among tasks.We evaluateDuoMC using a cycle-accuratemulti-core

simulator. Results show that DuoMC can provide better or compa-

rable latency guarantees than state-of-the-art real-time MCs with

limited performance loss (only 8% in the worst scenario) compared

to the COTS MC.
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1 INTRODUCTION
The exigent requirements of modern real-time embedded systems

in terms of performance, power, and area are driving the adoption of
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multi-core platforms [2]. However, multi-core platforms come with

their own challenges. One of the main hurdles is the interference

due to the shared hardware resources among cores, including shared

buses, I/Os, caches, andmainmemories. Predictablymanaging these

resources to bound the resulting interference upon accessing them

is not an easy task. Existing Commercial-Off-The-Shelf (COTS) ar-

biters managing access to these resources are designed with several

complex optimizations aiming to achieve high average performance.

Unfortunately, these optimizations result in extremely high latency

in the worst-case, and thus, damage predictability. Performance

predictability is important since it enables system designers to

accurately reason about the behaviour of the system for crucial

applications such as self-driving cars, automotive, and avionics.

This is because these COTS optimizations typically induce patho-

logical scenarios that lead to extremely high latency in the worst

case [20, 53], and thus, must be disabled to provide tight latency

bounds. To address this challenge, several recent proposals intro-

duced solutions redesigning these arbiters [6, 19, 22, 26, 39, 51] and

controllers [1, 7, 8, 13, 34, 40, 43] to honor predictability by design.

In contrast to COTS arbiters, these proposals provide strict timing

bounds for Worst-Case Latency (WCL) incurred when accessing

the shared resource by disabling most of the aforementioned per-

formance optimizations. However, this deteriorates system perfor-

mance. For instance, in Dynamic Random Access Memory (DRAM),

we observe that most predictable memory controllers disable sev-

eral optimizations usually deployed in COTS controllers such as

reordering reads over writes and prioritizing requests that have

DRAM page hits over page misses [20, 21, 27, 53]. Additionally,

most of these predictable controllers disable data sharing through

partitioning DRAM banks among cores to avoid intra-bank inter-

ference [13, 40]. This impairs the applicability of these proposals to

modern embedded applications with increasing performance and

data sharing demands [16].

To solve this fundamental conflict between average performance

and predictability requirements, the authors of [35] recently intro-

duced the Duetto reference model to manage shared resources in

high performance multi-core real-time systems. Duetto is based on

the observation that most of the time, requests to a shared resource

through a COTS arbiter encounter latencies that are much smaller

than the worst scenario, while the pathological scenarios that cause

significant delays rarely occur in practice. Accordingly,Duetto pairs
a real-time scheduler (RTSch) with a high-performance scheduler

(HPSch) such that most of the time, the system will be enjoying

the high-performance benefits of the HPSch, and only switch to

the RTSch to ensure that all timing guarantees are honored if the

resource becomes overloaded.

In this paper and inspired by the Duetto methodology, we pro-

pose DuoMC: a Memory Controller (MC) to manage accesses to

DRAM in multi-core real-time systems. DRAM main memory is

https://doi.org/10.1145/3488423.3488431
https://doi.org/10.1145/3488423.3488431
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one of the most complex shared resources in multi-core architec-

tures [10, 23, 34, 50] and it is one of the critical bottlenecks both

from a latency as well as performance [17, 31, 37] perspectives.

More in details, DuoMC makes the following contributions.

(1) DuoMC adopts the Duetto reference model [35], such that

it can be modularly integrated into existing COTS MCs with

minimal hardware modifications in the HPSch and without

requiring detailed information on the internal behavior of the

already implemented HPSch in the COTS platform. Unlike

the simplified abstract SRAM resource in [35], DRAM is

significantlymore complexwhere a request requiresmultiple

commands to be serviced, the data transmission for one

request can happen concurrently with commands of other

requests, and there are several timing constraints that must

be tracked by the controller [45]. As a result,DuoMC extends

and generalizes the conceptual model introduced in [35] to

be applicable to more realistic shared resources existing in

modern COTS Systems-on-Chip (SoCs). This generalization

is discussed in details in Section 3.

(2) We propose a novel real-time MC scheduler, RTSch (Sec-

tion 4) in which real-time guarantees are achieved by moni-

toring the latencies incurred byDRAM requests in the system

and switching from a COTS HPSch to RTSch only in the rare

cases when these guarantees are at the risk of being violated.

(3) Unlike most of the existing predictable MCs [7, 8, 13, 34, 40],

DuoMC allows for communication among running tasks by

declaring certain banks as shared to all requestors. Which

banks are shared or private is configurable since it depends

on the running set of tasks (Section 5.2). This is one of the key

contributions of this work since most industrial embedded

domains such as automotive and avionics [15] require com-

munication among different tasks/processing components

through shared data [5].

(4) We conduct a detailed timing analysis of DuoMC, which
provides guaranteed bounds on the WCL suffered by any

request to the DRAM (Section 5).

(5) We provide a detailed evaluation of DuoMC by imple-

menting it in MacSim [28], a multi-core full-system,

cycle-accurate simulator. Our results show that DuoMC
suffers only 8% performance degradation across EEMBC [41]

and IsolBench [48] benchmarks compared to a high per-

formance memory controller (Section 7), while providing

comparable WCL to state-of-the-art predictable MCs.

2 BACKGROUND AND RELATEDWORK
We begin by providing the necessary background on the operation

of DRAM, the associated MC, discuss related work on predictable

DRAM MCs, and review the Duetto [35] methodology.

DRAM commands. Access to the DRAM is generally a two-stage

process, where in the first stage, the row address is provided to

load the requested row. This stage is called row activation and re-

quires an ACT command. The second stage provides the column

address to conduct the requested read/write operation through a

CAS (RD/WR) command. Each DRAM bank also has a row buffer

that caches the most recently accessed row in that bank. This en-

ables future accesses to the same row to read/write from the buffer

directly without activating the row. Such accesses are referred to

Table 1: DDR3-1600K/DDR4-2400U timing constraints [45].

Constraints 1600K 2400U Constraints 1600K 2400U

Inter-bank Constraints (cycle) Intra-bank Constraints (cycle)

tRRD : ACT to ACT 5 l=6,s=4 tRL : read CAS to data 9 18

tFAW : 4 ACT window 24 26 tWL : write CAS to data 8 12

tRTW : read CAS to write CAS 7 12 tWR : write data to PRE 12 12

tWTR : write data to read CAS 6 3 tRCD : ACT to CAS 9 18

tW toR : write CAS to read CAS 17 19 tRP : PRE to ACT 9 18

tCCD : CAS to CAS 4 l=6,s=4 tRT P : CAS to PRE 6 9

tBus : data transfer length 4 4 tRC : ACT to ACT 37 57

tRAS : ACT to PRE 28 39

as open accesses (or row hits) and are only composed of a CAS
command. On the other hand, if an access requests a row different

than the one in the buffer (a row miss), it has first to close the open

row by writing it back to the DRAM cells in an operation called

precharging. This requires the issuance of a PRE command. After-

ward, the requested row can be fetched using anACT command and

finally, the read/write operation can proceed by a CAS command.

Timing constraints.All these commands (PRE,ACT ,RD, andWR)
have associated timing constraints that are mandated by the DRAM

JEDEC standard [45] to ensure correct operation. Table 1 lists the

constraints most related to this paper along with their description

(note that all times in this paper are measured as multiples of the

MC clock period, whose frequency is half the data rate of the device,

i.e., for a 2400 device, the MC runs at 1.2GHz). As the table shows,

some of these constraints apply to commands to the same bank

(intra-bank), while others dictate the timings among commands

to different banks (inter-bank). We say that a command becomes

intra-ready (inter-ready) when it satisfies its intra-bank (inter-bank)
constraints; a command is ready if it is both inter- and intra-ready.

DRAM cells should be refreshed periodically to prevent data leakage

by issuing refresh (REF) commands. The effect of refresh delays is

usually not accounted for at the request-level analysis since it can

be added as an additional delay term to the execution time of a task

using existing methods [3, 50]. Accordingly and similar to previous

works [20, 27, 53], we do not account for the refresh delay at the

request level.

2.1 Memory Controller
Accesses to the off-chip DRAM are managed through an on-chip

memory controller. The MC buffers incoming requests from

different requestors into queues. Those queues are usually either

per-requestor or per-bank. In this paper, we consider a system with

M requestors: {P1, ..., PM } and N DRAM banks b1, ...,bN . Note

that a requestor can be any master entity in the system, including

a CPU core, DMA engine, GPU, etc. Requests of each requestor

are indexed based on the time at which they arrive, where ri, j is
a request from Pi that arrives at timestamp tai, j . Afterward, the MC

performs three main operations as follows.

1) Address mapping. The MC translates the request address

into DRAM physical address (e.g., which bank, row, and column

to access). DuoMC allows for both assigning certain bank(s) to be

private to a certain requestor as well as declaring certain banks to

be shared among all requestors. This can be done either by the map-

ping function itself in the controller through configurable registers

or through the virtual memory support in the OS [11, 12, 52].

2) Command generation. The MC in this step translates the

request into low-level DRAM commands (i.e., a combination of

ACT , PRE, CAS) based on the request type (load/store) and the
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state of the targeted bank. The MC keeps track of the state of all

banks, which determines whether a bank has an open row in the

row buffer and what is the address of this row (if any).

3) Command arbitration. Generated commands are buffered

into per-bank command queues, and the MC arbitrates them to

determine which ready command can be granted access to the

DRAM device at every cycle. To conform to the JEDEC standard

timing constraints, the MC also has to maintain a set of counters to

track when a specific command is both intra- and inter-ready to be

issued to the DRAM device. To increase performance, COTS MCs

usually prioritize commands of row hits over row misses since they

incur lower access latency. This policy is known as First-Ready

First-Come-First-Serve (FR-FCFS) arbitration [44].

2.2 Predictable Memory Controllers
We next summarize the state-of-the-art efforts toward providing

predictable DRAM behavior since they are the most related to this

work. One direction is to analyze the DRAM in COTS platforms to

provide latency bounds [20, 27, 53]. This direction has the advantage

of being applicable to existing COTS platforms without requiring

any hardware changes, which facilitates its adoption. In addition,

it enables real-time systems to maintain the high performance of

these COTS controllers. On the other hand, if the COTS controllers

deploy some optimizations (e.g., read/write reordering), these so-

lutions have to account for the corresponding significant latencies

resulting from these optimizations, which leads to pessimistic la-

tency bounds. Even worse, latency bounds become unattainable if

COTS controllers deploy specific optimizations such as unlimited

FR-FCFS reordering [20]. A second direction proposes to entirely re-

architect the MC to achieve predictability by design [1, 7–9, 13, 25,

30, 32, 34, 40, 43, 47]. Despite achieving tight bounds compared to

the first direction, this is realized by disabling most of the optimiza-

tions found in COTS MCs. Consequently, solutions following this

direction suffer from major performance overheads. A recent third

direction investigates the replacement of the commodity Double

Data Rate (DDR) DRAMs that have inherent big latency variations

with different emerging memory types that are more predictable,

such as the reduced latency DRAM (RLDRAM) [17]. Although such

direction is achieving promising results, DDRDRAMs are still the de

facto standard for mainmemory, and hence, achieving predictability

in systems adopting them remains an urgent challenge.

Compared to all these solutions, DuoMC promotes a completely

different direction through the dynamic switching between the

HPSch and the proposed RTSch based on the system behavior.

This enables DuoMC to achieve comparable latency bounds to

predictable MCs with almost no compromise of the system perfor-

mance compared to COTS ones. There is also interest in the general

architecture community to provide performance predictability and

Quality of Service (QoS) for DRAM [29, 36, 46]; however, DuoMC
is different in the sense that it provides strict guarantees under all

possible scenarios (not only soft guarantees).

2.3 DuettoMethodology
DuoMC is inspired by Duetto methodology [35] which addresses

the average performance and predictability trade-off in shared re-

source management in multi-core systems. Hereafter, we briefly

review the background of the Duetto which help us to detail the

proposed DuoMC in Section 3. The key idea behind Duetto is that

it augments the COTS High-Performance Arbiter (HPA) with a

Real-time Arbiter (RTA) such that both arbiters operate in parallel.

The RTA must be analyzable in the sense that it provides strict

latency bounds on requests. The system most of the time utilizes

the performance gains of the HPA and only use the RTA decisions

if there is a risk to miss the latency guarantees. Duetto Requests ar-
riving from the requestors (such as DMA/Core/GPU, etc) are stored

in the request buffers and then they can be arbitrated to access a

specific shared resource. Once arbitrated, such requests are deemed

to be finished after the shared resource processing time and thus

will be removed from the buffers.

In addition to the HPA and RTA, Duetto comprises two other

modules: DTraker and WCLator. DTracker is responsible to track

these associated deadlines of requests at any clock cycle. Duetto
aims to provide worst-case guarantees on the latency of all requests

to the shared resource and assumes that a requestor can have mul-

tiple outstanding requests, and requests do not need to be serviced

in the same order they are issued; therefore, it is crucial to bound

the "processing latency" of requests. Hence, it associates a relative

deadline to each requestor in the system which represents the max-

imum permitted processing latency for requests generated by that

requestor.

WCLator module works as the core of the methodology by es-

timating the WCL of the outstanding request received from the

requestors at run-time assuming that the arbiter selects the HPA in

the current clock cycle and switch to RTA in all future cycles. If for

any requestor, the estimated WCL from WCLator is lower than or

equal to its deadline, then the WCLator continues with the HPA.

Otherwise, it selects the RTA. This decision is based on the intuition

that if the estimated WCL is less than the remaining time to service

from DTracker, the deadline can still be met by continuing with the

HPA (remember that the same logic will repeat every clock cycle).

The key observation of the Duetto is that using online information

on the state of the system (resource/requestors) allows us to greatly

reduce the pessimism inherent in the static WCL computation.

Notice that the simple resource considered in [35] (bankized

SRAM) only requires a single command to satisfy/finish a request;

however, other realistic resources with a more complicated state

machine such as DDR DRAM require arbiters to issue multiple

commands (plus transferring the data) to declare a request to be

finished. Therefore, DuoMC needs to extend the Duetto reference
model as we discuss in details in the next section.

3 DUOMC: THE PROPOSED SOLUTION
In this section, we introduce the high-level architecture of the

proposed DuoMCwhile Section 6 discusses some of the lower-level

details that are specific to implementation. We start by discussing

how DuoMC contributes to bounding the Worst-Case Execution

Time (WCET) of a real-time task executing on a requestor/core

Pi in Section 3.1. Second, we explain how DuoMC applies the

Duetto reference model discussed in Section 2.3. Note that [35]

demonstrated the model based on a much simpler resource, namely

a bankized, SRAM-like memory with fixed access time and separate

read and write data buses. DRAM poses a more complicated shared

resource with multiple commands to service requests. The requests

could require multiple commands to the device, which can happen
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in parallel with the data transmission to/from the DRAM. In

addition, there exist timing constraints between commands that

must be satisfied by the controller for the correct behavior of the

device. For this reason, in Section 3.2 we extend the Duetto model.

Specifically, 1) we generalize the timing model by distinguishing

between completion and finish time of a request, and 2) unlike

Duetto in [35], which is assumed to have direct access to the

resource state, DRAM interface does not provide a mean to read

its internal state; hence, the MC itself has to track this state. We

detail the design of our novel RTSch in the following Section 4.

3.1 Preliminary: Task WCET Estimation
In real-time systems, timing guarantees depend on the WCET

of tasks (schedulable entities). Following related work [14, 19],

the WCET of a task running on core Pi can be represented as:

ei = ci + Di , where ci is the WCET of the task in isolation, i.e.,

with no interference from other tasks, while Di is the total cumu-

lative worst-case delay suffered by the task’s requests to the shared

resource under interference.Di is calculated as the worst-case num-

ber of requests multiplied by the worst-case processing latency of

each request [21]. In a multitasking system, the same approach can

be applied [21, 27]: real-time scheduling theory can be used to deter-

mine the set of tasks that execute in a given busy interval (a schedul-

ing window); ei and Di are then taken as the cumulative WCET in

isolation and worst-case resource delay over all tasks in the window.

Since an out-of-order core might issue multiple simultaneous

requests, and those requests might not be serviced in order, we

need to formally define the finish time and processing latency.

Definition 1 (Finish Time). The finish time t fi, j of ri, j is the
clock cycle after which ri, j finishes its data transfer.

Definition 2 (Processing Latency). For any request ri, j , let
prec j be the index of the request ri,prec j of Pi with latest finish time
among those that arrived before ri, j (i.e., such that prec j < j). Then

the processing latency of ri, j is max

(
0, t

f
i, j −max(t

f
i,prec j

, tai, j )
)
.

A clarifying example is provided in Figure 1 (the concepts of

completion time and oldest request will be introduced in the next

section), where prec j+1 = j and prec j+2 = prec j+3 = j + 1. Note

that since ri, j+2 finishes before ri, j+1, its processing latency is

zero. The intuition behind computing the latency in this manner

is that if there is chain among requests, the processor cannot

be blocked from when the first request is issued to when the

last request is completed. Since we are looking to compute the

length of this chain, anything completes within the chain has zero

processing latency. In essence, Definition 2 ensures that the total

latency of a chain of requests is equal to the sum of the processing

latencies of the requests in the chain. The approach in [14] then

formally guarantees that, as long as ci includes the effect of timing

anomalies due to out-of-order execution, the computed value of

ei = ci +Di is indeed an upper bound to the WCET of the task.

Since the task can have different request types to the resource

(e.g., reads vs. writes and misses vs. hits), a tighter bound onDi can

be obtained by employing different latency bounds for each type of

request [20, 49]. Note that because we are interested in the worst-

case latency for the task and miss requests have higher latency

than hit requests, we have to classify as a miss every request that

ri,j

ri,j+1

ri,j+2

ri,j+3

t
i,j
ct

i,j
a t

i,j
f

t
i,j+1
c t

i,j+1
ft i,j+1

a

t
i,j+2

a t
i,j+2
c t

i,j+2
f

t i,j+3
a

i,j+3
c

i,j+3
ftt

ZRequest arrival Request finish Request completion 

Figure 1: Processing latency shown in blue. Red bar repre-
sents the request being oldest. Assume that all previous re-
quests ri,k with k < j finish before tai, j .

cannot be proven to access an open row. Specifically, we distinguish

among four types of requests, where we use T(ri, j ) to denote the

type of a request ri, j : 1) RMP : Read miss requests to a private

bank. 2) RHP : Read hit requests to a private bank. Note that a

private read request can be guaranteed to be a hit when analyzing

a task only if under all possible program paths and initial hardware

conditions, such a read will be issued after another read request to

the same bank and row, and there is no possibility of closing the

row before the request is serviced [4]. 3)WMP : Write requests to a

private bank. Note that we are mainly interested in analyzing cores

where memory requests are generated by last-level cache misses.

Therefore, we consider the worst-case where writes are row misses:

each write is generated by a cache replacement and write-back, and

determining the precise order of replacements as to prove that the

access is a hit is typically too difficult.4)MSq: Request to a shared

bank, where q is the number of requestors that can access the bank

targeted by the request. Since we cannot make any assumption on

the interleaving of requests by different requestors, in general we

cannot guarantee that such request is a hit; hence, we must consider

it a miss. Finally, to obtain a static bound on the processing latency

of each request type, we associate a (relative) deadline Di (T (ri, j ))
on the processing latency of requests of each type. Accordingly, we

can bound the total delay Di suffered by the task due to the shared

resource by summing the deadlines of all requests generated by the

task: Di =
∑
∀j Di (T (ri, j )).

3.2 DuoMC High-Level Operation
Figure 2 shows the conceptual architecture of DuoMC. As Sec-
tion 2.1 explains, a COTS controller deploys a high-performance

scheduler (denoted asHPSch in this paper) to arbitrate among differ-

ent ready commands to the DRAM. Following the Duetto reference
model, DuoMC requires minimal modifications and knowledge

about this HPSch. On the other hand, DuoMC adds three main

components to the system: as Figure 2 delineates, these are the

RTSch, the Deadline Tracker (DTracker), and the DRAMWorst-Case
Latency Estimator (WCLator), which are covered by blue pattern

highlight in the figure. For concision, lower-level details that are

specific to the implementation are discussed in Section 6. DuoMC
operates through these components as follows:

1) Configurable deadlines: Each requestor has a configurable

set of registers in DuoMC that are configured offline to the de-

sired deadline for each of the four request types (Di (T (ri, j )) from
Section 3.1). Notice that if a requestor is not latency sensitive, the

deadline can be relaxed. If further bandwidth regulation is required,

there are other techniques such as MemGuard [54] that are orthog-

onal to DuoMC.
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Figure 2: Conceptual Architecture of DuoMC including four
main components.

2) Simultaneously running HPSch and RTSch: At run-time,

DuoMC executes the two command schedulers in parallel: the HP-
Sch and the RTSch. Every clock cycle, each scheduler outputs one

DRAM command (possibly a no-operation NOP ) based on its in-

ternal state, the queued requests, and the state of the DRAM. It

is crucial to point out that having two controllers does not pose

additional challenges from an electrical/implementation point of

view, since both controllers share a single physical DRAM interface

(PHY). COTS MCs need to keep track of the DRAM state to satisfy

the correct operation according to the JEDEC standard. This in-

cludes the value of counters representing the remaining time until

each timing constraint elapses, the command that is issued, and the

states of banks (i.e., which row is open if any). This is maintained

by the STracker in Figure 2.

3) Ensuring all deadlines are honored: In parallel, at each

clock cycle the WCLator selects either the HPSch or the RTSch and

issues the corresponding command to the DRAM device through a

multiplexer. Therefore, switching between the two schedulers does

not incur any overhead in terms of additional clock cycles. From an

hardware overhead perspective, our design adds a MUX2:1 to the

critical path, but this normally does not incur significant latency.

The goal of the WCLator is to ensure that the processing latency

of each request ri, j does not exceed its bound Di (T (ri, j )); to this
end, it receives as input a set of slack counters from the DTracker,

which represent the remaining time until each request ri, j reaches

its absolute deadline di, j = max(t
f
i,prec j

, tai, j )+Di (T (ri, j )) (i.e., di, j

is the latest time by which ri, j must finish to satisfy its latency

bound). We next detail the operation of the DTracker and WCLator,

while the RTSch is covered in Section 4.

We begin by explaining how absolute deadlines are tracked.

The DTracker only tracks the oldest request of each requestor

Pi , according to Definitions 3 and 4. Intuitively, the completion

time of a request marks the cycle at which the request has been

fully processed by the controller by issuing its relevant commands;

while the finish time of the request, as defined in Section 3.1, rep-

resents the time at which data is returned to the requestor (for

a read). Hence, every request ri, j completes at the controller be-

fore it finishes at Pi ; in details, following the timing constraints,

we have t
f
i, j = tci, j + tRL + tBU S − 1 for a read request, and

t
f
i, j = tci, j + tWL + tBU S − 1 for a write. Note that the order in

which requests complete is the same as the order in which requests

finish.

Definition 3 (Completion Time). The completion time tci, j of
ri, j is the clock cycle after the CAS for ri, j is issued.

Definition 4 (Oldest Reqest of Reqestor Pi ). We say that
a request ri, j is outstanding in the interval [tai, j , t

c
i, j ) between its

arrival and completion time. ri, j is oldest at time t if it is outstanding,
and there is no other outstanding request ri,k of Pi with k < j (i.e.,
with earlier arrival time).

A request is put into the request queue once it arrives (tai, j )

and removed from the queue once it completes (tci, j ). Note that

at any time t , there can be up to M oldest requests in the system,

one per requestor. Also given that ri,prec j is the request that fin-
ishes/completes last among those that arrive earlier than ri, j , it
follows that if ri, j finishes/completes after ri,prec j , then it must

become oldest at time max(tci,prec j , t
a
i, j ), and remain oldest until it

completes at tci, j ; otherwise, ri, j never becomes oldest and has zero

processing latency. Intuitively, the DTracker only tracks the oldest

request ri, j for each requestor Pi because any subsequent request

cannot have an absolute deadline earlier than the completion time

of ri, j . Note that in the example in Figure 1, request ri, j+2 with zero

processing latency is never oldest. Also note that since there is no

outstanding request of Pi in [tci, j , t
a
i, j+1), no request of Pi is oldest

in that interval.

The HPSch is designed to maximize average-case performance.

In our implementation, the HPSch employs a FR-FCFS policy, as

discussed in Section 2.1. On the other hand, the RTSch must be

designed to provide tight latency bounds. The Static Worst-Case
Latency Bound for each type of request represents the worst-case

latency that a request can suffer assuming that the WCLator always

selects the RTSch after the request becomes oldest.

Definition 5 (Static WCL Bound [35]). For every requestor
Pi and request type, we use ∆i (T (ri, j )) to denote an upper bound
to the processing latency of ri, j , assuming any possible state of
the RTSch, request queues and timing constraint counters at time
max(tci,prec j , t

a
i, j ), and that the RTSch is always selected from that

cycle onward.

Clearly, latency bounds can be met only if the bound in Def-

inition 5 is less than or equal to the configured deadline that is

used to calculate the task’s WCET in Section 3.1, i.e., it must hold

Di (T (ri, j )) ≥ ∆i (T (ri, j )) for every requestor and request type.

While the assignment Di (T (ri, j )) = ∆i (T (ri, j )) minimizes the ex-

ecution time of a task, as we show in Section 7, using a looser

deadline assignment can lead to improvements in performance.

While optimizing the values of Di is outside the scope of this paper,

we specifically point out that there are requestors, such as DMA

components and GPU, that are generally less latency-sensitive than

general-purpose cores, and can thus tolerate higher latency bounds.

Finally, we discuss the WCLator . At each clock cycle and for

each requestor Pi , theWCLator computes a bound on the remaining

processing latency of its oldest request ri, j , assuming that in the

current cycle the HPSch issues one command in the provided setV

(discussed later in the section), while the RTSch is always selected

afterwards. If for all requestors, the obtained bound is less than

the slack counter for ri, j (meaning ri, j finishes by its deadline di, j ),
then theWCLator selects theHPSch; otherwise, it selects the RTSch.
As formally proven in [35], this guarantees that every request meets

its absolute deadline. Intuitively, this is because for a request to

miss its deadline, it would have to be oldest, and thus tracked by
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DuoMC; but then the WCLator would not select the HPSch if this

could cause the request to miss the deadline.

Note that the WCLator logic is repeated every clock cycle mean-

ing that as long as the conditions on the remaining processing

latency of every oldest request are satisfied, the WCLator can keep

selecting theHPSch. As we show in Section 5, the key idea is that
using on-line information on the state of theRTSch and out-
standing requests allows theWCLator to compute an on-line
latency bound that is much tighter than the static one.

We discuss the command setV provided by the HPSch. Since
both the HPSch and the WCLator operate in parallel, in general

the WCLator cannot know the specific command selected by the

HPSch in the current clock cycle. In this case, V can be simply

constructed as the set of all commands that are legal, that is, do not

violate any timing constraint and are used to satisfy an outstanding

request. However, if the WCLator can access some information

about the elected HPSch’s commands, then V can be constrained,

leading to better on-line estimation. Section 6 has an extended

discussion about these adaptations.

A final note is related to the refresh operations. As discussed

in Section 2, refresh delays are normally accounted for at the task

level. Hence, our proposed design resets the DTracker slack counter

to the deadline once a refresh operation finishes. This guarantees

that the processing latency of any request unaffected by refresh

(i.e., refresh has not happened in lifespan of the request) is bounded

by the per-request deadline Di (T (ri, j )) as discussed above; while

any request affected by a refresh (i.e., refresh is happened in the

lifespan of the request) suffers an additional latency equal to the

refresh overhead plus the deadline.

4 REAL-TIME SCHEDULER (RTSCH)
To support the described DuoMC framework, we present a novel

RTSch design. Compared to previous predictable MCs, we design

the RTSch to provide tight bounds not only on the static WCL, but

also on the on-line estimation for accesses to private banks and

also shared banks. Specifically, we employ a dynamic command

scheduler, where the three types of commands required to satisfy

requests: PRE, ACT and CAS , are scheduled by three distinct com-

mand arbiters. Since our goal is to guarantee the latency of oldest

requests, each command arbiter favors commands of oldest requests

over non-oldest ones; however, to avoid limiting parallelism, the

command arbiter can still issue a command of a non-oldest request if

there is no oldest request with an intra-ready command of that type

(commands that are not intra-ready cannot be issued and thus are

not considered by the corresponding arbiter). The priority among

requestors follows a predictable Round-Robin (RR) scheme in the

MC, so that each oldest request of a requestor can be delayed by no

more than one oldest request for each other requestor. To limit the

delay incurred when switching the data bus direction, we employ

a bundling scheme similar to the one first proposed in [7]; the CAS
arbiter groups RD andWR commands, and issues them in rounds of

the corresponding direction: read or write round (both referred as

CAS round). Formally, the following rules capture the behavior of

the RTSch in order to achieve the aforementioned goals (compared

to the HPSch where there is no such rules; hence, no guarantees).

Note that for simplicity, we present the rules and prove the latency

bounds in Section 5 for a non-pipelined version of the controller. As

we will discuss in Section 6, if the controller uses multiple pipeline

stages, the computed latency must be amended to include an ad-

ditional pipeline latency term equal to the number of stages - 1.

Rule 1. (Round Robin Arbitration.) The RTSch maintains a

RR order of requestors. A requestor is removed from the RR queue

after the oldest request of that requestor completes (i.e., after the

CAS of its oldest request is issued), and it is inserted at the back of

the queue either immediately, if it has at least one other outstanding

request, or when its next request arrives. At any time t , we use hpi
to denote the set of requestors that have higher priority than Pi at
t , that is, are ahead of Pi in the RR queue. Notice that the RR order

among requestors is maintained entirely inside the MC.

Rule 2. (Bus Conflict Handling) When multiple commands

of different types can be issued at the same time by the command

arbiters, a bus conflict occurs among these commands and the pri-

ority is as follows: CAS > ACT > PRE. We pick this priority order

since it matches the delay caused by each type of command (i.e.,

CAS commands cause the largest delay and are thus most critical).

Rule 3. (Shared Bank Blocking.) All commands of oldest re-

quest ri, j of Pi targeting a shared bankbr are blocked and cannot be
issued if there exists a requestor Pq ∈ hpi whose oldest request tar-
gets br ; the same applies if ri, j is non-oldest, except that in this case

Pq can be any requestor (including Pi itself). This rule is required to
ensure that the highest priority oldest request targeting br does not
suffer intra-bank interference from other, lower priority requests

targeting the same bank. In essence, given that no parallelism is

possible among requests targeting the same bank, we force them

to be serviced in strict RR order.

Rule 4. (PRE and ACT Arbiters Operation.) The PRE com-

mand arbiter arbitrates among non-blocked intra-ready PRE com-

mands based on a two-level scheme: at the first level, it favors PRE
commands of oldest requests over non-oldest requests. At second

level, it employs the RR order of requestors. The ACT command

arbiter uses the same logic applied to ACT commands.

Rule 5. (CAS Self-Blocking.) To limit the length of each round,

the CAS command arbiter keeps a service flag for each requestor.

The service flag is set if aCAS of the oldest request of that requestor

is sent, and reset when the round ends. If a service flag is set, CAS
commands of requests of that requestor are considered blocked for

the round. This ensures that no more than one oldest request per

requestor can be issued in a round.

Rule 6. (CAS Round Starting and Ending.) A round ends

tCCD clock cycles after issuing aCAS , if there is no oldest request of
the corresponding direction that is both intra-ready and unblocked.

When a round ends, a new round starts immediately if there is

any oldest intra-ready request; if any such request has the opposite

direction of the old round, the new round has the opposite direction

of the old one (this ensures that if there are both read and write

oldest requests, their CAS commands are serviced in alternating

rounds); otherwise, the new round has the same direction. If instead

there is no oldest intra-ready request, then the next round starts

either when an oldest request becomes intra-ready, or when the

CAS of a non-oldest request is issued; the round direction equals

the direction of the request.

Rule 7. (CAS Arbiter Operation Inside a Round.) Within a

round, theCAS command arbiter arbitrates in RR order among non-

blocked intra-ready CAS of the corresponding direction belonging
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Figure 3: Illustrative example: (a) ACT /PRE arbitration; (b) CAS arbitration. Curly down arrows represent the time commands
of a miss request become intra-ready.

to oldest requests; unless there is no intra-readyCAS at all (either of
the same or opposite direction) among oldest requests, in which case

the arbiter selects in RR order among intra-ready CAS belonging

to non-oldest requests. Note that based on Rules 6 and 7, if a CAS
of a non-oldest request is sent, then the previous round must have

ended so it must be the beginning of a new round.

Rule 8. (Always Starting with a Read Round.) Finally, note
that if WCLator selects a command different than the one selected

by the RTSch, it indicates that the WCLator is choosing HPSch
in this cycle. In this case, we reset the state of the RTSch’s CAS
command arbiter to a read round with service flags cleared in order

to favor open reads (for the possible switch to RTSch in the future):

note that typically, the number of read requests generated by a task

is significantly higher than the number of writes [18], and the write

requests to DRAMs in modern architectures are due to last-level

cache evictions, and hence, they do not stall the pipeline [20, 53].

The PRE and ACT arbiters are not affected since they do not have

any state other than the RR order, which is not modified until the

CAS of an oldest request is issued (request completes).

4.1 Illustrative Example for RTSch Rules
To illustrate the behavior of the RTSch, we next present two exam-

ples: Figure 3a focuses on the PRE and ACT arbiters according to

Rules 1-4, while Figure 3b focuses on the CAS arbiter according to

Rules 1, 5-7. The example in Figure 3a depicts 4 read miss requests:

r1,1,r3,1,r3,2 target private banks, r2,2 targets shared bank bs ; and 2

read hit requests: r2,1 and r4,1 both targeting bs . Requests target-
ing the shared banks bs are highlighted in pink. We assume that

there was no request before t0. At t0, r2,1 arrives from requestor P2.
Hence, P2 is pushed to the RR queue (Rule 1, requestor inserted).
Since r2,1 is a read hit and is intra-ready, its CAS is issued at t0
and since it is oldest, P2 is removed from the RR queue (Rule 1,
requestor removed). At t1, r2,2 arrives from the same requestor P2
and P2 is again pushed to the RR queue. However, it is not intra-

ready yet due to the CAS to PRE timing constraint; hence, bank bs
is busy and r2,2 must wait until its PRE becomes intra-ready. Next,

r3,1 arrives at t2, P3 is pushed to the back of the RR queue and will

remain there until its correspondingCAS is issued. The PRE of r3,1
is issued at t2. At t3 an oldest, intra-ready read hit request from P4
targeting bank bs arrives and P4 is pushed to the back of the RR

queue. However, it will not be issued since there exists an oldest

request that is not intra-ready (r2,2) of a higher-priority requestor

targeting bs (Rule 3). At t4 two requests arrive: r1,1 which is an

oldest read miss from P1 (to its private bank) and r3,2 which is a

non-oldest read miss from P3 (also to its private bank). P3 already
exists in the RR queue, while P1 is pushed to the back of the queue

at this point. At the same time, PRE of r2,2 and ACT of r3,1 become

intra-ready. Although both requests are oldest and P2 has higher
priority than P3, the ACT of r3,1 is issued (Rule 2) first, while the
PRE of r2,2 is issued at t5 since P2 has higher priority compared to

P1 (Rule 4, second level). PRE of r1,1 is issued at t6 and PRE of r3,2
is then issued at t7 since r1,1 is the oldest request of P1 while r3,2
is a non-oldest request (Rule 4, first level). Notice that r4,1 will be
serviced after higher priority r2,2 is finished. Also note that we do

not show the corresponding CAS commands of these requests, as

we detail the CAS arbiter behavior in the next example.

Figure 3b shows the example of 8 requests to private banks: r2,1
is a read miss, r1,1 and r3,1 are write hits, while the remaining

requests are read hits. We assume that r2,1 has already arrived, but

itsRD is not intra-ready yet. In the example, r1,1 arrives first; a write
round then starts and itsWR is issued. The round ends tCCD cycles

after, since there are no intra-ready write oldest requests (Rule 6,
round ends). Note that a new round does not start immediately,

since there are no intra-ready oldest requests (note that r2,2 is intra-
ready, but it is not oldest). Once the tW toR data bus switching

constraint elapses, RD requests become inter-ready; at this point,

no oldest request is intra-ready yet, so the arbiter issues the RD
of non-oldest request r2,2 (Rule 7, non-oldest request) and a read

round starts (Rule 6, round starts with non-oldest request). Note

that because r2,2 is non-oldest, the service flag for P2 is not set, nor
is P2 removed from the RR queue (Rules 1 and 5). Afterwards, hit
requests r3,1, r4,1, r5,1, r3,2 and r4,2 arrive in this order, followed by

the RD of r2,1 becoming intra-ready; since the RR order depends

on when requests become oldest, after r5,1 arrives the order is

P2 > P3 > P4 > P5. tCCD cycles after issuing the RD of r2,2,
another RD can be issued; since r2,1 is not intra-ready yet, r4,1
is serviced instead, then r2,1, and finally r5,1 (Rule 7, RR order).

Note that r3,1 cannot be serviced in the read round since it is a

write request, and r3,2 cannot be serviced because it is not-oldest

and there are intra-ready oldest requests (Rule 7, arbitration is

between oldest requests of the corresponding direction). Once r4,1
completes, P4 is enqueued at the back of the RR queue, and its
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service flag is set (Rule 5); hence, r4,2 is self-blocked and cannot

be serviced in the first read round either, even if it is the oldest

request of P4 after r4,1 completes (Rule 7, arbitration is between

non-blocked requests). Once the read round ends, a write round

starts since there is an intra-ready oldest write request r3,1 (Rule
6, round starts with oldest request), which is then serviced. This

causes P3 to be enqueued at the back of the RR queue; hence, in the

final read round, r4,2 is serviced before r3,2.

5 LATENCY ANALYSIS
In this section, we detail the latency analysis. We first derive the

static WCL bounds for read requests to private banks in Section 5.1,

and to shared banks in Section 5.2; we focus on discussing key

novel results, while derivations for the very similar case of write

requests to private banks are omitted due to space limitations. Then,

we show how the static analysis can be modified to obtain the on-

line WCLator estimation for the remaining processing latency in

Section 5.3.

5.1 Static WCL Analysis: Private Banks
We begin by computing the static latency bounds ∆i (RMP) for a
read miss request ri, j of Pi targeting private bank br , which in

the worst-case requires issuing a PRE, ACT and CAS commands;

the read hit case ∆i (RHP), comprising a CAS command only, is

presented at the end of this subsection. We assume that ri, j fin-
ishes/completes after ri,prec j , otherwise its processing time would

be zero; and based on Definition 5, we recall that the static bound

is computed assuming that the RTSch is always selected starting at

the time max(tci,prec j , t
a
i, j ) at which ri, j becomes oldest.

To derive ∆i (RMP), we consider two cases, based on the status

of the service flag for Pi when the CAS command of ri, j becomes

intra-ready: the self-blocking case, which we denote with a SB
subscript, corresponds to the service flag being set, while the non-
self-blocking case (NSB) corresponds to the service flag being reset.

We thus obtain:

∆i (RMP) = max(∆RMP
SB ,∆RMP

NSB ). (1)

Note that because of Rule 1, we can remove the requestor index

i from ∆RMP
SB and ∆RMP

NSB since our RTSch design employs a fair

RR arbitration and the latency bound is the same for all requestors.

Without Rule 1, every request would have different latency bounds.

We first analyze the more complex non-self-blocking case. We

decompose the latency ∆RMP
NSB into multiple terms, corresponding

to its different commands and intra-bank constraints, as shown in

Figure 4: (1) tPr ivateResidual is the worst-case latency from the start of

the processing latency max(t
f
i,prec j

, tai, j ) to PRE becoming intra-

ready; (2) LPRE is the maximum latency of PRE from the time it

becomes intra-ready until it is issued; (3) tRP is the PRE-to-ACT
timing constraint; (4) LACT is the maximum latency of ACT from

the time it becomes intra-ready until it is issued; (5) tRCD is the

ACT -to-CAS timing constraint; (6) LRD is the maximum latency of

RD from the time it becomes intra-ready until it is issued; (7) and

finally tRL + tBU S is the time required to complete sending the data.

We next show how to bound the residual latencies, LPRE , LACT

and the CAS latency LRD .
Residual Computation. The residual is computed based on

the worst-case intra-bank constraints that can affect the PRE of

ri, j . Note that by definition of ri,prec j , once it completes at tci,prec j ,

either ri, j becomes oldest (if tai, j ≤ tci,prec j ) or there must be no

outstanding request of Pi . Since br is private, in the latter case,

neither the RTSch nor the HPSch (given that it always issues legal

commands) can issue any command to br between tci,prec j and

tai, j ; and starting at max(tci,prec j , t
a
i, j ) and until ri, j completes, the

RTSch only issues commands of ri, j to br .
Therefore, it suffices to consider intra-bank timing constraints

generated by the CAS of ri,prec j itself, plus constraints generated
by commands issued before such CAS . The detailed residual com-

putation tPr ivateResidual is based on the three cases in Figure 5. In details,

the three cases are: (a) If ri,prec j does not target br , then in the

worst case the HPSch could have issued an ACT command to br at

time tci,prec j − 2. This triggers a tRAS timing constraint; under the

(worst-case) condition that tai, j ≤ t
f
i,prec j

, this results in a residual

of tRAS −min(tRL , tWL)−tBU S −1. (b) If ri,prec j targets br and is a
write, then we need to consider the tWR timing constraint between

the end of data for a writeCAS and PRE to same bank; again under

the condition tai, j ≤ t
f
i,prec j

, this results in a residual of tWR . (c) If

ri,prec j targets br and is a read, then we need to consider the tRT P
timing constraint between a read CAS and PRE to same bank; this

results in a residual of tRT P − tRL − tBU S . Taking the maximum of

the three cases yields Equation 2.

tPr ivateResidual = max(tWR , tRT P − tRL − tBU S , tRAS −

min(tRL , tWL) − tBU S − 1). (2)

To facilitate the derivation of the on-line bounds in Section 5.3,

we obtain LPRE and LACT based on parameters kPRE ,kACT repre-

senting the state of the arbitration. Specifically, kPRE is the number
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of requestors in hpi whose oldest request still requires issuing a

PRE, while kACT is the number of such requestors whose oldest

request still requires issuing an ACT . We make the following key

observation:

Observation 6. While ri, j is oldest, the values of kPRE and kACT

cannot increase as long as the RTSch is selected.

Observation 6 holds because the RTSch always favors oldest

requests. Hence, if the oldest request of a requestor in hpi already
issued a PRE (ACT ), it will not require another PRE (respectively,

ACT ) until it completes; at which point the requestor will be en-

queued at the back of the RR order and thus will have lower priority

than Pi . Note that without Rule 4, this assumption was not true.

Based on Observation 6, once the PRE of ri, j becomes intra-ready,

the number of PRE commands that can be issued ahead of ri, j is

bounded by kPRE ; the same holds for the number kACT of ACT
commands that can be issued ahead of the ACT of ri, j .

Computation of LPRE . The worst-case latency pattern for PRE

is depicted in Figure 6. Terms

⌈ LPRE+1
tRRD

⌉
and

⌈ LPRE+1
tCCD

⌉
in Equation 3

represent the command bus contention due to ACT and CAS com-

mands, respectively, which are given higher priority compared to

PRE command by the RTSch according to Rule 2. To bound such

contention, we note that successive ACT commands are separated

by at least tRRD clock cycles, and successive CAS commands are

separated by at least tCCD cycles; while LPRE + 1 represents the
maximum interference window where PRE commands (including

the one of ri, j ) can be delayed by ACT and CAS . Adding the three
terms yields the bound in the Equation 3.

LPRE (kPRE ) = kPRE +

⌈
LPRE (kPRE ) + 1

tRRD

⌉
+

⌈
LPRE (kPRE ) + 1

tCCD

⌉
.

(3)

Computation of LACT . The computation of LACT is more com-

plex than LPRE , since there exists ACT -to-ACT timing constraints

tRRD and tFAW . The worst-case interference pattern is shown in

Figure 7. Note that after the ACT of ri, j becomes intra-ready, only

ACT of oldest requests accounted for in kACT can be issued; how-

ever, before the ACT becomes intra-ready, the RTSch could issue

ACT of non-oldest requests. Specifically, in the worst case shown

in the figure, fourACT commands of non-oldest requests are issued

as late as possible before the ACT of ri, j becomes intra-ready, trig-

gering an initial delay of tFAW − 3 · tRRD − 1. Once the ACT of ri, j
becomes intra-ready, no more than kACT other ACT commands

can be issued before it; such commands cause a delay of either

tRRD each, or tFAW every 4 commands. Finally, given that CAS

commands are higher priority than ACT , but they cannot be issued

in consecutive cycles, we incorporate the command bus contention

by adding one unit of delay to each triggered timing constraint

(including the initial delay). This yields the bound in Equation 4.

LACT (kACT ) = tFAW − 3 · tRRD + k
ACT · (tRRD + 1) +⌊

kACT

4

⌋
· (tFAW + 1 − 4 · tRRD − 4) (4)

Note that in the worst case, the values of kPRE and kACT are

bounded by the total number of other requestors M − 1; hence,

when computing the static bound ∆RMP
NSB , we must consider a la-

tency LPRE (M − 1) and LACT (M − 1).

Computation ofCAS Latency LRD . Let Round 1 to denote the
round in which the RD of ri, j becomes intra-ready. We need to

consider two possibilities, corresponding to Round 1 being a (1)

read round, or a (2) write round; we use LRDRD to denote the latency

bound in the first case, and LRDW R for the second case.

Case (1): since in the non-blocking-case the service flag for Pi
is not set, it follows that the RD of ri, j must be issued in Round 1.

As for the PRE and ACT computation, we use kRD to denote the

number of requestors in hpi whose oldest request requires issuing a
RD. We also use cinterRD to denote the inter-ready RD counter, that is,

the number of cycles until a RD can be issued. Since the inter-bank

constraint between CAS commands of the same direction is tCCD ,
this yields the bound:

LRDRD (k
RD , cinterRD ) = cinterRD + kRD · tCCD . (5)

Once again, for the static WCL computation we need to consider

the worst case scenario and due to Rule 5, in each round maximum

of M CAS commands can be issued (one from each requestor);

hence, kRD = M − 1 which is the number of constraints between

M CAS commands. There are two possible worst-case scenarios

for cinterRD : (a) the RD command of an non-oldest request is issued

immediately before the RD of ri, j becomes intra-ready, yielding

cinterRD = tCCD − 1; (b) the RD of ri, j becomes intra-ready as soon

as possible at the beginning of the RD round, which is tCCD cycles

after the lastWR is issued in a preceding write round; this yields

cinterRD = tW toR − tCCD . Hence, in the worst-case we have cinterRD =

max(tW toR − tCCD , tCCD − 1).

Case (2): since Round 1 has write direction, the RD of ri, j will
be issued in the following Round 2. In this case, once it becomes

intra-ready, the RD of ri, j can only suffer interference from CAS
commands of oldest requests:WR commands of oldest requests in

Round 1, belonging to both higher and lower priority requestors, as
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Figure 8: LRDW R example for M = 4 requestors, where Pi = P1

and kCAS = 3; in this example, two of the three interfering
CAS commands are RD and one isWR.

well as RD commands of oldest requests in Round 2, belonging to

requestors in hpi ; however, each requestor can only interfere once,

since after sending theCAS of an oldest request, it is enqueued at the
back of the RR queue according to Rule 1 and Rule 5. Therefore, let

kCAS to denote the number of interfering requests, where kCAS =
M − 1 in the worst case (again according to Rule 5). We again need

to consider two possible worst-case scenarios, depicted in Figure 8:

(a) theWR command of an non-oldest request is issued immediately

before the RD of ri, j becomes intra-ready, resulting in the following

bound:

kCAS · tCCD + tW toR − 1. (6)

(b) The RD of ri, j becomes intra-ready as soon as possible at the

beginning of theWR round, which is tCCD + 1 cycles after the last
RD is issued in a preceding read round according to Rule 6 (note

that if the RD became intra-ready one cycle before, the RD would

be issued in the preceding read round); this yields:

tRTW − tCCD + (k
CAS − 1) · tCCD + tW toR − 1 =

(kCAS − 2) · tCCD + tRTW + tW toR − 1. (7)

Taking the maximum of the two sub-cases we obtain:

LRDW R (k
CAS ) = (kCAS − 2) · tCCD +

max(tRTW , 2 · tCCD ) + tW toR − 1. (8)

Finally, we compare LRDRD and LRDW R . Note that by definition

kRD ≤ kCAS , and furthermore for all devices it holds tW toR − 1 >

max(tW toR − tCCD , tCCD − 1). This yields LRDRD (k
RD , cinterRD ) <

LRDW R (k
CAS ). Hence, unless we can guarantee that the RD of ri, j

becomes intra-ready in a read round, we have to consider LRDW R in

the worst case.

Non-self-blocking Latency. Combining all obtained bounds

based on the latency decomposition in Figure 4 yields:

∆RMP
NSB = tPr ivateResidual + L

PRE (M − 1) + tRP + L
ACT (M − 1) +

tRCD + L
RD
W R (M − 1) + tRL + tBU S . (9)

Self-blocking Latency. Finally, we consider the self-blocking
case. Again, let the RD of ri, j become intra-ready in Round 1; since

the service flag is reset whenever the round is switched or reset,

it follows that Round 1 must be a read round, and that the RD
of previous request ri,prec j must have been issued in the round.

Then, ri, j waits for the following write round (Round 2), and

then its RD is issued in the next read round (Round 3) according

to Rule 7. The corresponding worst-case scenario is depicted in

Figure 9: the RD of ri,prec j is issued at the beginning of Round 1;

then M − 1 RD and WR commands of the other requestors are

issued in Round 1 and 2; and finally by RR order, the RD of ri, j is
issued first in Round 3 (notice that the PRE and ACT commands

of ri, j , which must be issued in Round 1, are not shown). Note that

ri,prec j finishes tRL + tBU S after the beginning of Round 1; this

is also the earliest time that the processing time of ri, j can start.

Therefore, the latency of ri, j can be obtained by summing the

length of the three rounds and subtracting tRL + tBU S , yielding:

∆RMP
SB = (M − 1) · tCCD + tRTW + (M − 2) · tCCD + tW toR +

tRL + tBU S − (tRL + tBU S )

= (2M − 3) · tCCD + tRTW + tW toR . (10)

Note that the self-blocking case does not include any delay of

PRE or ACT , but the number of CAS-to-CAS constraints tCCD
scales with twice the number of requestorsM in the system. Since

the ACT -to-ACT constraint tRRD is never smaller than tCCD , the
non-self-blocking case leads to higher latency for miss requests.

Read Hit Latency. We again need to consider both the self-

blocking and non-self-blocking case, yielding:

∆i (RHP) = max(∆RHP
SB ,∆

RHP
NSB ). (11)

Since the worst-case scenario for the self-blocking case in Figure 9

does not include the time for PRE and ACT commands, it also

applies to a hit request, meaning that ∆RHP
SB = ∆RMP

SB . For the non-

self-blocking case, we again decompose ∆RHP
NSB into latency terms,

similarly to Equation 9. Since ri, j is a hit, its RD command cannot

suffer from intra-bank constraints, thus the residual is zero. This

leaves the RD and data latencies only:

∆RHP
NSB = LRDW R (M − 1) + tRL + tBU S . (12)

Note that in this case, the self-blocking case has higher latency.

5.2 Static WCL Analysis: Shared Banks
We next compute the static WCL bound ∆i (MSq) for a miss request

ri, j of Pi targeting a bank br shared by q requestors. As in Sec-

tion 5.1, we derive the bound based on a set of analysis parameters

that capture the number of requests/commands that can interfere

with ri, j . Specifically, we use S to denote the set of requestors in

hpi whose oldest request also targets br , plus Pi itself; by assump-

tion, for the number of requestors in S we have: |S| ≤ q. We also

use kPRE
<S
,kACT
<S
,kRD
<S

with the same meaning as kPRE ,kACT ,kRD ,

except that they only consider requestors that are not in S. Note by

definition we have: kPRE
<S

≤ M−|S| (the same holds for kACT
<S
,kRD
<S

).

We obtain ∆i (MSq) by decomposing it into two latency terms: (1)

the latency of the highest priority request in S, served first by the

RTSch, which we denote as ∆
MSq
F irst ; (2) the latency of the remaining

|S| − 1 requests (including ri, j itself), which we denote as ∆
MSq
Others .
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Figure 9: Worst-case scenario for a self-blocking read miss
withM = 4.
To derive the latency terms, we make two key observations. First,

the total number of PRE commands that can interfere with any of

the requests in S is kPRE
<S

; the same holds for ACT based on kACT
<S

.

This is because by Rule 3, each requestor in S is blocked until every

higher priority request in S completes; and once any requestor

issues an interfering PRE or ACT , it cannot issue another one until
its oldest request completes, at which point it ceases to be higher

priority. Without Rule 3, the number of interfering requestors can-

not be bounded. It remains to determine which request in S suffers

interference. To this end, we use the following observation:

Observation 7. For any non-negative values of k1,k2, it holds:

LACT (k1) + L
ACT (k2) ≤ LACT (k1 + k2) + L

ACT (0) (13)

LPRE (k1) + L
PRE (k2) ≤ LPRE (k1 + k2) + L

PRE (0) + 2(14)

Based on Observation 7, we can bound the PRE andACT interfer-

ence by simply assuming that the kPRE
<S
,kACT
<S

commands all inter-

fere on the highest priority requestor in S; except that we have to

add 2 extra cycles to the PRE latency of each successive request inS.

The second key observation is related to the value of kCAS used

in Equations 8. Once again, requestors in S are blocked until higher

priority requests in S complete. Hence, when evaluating the CAS
latency for the highest priority (first serviced) requestor in S, we

can use a value kCAS = M − |S|, rather than kCAS = M − 1.

However, as requests in S complete, the number of remaining

requests targeting br decreases: for the second serviced request

we need to consider a value kCAS = M − |S| + 1, and so on until

kCAS = M − 1 for ri, j .
Based on both observations, and since the non-self-blocking case

has higher latency for miss requests, we obtain:

∆
MSq
F irst = tF ir stResidual + L

PRE (kPRE<S ) + tRP + L
ACT (kACT<S ) +

tRCD +max

(
LRDW R (M − |S|) + tRL ,

LWR
RD (M − |S|) + tWL

)
+ tBU S , (15)

∆
MSq
Others =

|S |−1∑
l=1

(
tOthers
Residual + L

PRE (0) + 2 + tRP + L
ACT (0) +

tRCD +max

(
LRDW R (M − |S| + l) + tRL ,

LWR
RD (M − |S| + l) + tWL

)
+ tBU S

)
. (16)

Note that LWR
RD represents the worst-case bound for the WR

where the write becomes intra-ready during a read round and

can be computed similar to LRDW R except that read-related timing

constraints are swapped for write-related timing constraints. Both

equations use the same latency decomposition as for a miss request

tResidualDATAA
tBUS

C
tRCD tRL/WL P

tRAS

Figure 10: tOthers
Residual : computation of residual term for tRAS

constraint.

to a private bank (Equations 9), but we maximize over the read

and write latencies for CAS and data since we do not know the

direction of individual requests. It remains to determine the residual

terms tF ir stResidual for the highest priority request, and tOthers
Residual for

the remaining |S| − 1 ones. tF ir stResidual is the worst-case latency

from the start of processing latency max(t
f
i,prec j

, tai, j ) of ri, j to

the PRE of the highest priority requestor in S becoming intra-

ready and tOthers
Residual is the worst-case latency between the finish

time of a request in S and the PRE of the next request in S. The

same three intra-bank timing constraints (tRAS , tWR , tRT P ) used
in the derivation of the private bank residual tPr ivateResidual must be

considered. Given thatbr is shared, we cannotmake any assumption

on the commands that are issued to br before ri, j becomes oldest at

max(tci,prec j , t
a
i, j ); while we know that only commands of requests

in S can be issued afterwards. Hence, for the case of tF ir stResidual ,

the worst-case scenario is that tai, j ≥ t
f
i,prec j

> tci,prec j and either

a CAS or ACT command is issued at cycle tai, j − 1, resulting in

Equation 17. On the other hand, in the case of tOthers
Residual , the timing

constraint can only be generated by a command of the previous

request inS; hence, similarly to cases b and c in Figure 5, for theWR
and RTP constraints we need to consider the time tWL + tBU S or

tRL+tBU S required for the previous request to finish after issuing its

CAS , resulting in the same residual terms tWR and tRT P−tRL−tBU S .

Figure 10 shows the worst-case scenario for tRAS , resulting in a

term tRAS − tRCD −min(tRL , tWL) − tBU S . Taking the maximum

of the three terms results in Equation 18.

tF ir stResidual = max(tWL + tBU S + tWR − 1, tRT P − 1, tRAS − 1); (17)

tOthers
Residual = max(tWR , tRT P − tRL − tBU S , tRAS − tRCD −

min(tRL , tWL) − tBU S ). (18)

Finally, we have to determine the value of |S| under which

∆i (MSq) = ∆
MSq
F irst +∆

MSq
others is maximized. This is non-trivial, since

increasing |S| adds more terms in Equation 16, but it decreases

the maximum value of kPRE
<S
,kACT
<S

and the CAS latency. Hence,

we simply numerically confirmed that for all devices, the bound

is maximized by assuming the maximum number of contending

requestors |S| = q.

5.3 On-line WCLator Latency Estimation
We next discuss how the WCLator performs on-line estimation.

Recall that the WCLator must compute the remaining processing

latency (remaining time until the request finishes) for the oldest

request ri, j of each requestor, assuming that the HPSch is selected

at the current clock cycle t , while the RTSch is always selected

afterwards. Since the round state, and hence the service flags, is

reset whenever theWCLator issues a command that does not belong
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to the RTSch, on-line analysis only considers the non-self-blocking

case.

We begin by considering a read miss request ri, j of Pi , targeting
row rw in private bank br . We consider three cases, depending on

which command ri, j needs to send next: PRE, ACT or RD. For each

case, we use either cintraPRE , c
intra
ACT , or cintraRD to denote the time from

t until the next command becomes intra-ready (or 0 if it is already

intra-ready). We also consider the value of the inter-bank counter

cinterRD at time t , as well as the values of kPRE ,kACT and kRD at

time t , as defined in Section 5.1. However, note that we do not use

on-line information to bound the value of kCAS (i.e., we consider

the worst-case kCAS = M − 1) because kCAS includes requestors

with both higher and lower priority, and we cannot predict when

and which requests of another requestor might arrive in the future,

causing it to be added to the RR queue with lowest priority. For

each case, we list all possible commands that the HPSch can issue

based on the state of bank br ; for each command, we analyze the

interference it causes on the next command of ri, j , and derive a

bound on the remaining latency of ri, j based on the latency com-

ponents from Section 5.1. On-line, the WCLator computes all such

bounds in parallel; it then discards the ones that do not apply based

on the setV of possible commands of the HPSch; and finally takes

the maximum of all remaining bounds to determine whether ri, j
is guaranteed to complete by its deadline. Since the full command

enumeration is rather pedantic and due to space limitations, here

we only detail Case (1) (PRE) as an example. The remaining cases

can be derived based on similar logic to the analysis for the other

commands; we summarize it after covering Case (1). Similarly, we

summarize how to derive the cases for read hits, write misses and

shared bank requests after covering Case (1) for read misses.

Case (1): br is open on a row different than rw , then the RTSch
needs to issue a PRE for ri, j . The HPSch can issue either a PRE or

a CAS for bank br (but not an ACT , since br is already open), but

the CAS cannot target row rw , and thus cannot service ri, j . It can
also issue a PRE, ACT or CAS to some other bank, or a NOP .

• (1.1) NOP : (1.1a) if cintraPRE > 0, then a NOP cannot cause

interference on the PRE of ri, j , nor it changes the state

of any bank; hence, the PRE delay for ri, j is bounded by

LPRE (kPRE ). Given that the PRE becomes intra-ready after

cintraPRE cycles, and following the latency decomposition for

a non-self-blocking request in Figure 4, we can then bound

the remaining latency as:

LRD,1online = c
intra
PRE + L

PRE (kPRE ) + tRP +

LACT (kACT ) + tRCD + L
RD
W R (M − 1) + tRL + tBU S . (19)

Equation 19 represents the base latency computation

for Case (1); all other sub-cases use either the same or

a modified computation of LRD,1online . (1.1b) If c
intra
PRE = 0,

issuing a NOP can waste a clock cycle and increase the PRE

delay by 1; hence the latency is LRD,1online + 1.

• (1.2) PRE targeting bank bl , br : the PRE-to-PRE inter-

ference is 1 cycle (command bus conflict only). Therefore,

(1.2a) if cintraPRE = 0, we need to add 1 to Equation 19 to

represent the extra cycle of delay. In addition, (1.2b) if
at time t there exists a requestor Pq ∈ hpi whose oldest

request targets bl and requires a PRE, then we decrease

the value of kPRE by one, since the issued PRE satisfies

such higher-priority, oldest request. However, (1.2c) if such
oldest request requires only aCAS , then we need to increase

the value of both kPRE and kACT by one as the RTSch will

need to now issue a PRE, ACT and CAS for such request.

• (1.3) ACT targeting bank bl , br : since Equation 3 already

accounts for command bus interference from ACT and CAS ,
the command cannot cause additional command bus interfer-

ence. We thus compute the remaining latency bound accord-

ing to Equation 19, except that we might need to change the

value of either kPRE or kACT , based on the following logic.

(1.3a) If at time t there exists a requestor Pq ∈ hpi whose
oldest request targets bl , and the ACT issued by the HPSch
opens a row different than the one targeted by such request,

then it follows that the RTSchwill need to again closebl with
a PRE to service Pq . Hence, the value of k

PRE
must be in-

creased by one. (1.3b) If instead theHPSch opens the row tar-

geted by such request, then kACT must be decreased by one.

• (1.4) CAS targeting bank bl , br : again there is no extra

command bus interference, nor the bank state changes, so

the latency is LRD,1online .

• (1.5) PRE targeting bank br : this is the PRE com-

mand required by ri, j ; then following the latency

decomposition for ri, j , the remaining latency is

tRP + L
ACT (kACT ) + tRCD + L

RD
W R (M − 1) + tRL + tBU S .

• (1.6)CAS for bank br : if theCAS is a RD, then the latency is

LRD,1online as in Case (1.4). However, if it is aWR, we need to

account for the tWR intra-bank timing constraint between

the data of suchWR and the PRE of read request ri, j . Hence,

in this case the value of the cintraPRE counter in Equation 19

must be substituted with max(cintraPRE , tWL + tBU S + tWR ).

The derivation for Case (2) and (3) (ACT and CAS) can similarly

be carried out using base latencies LRD,2online and LRD,3online , which

are derived by summing the values of intra-counters cintraACT or

cintraRD with the remaining terms in the latency decomposition. For

a hit request only Case (3) applies, and furthermore, it must hold

cintraCAS = 0 since a hit request does not suffer intra-bank constraints.

Therefore, the on-line estimation for a read hit can always use the

better bound LRDRD , rather than considering LRDW R - this is indeed

the reason why the RTSch resets the round state to read when the

HPSch is selected. The on-line analysis for a write request to a

private bank is similar; however, since the round is reset to read, we

must always consider the worst-case bound LWR
RD where the write

becomes intra-ready during a read round. Finally, we discuss how

to estimate the remaining latency of a request ri, j to a shared bank

br . Following the discussion in Section 5.2, the on-line bound is still

computed by summing the latency for the highest priority request

in S, and the latency for the other |S| − 1 requests. For the latter,

the WCLator uses the static bound ∆
MSq
Others ; note that such bound

depends only on the value of |S|. For the former, instead of using

∆
MSq
F irst , theWCLator applies a logic similar to Cases (1)-(2)-(3) to the

highest priority request in S to obtain a better on-line bound (with

some parameter changes, e.g.,kPRE
<S
,kACT
<S
,kRD
<S

must be considered

instead of kPRE ,kACT ,kRD , as discussed in Section 5.2).



DuoMC: Tight DRAM Latency Bounds with Shared Banks and Near-COTS Performance MEMSYS 2021, September 27–30, 2021, Washington DC, DC, USA

Note that while the estimation includes several cases, in prac-

tice an efficient hardware implementation of the WCLator can be

extremely fast. Notably, the WCLator can compute the bound for

each case in parallel, compare each case against the slack counter

for Pi , and then and the results together to determine if the HPSch
can be selected. Furthermore, each case can be calculated quickly

by pre-computing the various analysis terms and storing them in

look-up table indexed based on the value of the various analysis

parameters. We provide a more detailed implementation discussion

in Section 6.

6 IMPLEMENTATION
To avoid slowing down the clock speed, it is imperative thatDuoMC
does not add significant extra logic to the critical path of the HPSch.
Therefore, theWCLator cannot use the output of the last stage of the

HPSch (the command that is arbitrated by HPSch); otherwise, the
WCLator logic would need to be placed in series after the HPSch.
For this reason, the set of commandsV (shown in Figure 2 and used

in Section 5) cannot be practically restricted to the unique command

issued by the HPSch. Fortunately, WCLator can still operate in

parallel with HPSch and still have some knowledge about V by

leveraging the fact that most COTS MCs are pipelined. Since there

are at least two sets of buffers (request buffers at an earlier stage

and then command buffers), there are at least two pipeline stages

to enable the buffering of requests, generating specific commands,

and then buffering them into corresponding command buffers.

Typically, to optimize for performance, more stages are deployed.

Early stages are used to generate one command either for each re-

questor, or each bank of the resource that can be operated in parallel;

then, the last stage picks one of the generated commands. Hence,

the setV can be restricted without requiring any modification to

the HPSch. However, in this case, the analysis in Section 5 needs

to add a fixed term to account for the extra delay suffered in the

pipeline. In particular, each request suffers an additional pipeline
latency equal to the number of stages - 1.

DuoMC supports different implementations based on the un-

derlying COTS controller details. We consider three possible alter-

natives, based on the command setV: (A) the most conservative

design where WCLator make the decision based on the sets of com-

mands that are legal in the current cycle without any further knowl-

edge; (B) an improved design whereV comprises one command per

requestor per bank; (C) an ideal (but not practically implementable)

design whereV comprises a single command which is the one that

HPSch selects. Our on-line latency analysis in Section 5.3 holds in

all three cases, since it evaluates all commands in V . However, for

simplicity theWCL analysis assumes that a command of request ri, j
can be issued immediately once the request arrives in the request

queue at tai, j .

Figure 11 shows results in terms of overall Instruction Per Cycle

(IPC) for the three alternative designs listed above. We use a similar

setup as in the evaluation Section 7: we considerM = 8 requestors

contending for DDR3 1600K DRAM access; each requestor is as-

signed a private bank, and the foreground core executes the latency

benchmark. For DuoMC, we first set all deadlines to the minimum

possible value Di (T (ri, j )) = ∆i (T (ri, j )) from the static analysis,

and then progressively increase them up to 4 × ∆ (300% increase).

Deadline Increment Steps(%)
0 100 200 300
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C

1.5

2

2.5

3

3.5

4

FR-FCFS
DuoMC A
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Figure 11: Overall IPC as a function of the relative deadline.

Note that here, design (B) behaves significantly better than (A).

The reason is that looking at selected commands can allow us to

exclude most of the worst analysis cases outlined in Section 5.3.

On the other hand, (B) and (C) performs similarly, meaning that

knowing the last stage of HPSch does not significantly improve

the IPC compared to (B). Therefore, Section 7 follows (B).

We next discuss how the three modules added in DuoMC can be

implemented. The DTracker module can be simply implemented

by employing one counter per requestor, which counts down from

the relative deadline Di (T (ri, j )). For RTSch, in addition to utiliz-

ing the timing constraint counters, it needs to track the following

information: 1) the RR order; 2) whether a requestor is blocked

during the current round. All of these are simple to implement with

a set of universal shift registers and flag registers [7]. For HPSch,
note that once the WCLator selects the command from RTSch, the
state of the HPSch can become invalid (for instance, if the RTSch
closes a bank). Updating the internal state of the HPSch would

require internal knowledge of its operation and possibly complex

re-engineering. To avoid such complexity, we leverage the fact that

a request remains in the request queue until it completes. Accord-

ingly, once the WCLator selects a command from RTSch, we flush
the command registers of the HPSch. In the next cycle, the HPSch
will operate normally by reading requests from the request buffer

and translate them into new commands taking into account the

updated DRAM state. Such flushing does not usually require any

modifications to the HPSch since most COTS controllers provide

special operation registers (including flushing/reset capabilities)

to recover from faults or unstable states [24, 42]. It also does not

affect correctness, since the latency estimation depends only on the

RTSch and the set of commandsV that can be issued by theHPSch.
It remains to discuss the implementation of the WCLator. As

shown in Section 5.3, the remaining latency estimation for each

requestor Pi depends on various cases. However, the calculation

in each of them comprises at most six terms: 1) the intra-ready

counter for the next command of the request under analysis, which

is known from the timing constraint counters; 2) LPRE which de-

pends on either kPRE or kPRE
<S

; 3) LACT which depends on either

kACT or kACT
<S

; 4) the CAS latency, which depending on the case is

either constant or depends on kRD and cinterRD or |S|; 5) ∆
MSq
Others ,

which depends on |S|; 6) and a constant which can be computed

off-line based on the value of timing constraints. To avoid comput-

ing each term on-line based on the corresponding equation, we

pre-calculate it for every possible value of the parameters and store

it in a look-up table. Note that the hardware required to calculate

the estimation is fast and simple and can be implemented with a
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Figure 12: Analytical worst-case latency of read request (private and shared banks) across different speeds of DDR3 device.

small area footprint as it just needs to add six terms together, each

of which can be stored in at most 11 bits. Instead of computing the

maximum over all possible cases, the WCLator can then simply

compare each case against the slack counter of Pi , which requires a

13-bit comparator in our implementation, and then and the results

together to determine if the HPSch should be selected. The key ad-

vantage of this method is that each case can be evaluated in parallel,

making the WCLator extremely fast. Finally, while the number of

cases for each requestor Pi is significant, as noted in Section 5.3,

only a subset needs to be considered in each clock cycle. Further-

more, several cases have the same or similar remaining latency, and

their computation can thus be merged with simple combinational

logic. Therefore, we believe that an optimized implementation can

significantly reduce the number of latency terms that must be com-

puted in hardware, albeit at the possible trade-off of adding extra

combinational logic to the critical path.

7 EVALUATION RESULTS
Experimental Setup. We use MacSim [28], a multi-processor ar-

chitectural simulator to model the requestors in our experiments.

We incorporate superscalar x86 cores clocked at 1GHz. We run the

experiments with multiple cache configurations; however, simi-

lar to [34], we show the results with bypassed caches in order to

maximize the stress on the MC and DRAM device. For the memory

subsystem, MacSim is integrated with the MCsim [33] memory con-

troller simulator, employing a single-channel single-rank DRAM

device. We use the virtual-to-physical address mapping capabil-

ity in MacSim’s front-end to implement bank partitioning/sharing

among cores which can be achieved without running a complete OS

manipulation. Since DuoMC is capable of handling shared banks,

we also conduct experiments on DDR4-2400U to incorporate more

banks in the experiments (DDR4 supports up to 16 banks compared

to 8 banks in DDR3). The baseline HPSch deploys the FR-FCFS

policy [38, 44], where requests to open rows are prioritized over

requests targeting close rows in the same bank. This arbiter favors

applications that can issue multiple concurrent memory requests.

We assume that the HPSch provides to the WCLator a set V com-

prising one command per requestor per bank.

Considered MCs. We implement the proposed DuoMC inside

MCsim. Since we are considering systems with strict guarantees,

we compare against the following state-of-the-art real-time MCs,

which also provide analytical WCL bounds and are implemented in

MCsim: 1) Analyzable Memory Controller (AMC) [40], 2) CMDBun-

dle [7], 3) DRAMbulism [34], 4) REQBundle [13], and 5) Zheng [50].

For ease of comparison, we do not model refresh operations.

Workloads. We use EEMBC benchmark suite [41] and also

use two synthetic benchmarks: latency and bandwidth from Isol-

Bench [48]. In all experiments, on the foreground core, we run one

of the EEMBC or latency benchmarks and execute a bandwidth

benchmark on the background cores to heavily stress the DRAM.

Analytical Worst-Case Memory Access Latency. Figure 12

represents the WCL bound on the read request latency of multiple

state-of-the-art predictable MCs when there existM = 7 requestors

in the system and DDR3 devices with different speed bins are used

(we employ DDR3 as some of the controllers we compare against

cannot support DDR4).We use 7 requestors since DDR3 has 8 banks;

in this way, we can use the extra bank as shared for MCs supporting

shared banks, including Zheng [50] and RTSch. The remaining MCs

only use 7 banks with one private bank per requestor. Note that

we only show the latency bounds for read requests since they are

larger compared to write requests. Based on the figure, we make

three observations: (1) Zheng and AMC [40] perform worse than all

other controllers; both are ones of the early designs which do not

include recent optimizations to tighten the latency bound, such as

bundling the commands/requests. (2) DuoMC and CMDBundle [7]

have similar performance since both schedule individual commands

and bundle CAS commands in specific rounds. The read hit bound

for DuoMC is lower (15% for read hit and 7% for read miss in av-

erage) as it uses a more efficient round switching mechanism. (3)

DRAMbulism [34] and REQBundle [13] also have similar perfor-

mance since both controllers are optimized to execute requests in a

pipeline, such that each miss request can only suffer interference

on either PRE,ACT orCAS command, rather than all three of them.

Consequently, both controllers perform better than DuoMC for

miss requests, but worse on hit requests. Furthermore, note that

the gap for miss requests tends to close for faster devices. Since

DuoMC and Zheng support shared DRAM banks, we consider the

eighth bank as shared among all the 7 requestors. As shown in the

small figure, DuoMC performs better than Zheng because the latter

considers each requestor with a request to the shared bank to be a

virtual requestor such that a RR must be conducted among them in

addition to the private banks’ RR. This worsens the bound on the

shared request by 141% for DDR3 1600K.

Measured Request Latency. Figure 13 delineates the latency

suffered by readmiss requests (in loд10 scale) under FR-FCFS, RTSch
and DuoMC. We considerM = 8 requestors contending for DDR3

1600K DRAM access; each requestor is assigned a private bank, and

the foreground core executes the latency benchmark. For readabil-

ity, Figure 13 only incorporates requests with latency longer than

80 cycles. The black dashed line represents the static WCL bound

for DuoMC. For FR-FCFS controller, we observe noticeable latency
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Figure 13: Request latency comparison amongstDuoMC, FR-
FCFS, and RTSch. Only latencies greater than 80 cycles are
shown. Note that Y axis represents the latency in loд10 scale.

spikes all around the execution with a maximum latency of 2104

cycles. This is because FR-FCFS prioritizes requests that target an

open row in DRAM, which can starve (theoretically) or delay for

a significant amount of time (practically) requests that target close

rows. On the flip side, RTSch guarantees the latency bound for all

requests as expected. However, none of the requests come close to

the static WCL bound since the analysis must make pessimistic as-

sumptions on the state of the resource and RR order. Finally, we con-

figure DuoMC with the minimum possible deadline Di (T (ri, j )) =
∆i (T (ri, j )) for each requestor. DuoMC stretches the latency of re-

quests towards the relative deadline (dashed black line), because the

WCLator estimates the latencies at run-time, and has more informa-

tion on the system state. This allows DuoMC to select FR-FCFS as

long as no request risks violating its deadline, thus significantly im-

proving average performance compared to RTSch as we show next.

Average-Case Performance. Figure 14a shows the overall IPC
of the system for each controller when the foreground core is run-

ning one of the EEMBC benchmarks, and a DDR3 1600K device is

used. ForDuoMC, we first set all deadlines to the minimum possible

value Di (T (ri, j )) = ∆i (T (ri, j )), and then gradually increase them

up to 2× of the minimum deadline (100% increase). By increasing

the relative deadline in DuoMC, the framework will have more

opportunity to select the HPSch. Under DuoMC with a minimum

relative deadline (DuoMC-0), even though no request violates its

deadline, the overall IPC of the system is very close to FR-FCFS

controller. In particular, DuoMC-0 exhibits only 8% loss of perfor-

mance over FR-FCFS on average while DuoMC-100 shows only

1% performance degradation. If Di is large enough, the framework

will almost always select the HPSch; hence, the performance of the

system will be equivalent to the FR-FCFS controller. To compare,

RTSch, which shows the best IPC over all other real-time MCs,

causes 44% slowdown across the benchmarks compared to FR-FCFS.

In order to allow the cores to communicate with each other, we use

a DDR4-2400U device as it provides more banks compared to its

DDR3 predecessors; specifically, it consists of 4 bank groups, each

containing four banks resulting in 16 banks in total. We configure

a system withM = 7 cores, each of them has exclusive access to 2

separate private banks, and two remaining banks are shared among

all requestors. Since access time to the same bank group in DDR4 is

longer than access to a different one, we assign the private banks for

each requestor to reside in different bank groups to reduce access
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time. In Figure 15, DuoMC shows an even better relative perfor-

mance with DuoMC-0 compared to the Figure 14, resulting in only

7% slowdown compared to HPSch. For comparison, the figure also

shows performance for the other controllers supporting DDR4.

We make the following observations: 1) the overall IPC of the

system reduces compared to DDR3 and 8 requestors even though

the number of banks is increased. This shows that DDR4 device does

not perform better for the real world benchmarks since the addi-

tional bandwidth of DDR4 are not utilized as also discussed in [10];

2) DDR4 devices are not suitable for memory sensitive applications

as the access time is increased (11% increase in row hit and 14%

increase in row miss compared to DDR3 devices) due to the bank

groups in DDR4; 3) introducing shared banks reduces the paral-

lelism in the DRAM device when requestors generate request to the

shared banks (serviced sequentially). Therefore, the average perfor-

mance of the system is degraded for both RTSch as well as HPSch;
however, DuoMC-0 only shows 7% slowdown compared to HPSch.

8 CONCLUSIONS
We introduced DuoMC, a novel MC to manage DRAM memories

in high-performance real-time embedded systems. DuoMC embod-

ies two main contributions: 1) It generalizes the Duetto reference
model [35] and extends it to COTS DRAM controllers as one of the

most complex shared resources, where it allows the system to lever-

age the high-performance of the COTS high-performance scheduler

most of the time, and only selects proposed real-time scheduler

when timing guarantees are at risk of being violated. As a result,

DuoMC achieves worst-case latency bounds that are comparable or

better to that of existing real-time controllers at a very close perfor-

mance to that of the COTS controllers; 2) It provides a mechanism

to support both private and shared bank(s) combinations to enable

shared-data communication among real-time tasks in the system.
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