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Recently, the research community has introduced several predictable dynamic random-access memory

(DRAM) controller designs that provide improved worst-case timing guarantees for real-time embedded sys-

tems. The proposed controllers significantly differ in terms of arbitration, configuration, and simulation en-

vironment, making it difficult to assess the contribution of each approach. To bridge this gap, this article

provides the first comprehensive evaluation of state-of-the-art predictable DRAM controllers. We propose

a categorization of available controllers, and introduce an analytical performance model based on worst-

case latency. We then conduct an extensive evaluation for all state-of-the-art controllers based on a common

simulation platform, and discuss findings and recommendations.
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1 INTRODUCTION

Modern real-time hardware platforms use memory hierarchies consisting of both on-chip and off-

chip memories that are specifically designed to be predictable. A predictable memory hierarchy

simplifies worst-case execution time (WCET) analysis to compute an upper bound on the memory

access latency incurred by a task’s execution. This is essential in computing a task’s overall WCET,

which is used to ensure that temporal requirements of the task are never violated. These memory

hierarchies are specially designed for real-time embedded systems because conventional mem-

ory hierarchies are optimized to improve average-case performance, yielding overly pessimistic

WCET bounds [14]. Consequently, there has been considerable interest in the real-time research

community in designing memory hierarchies to produce tight WCET bounds while delivering a

reasonable amount of performance.

As of late, the community has focused in making accesses to off-chip dynamic random-access

memories (DRAM)s predictable. This need arose because the data requirement demands from mod-

ern real-time applications greatly exceeded the capacity available solely with on-chip memories.

However, commercial off-the-shelf (COTS) DRAMs are unsuitable for real-time embedded sys-

tems because their controllers are optimized to improve average-case performance; thus, rendering
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either pessimistic WCET bounds or even no upper bound [33]. As a result, we have witnessed sev-

eral innovations in DRAM memory controller (MC) design in recent years [4, 6, 10, 11, 20, 21, 25,

28, 33]. Each of these designs trade off predictability with performance, but they also make it diffi-

cult to compare against each other. This is because the authors of these works use different system

models, assumptions, memory configurations, arbitration and command scheduling algorithms,

benchmarks, and simulation environments. A designer or company wishing to adopt one of these

DRAM MCs for their real-time application would have virtually no scientific method to judiciously

select the one that best suits the needs of their application. Moreover, researchers producing novel

DRAM MC designs are also unable to effectively compare against prior state-of-the-arts. We be-

lieve that this is detrimental to future progress in the research and design of DRAM MCs, and its

adoption into mainstream hardware platforms for real-time embedded systems.

To address this issue, in this article we develop a methodology that enables comparing pre-

dictable MCs, and we provide a comprehensive evaluation of the state-of-the-art predictable dou-

ble data rate synchronous dynamic RAM (DDR SDRAM) MCs. More in detail, we provide the

following main contributions: (1) we discuss a characterization of existing predictable MCs based

on their key architectural characteristics and real-time properties; (2) we introduce an analytical

performance model that enables a quantitative comparison of existing MCs based on their worst-

case latency; and (3) we develop a common evaluation platform to provide a fair, standardized

experimental comparison of the analyzed MCs. Based on this platform, we carry out an extensive

simulation-based evaluation using embedded benchmarks, and provide insights into the advan-

tages and disadvantages of different controller architectures. In particular, we expose and evaluate

essential tradeoffs between latency bounds provided to real-time tasks and average memory band-

width offered to non-real-time tasks.

Our source code for managing and simulating all considered MC designs is available at [9]. To

the best of our knowledge, this is the first work that enables comparing the performance of all

state-of-the-art architectural solutions for predictable scheduling of DRAM operations.1 A key re-

sult of the evaluation is that the relative performance of different predictable controllers is highly

influenced by the characteristics of the employed DDR memory device; hence, controller and de-

vice should be co-selected.

The rest of the article is organized as follows. Section 2 provides the required background on

DDR DRAM. Section 3 discusses the structure of predictable memory controllers and their key

architectural characteristics. Section 4.1 presents related work in general and the evaluated pre-

dictable MCs in detail, based on the introduced architectural characteristics. Section 4.2 provides

the analytical model of worst-case latency. Section 5 discusses our evaluation platform, provides

extensive evaluation of all covered predictable controllers, and discusses findings and recommen-

dations. Finally, Section 6 provides concluding remarks.

2 DRAM BACKGROUND

We begin by providing key background details on DDR SDRAM. Most recent predictable MCs

are based on JEDEC DDR3 devices. For this reason, in this evaluation we focus on DDR3 and its

currently available successor standard, DDR4. Note that we only consider systems with a single

memory channel, i.e., a single MC and command/data buses. In general, from an analysis point of

view, if more than one channel is present, then each channel can be treated independently; hence,

all discussed predictable MCs are single channel. Optimization of static channel assignment for

predictable MCs is discussed in [7].

1Note that our evaluation mainly focuses on solutions for scheduling of DRAM commands, i.e., at the MC back-end level.

We are not concerned with scheduling of memory requests at the core, cache, or interconnection level.
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Fig. 1. Architecture of memory controller and DRAM memory module.

Fig. 2. DRAM operation state machine.

2.1 DRAM Organization

A DRAM chip is a three-dimensional array of memory cells organized in banks, rows, and columns.

A DRAM chip consists of 8 (DDR3/DDR4) or 16 (DDR4) banks that can be accessed simultaneously,

but share the same command/address and data bus. Each bank is further organized into rows and

columns. Every bank contains a row-buffer, which temporarily stores the most recently accessed

row of memory cells. Data can only be retrieved once the requested row is placed in the row-buffer.

This makes subsequent accesses to the same row (row locality) quicker to access than different

rows. A memory module, used in a typical computer system, comprises either one or multiple

independent sets of DRAM chips connected to the same buses. Each memory set is also known

as a rank. Figure 1 shows an overview of a DRAM memory module with N ranks, where each

rank includes eight DRAM chips. In this example, each chip has an 8 bits data bus, and eight

chips are combined to form an overall data bus with width WBU S = 8 · 8 = 64 bits for the whole

module. While each rank can be operated independently of other ranks, they all share the same

address/command bus, used to send memory commands from the MC to the device, as well as the

same data bus.

2.2 DRAM Commands and Timing Constraints

The commands pertinent to memory request latency are as follows: ACTIVATE (ACT), READ

(RD), READA (RDA), WRITE (WR), WRITEA (WRA), PRECHARGE (PRE), and REFRESH (REF).

Other power-related commands are out of the scope of this article. Each command has some

timing constraints that must be satisfied before the command can be issued to the memory device.

A simplified DRAM state diagram, presented in Figure 2, shows the relationship and timing

constraints between device states and commands. We report the most relevant timing constraints

for DDR3-1600H and DDR4-1600K2 in Table 1, which are defined by the JEDEC standard [12].

2Note that DDR4 further organizes the device as a collection of bank groups, and the value of certain timing constraints

changes whether successive commands target the same or different bank groups. Since none of the MCs considered in this

evaluation distinguishes among bank groups, we safely consider the longest value for each constraint.
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Table 1. JEDEC Timing Constraints [12]

JEDEC Specifications (cycles)

Parameters Description DDR3-1600H DDR4-1600K

tRCD ACT to RD/WR delay 9 11

tRL RD to Data Start 9 11

tRP PRE to ACT Delay 9 11

tW L WR to Data Start 8 9

tRTW RD to WR Delay 7 8

tW T R WR to RD Delay 6 6

tRT P Read to PRE Delay 6 6

tW R Data End of WR to PRE 12 12

tRAS ACT to PRE Delay 28 28

tRC ACT-ACT (same bank) 37 39

tRRD ACT-ACT (diff bank) 5 4

tF AW Four ACT Window 24 20

tBU S Data bus transfer 4 4

tRT R Rank to Rank Switch 2 2

The ACT command is used to open (retrieve) a row in a memory bank into the row-buffer. The

row remains active for accesses until it is closed by a PRE command. PRE is used to deactivate

the open row in one bank or in all the banks. It writes the data in the row-buffer back to the

storage cells; after the PRE, the bank(s) will become available for another row activation after tRP .

Once the required row is opened in the row-buffer, after tRCD , requests to the open row can be

performed by issuing CAS commands: reads (RD) and writes (WR). Since the command bus is

shared, only one command can be sent to the device at a time. If a request accesses a different row

in the bank, a PRE has to be issued to close the open row. In the case of auto precharge, a PRE is

automatically performed after a RD (RDA) or WR (WRA) command. Finally, due to the physical

property of DRAM, a REF command needs to be issued periodically to prevent the capacitors that

store the data from becoming discharged. The refresh delay is generally limited to 1%–5% of total

task memory latency [2] and can be easily incorporated in WCET analysis at the task level (see [33]

for an example). Since the refresh analysis is not considered in the analytical request latency bound

for the evaluated controllers, the refresh impact is not included in this evaluation work. While

refreshes are infrequent, they can stall the memory controller for a significant amount of time;

hence, directly including the refresh time in the request latency would produce a pessimistic bound.

A DDR device is named in the format of DDR(generation)-(data rate)(version) such as DDR(3)-

(1600)(H). In each generation, the supported data rate varies. For example, for DDR3 the data rate

ranges from 800 to 2,133 Mega Transfers (MT)/s, while for DDR4 the rate starts from 1,600 and

goes up to 2,400MT/s. Note that since the device operates at DDR (two data transfers every clock

cycle), a device with 1,600MT/s is clocked at a frequency of 800MHz. In the same generation,

devices operating at the same speed with a lower version letter can execute commands faster than

devices with a higher version. For example, DDR3-1600H has (tRL − tRCD − tRP ) as 9 − 9 − 9 and

1,600K has 11 − 11 − 11, which is two cycles slower.

Based on the timing constraints in Table 1, we make the following three important observations.

(1) While the operation of banks can be in parallel, command and data must still be serialized be-

cause the MC is connected with the memory devices using a single command and a single data

bus. One command can be transmitted on the command bus every clock cycle, while each data

transmission (read or write) requires tBU S = 4 clock cycles. In this article, we use a burst length
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Fig. 3. Architecture of memory controller.

of 8 since it is supported by both JEDEC DDR3 and DDR4 devices. (2) Since consecutive requests

targeting the same row in a given bank do not require ACT and PRE commands, they can proceed

faster than requests targeting different rows; timing constraints that are required to precharge

and reactivate the same bank (tRC , tRAS , tW R , tRT P and tRP ) are particularly long. (3) Switching

between requests of different types (read/write) incurs extra timing constraints in the form of a

read-to-write (tRTW ) and write-to-read (tW L + tBU S + tW T R ) switching delays between CAS com-

mands. Such constraints only apply to CAS commands targeting banks in the same rank; for CAS

commands targeting banks in different ranks, there is a single, short timing constraint (tRT R ) be-

tween data transmissions, regardless of the request type.

3 MEMORY CONTROLLER DESIGN

Based on the background on DDR DRAM provided in Section 2, we now discuss the design of the

memory controller. In particular, in Section 3.1 we describe a common architectural framework

that allows us to categorize different MCs based on their key architectural features.

3.1 Hardware Architecture

A DRAM memory controller is the interface to the DRAM memory module and governs access to

the DRAM device by executing the requests as required by the timing constraints of the DRAM

specification. In doing so, the MC performs four essential roles: address mapping, request arbitra-

tion, command generation, and command scheduling as shown in Figure 3.

—Memory Address Mapping: Address mapping decomposes the incoming physical address

of a request into rank, bank, row, and column bits. The address translation determines

how each request is mapped to a rank and bank. There are two main classes of mapping

policies.

(1) Interleaved Banks: each requestor can access any bank or rank in the system. This pol-

icy provides maximum bank parallelism to each individual requestor, but suffers from

row interference since different requestors can cause mutual interference by closing

each other’s row buffers. Hence, predictable MCs using interleaving-banks also em-

ploy close-page policy, which ignores row locality. COTS MCs also typically employ

interleaved banks because in the average case, the row interference is often limited.

(2) Private Banks: each requestor is assigned its own bank or set of banks. This allows a

predictable MC to take advantage of row locality, since the behavior of one requestor

has no impact on the row buffer of other requestors’ banks. As a downside, the per-

formance of a requestor executing alone is negatively impacted, since the number of

banks that it can access in parallel is reduced. Sharing data among requestors also be-

comes more complex [32]. Finally, the number of requestors can be a concern due to

the limited number of ranks and banks. For example, a DDR3 memory supports only

up to four ranks and eight banks per rank, but a multi-core architecture may have 16

or more memory requestors.
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—Request Arbitration: While a MC only needs to schedule individual commands to meet

JEDEC timing constraints, in practice all considered MCs implement an additional front-

end request scheduler that determines the order in which requests are processed. We con-

sider three main arbitration schemes:

(1) (Non-work Conserving) Time Division Multiplexing (TDM): under TDM, each re-

questor is assigned one or more slots, and its requests can only be serviced during

assigned slot(s). If no request can be served during the assigned slot, then the slot is

wasted.

(2) Round Robin (RR) and Work-conserving TDM: compared to non-work conserving

TDM, unused slots are assigned to the next available requestor.

(3) First-Ready First-Come-First-Serve (FR-FCFS): COTS MCs generally implement some

variation of FR-FCFS scheduling to improve the memory bandwidth. This scheme pri-

oritizes requests that target an open row buffer over requests requiring row activa-

tion; open requests are served in FCFS order. FR-FCFS controllers always implement

an open-page policy. As shown in [33], if the MC does not impose any limit to the

number of reordered requests, no upper bound on request latency can be derived.

Therefore, based on experimental evaluation, the analysis in [14] derives a latency

bound assuming that at most 12 requests within a bank can be reordered ahead of a

request under analysis.

For a general-purpose system, the write operations are not in the critical path, therefore,

some MCs provide high priority for read requests and write requests can be served when

there is no read operation. Most real-time MCs treat these two types of requests equally

and provide individual latency or the maximum between the two. For the MCs evaluated

in this work, we take the maximum latency among the read and write requests as the

worst-case request latency.

—Command Generation: Based on the request type (read or write) and the state of the mem-

ory device, the command generation module generates the actual memory commands. The

commands generated for a given request depend on the row policy used by the MC and

the number of CAS commands needed by a request; this is determined by the data size of

the request and the size of each memory access. For instance, for aWBU S = 16 bits, each

operation transfers 16 bytes, thus requiring four accesses for a 64-byts request; whereas

for WBU S = 64 bits, only one access per request would be needed. The commands for a

request can be generated based on two critical parameters introduced in [21]: the number

of interleaved banks (BI) and the burst count for one bank (BC). The BI determines the

number of banks accessed by a request and the BC determines the number of CAS com-

mands generated for each bank. The value for BI and BC depends on the request size and

data bus width. Predictable MCs cover the whole spectrum between close-page policy,

open-page policy, and combined hybrid approaches.

(1) Open-Page: allows memory accesses to exploit row locality by keeping the row ac-

cessed by a previous request available in the row-buffer for future accesses. Hence,

if further requests target different column cells in the same row opened in the row-

buffer, then the command generator only needs to generate the required number of

CAS commands, incurring minimum access latency. Otherwise, if the further requests

target different rows, the command generator needs to create a sequence of commands

PRE+ACT and required CAS which results in longer latency.

(2) Close-Page: transitions the row-buffer to an idle state after every access completes

by using auto-precharge READ/WRITE commands. Hence, subsequent accesses place

data into the row-buffer using an ACT command prior to performing the read or write
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operation. The command generator only needs to create a sequence of ACT and CAS

commands. While this does not exploit row locality, all requests incur the same access

latency making them inherently predictable. Furthermore, the latency of a request

targeting a different row is shorter under close-page policy since the pre-charge op-

eration is carried out by the previous request.

(3) Hybrid-Page: a combination of both open and close policy for large requests that re-

quire multiple memory accesses (CAS commands). The CAS commands for one re-

quest can be a sequence of a number of CAS commands to leverage the benefit of row

locality, followed by a CASp command to precharge the open buffer.

—Command Scheduler: The command scheduler ensures that queued commands are sent to

the memory device in the proper order while honoring all timing constraints. Apart from

the page policy, we find that the biggest difference between predictable MCs is due to the

employed command scheduling policy.

(1) Static: Controllers using static command scheduling schedule groups of commands

known as bundles. Command bundles are statically created offline by fixing the order

and time at which each command is issued. Static analysis ensures that the commands

meet all timing constraints independently of the exact sequence of requests serviced

by the MC at runtime. Static command scheduling results in a simpler latency analy-

sis and controller design, but can only support close-page policy since the controller

cannot distinguish the row state at runtime.

(2) Dynamic: These controllers schedule commands individually. The command arbiter

must include a complex sequencer unit that tracks the timing constraints at runtime,

and determines when a command can be issued. Dynamic command scheduling allows

the controller to adapt to varying request types and bank states; hence, it is often used

in conjunction with open-page policy.

3.2 Other Features

Outside of the architectural alternatives discussed in Section 3.1, there are a few additional key

features that distinguish MCs proposed in the literature. First of all, in some systems, requests

generated by different requestors can have varying request sizes. For example, a processor gen-

erally makes a memory request in the size of a cache line, which is 64 bytes in most modern

processors. On the other hand, an I/O device could have memory requests up to kilobytes. Some

MCs are able to natively handle requests of different sizes at the command scheduler level; as

we will show in our evaluation, this allows one to trade off the latency of small requests versus

the bandwidth provided to large requests. Other MCs handle only fixed-size requests, in which

case large requests coming from the system must be broken down into multiple fixed-size ones

before they are passed to the memory controller.

Requestors can be further differentiated by their criticality (temporal requirement) as either

hard real-time (HRT) or soft real-time (SRT). Latency guarantees are the requirement for HRTs,

while for SRT, a good throughput should be provided while worst-case timing is not crucial. In

the simplest case, a MC can support mixed-criticality by assigning higher static priority to critical

requests over non-critical ones at both the request and command scheduling level. We believe that

all predictable MCs can be modified to use the fixed priority scheme. However, some controllers

are designed to support mixed-criticality by using a different scheduling policy for each type of

request.

Finally, as we described in the DRAM background, a memory module can be constructed with a

number of ranks. In particular, a memory module can have up to four ranks in the case of DDR3,

and up to 8eight for DDR4. However, only some controllers distinguish between requests targeting
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different ranks in the request/command arbitration. Since requests targeting different ranks do not

need to suffer the long read-to-write and write-to-read switching delays, such controllers are able

to achieve tighter latency bounds, at the cost of needing to employ a more complex, multi-rank

memory device.

4 RELATED WORK

Since memory is a major bottleneck in almost all computing systems, significant research effort

has been spent to address this problem. In particular, many novel memory controller designs have

been proposed in recent years, which we categorize into two main groups. Both groups attempt

to address the shortcomings of the commonly deployed FR-FCFS; although, each group focuses

on different aspects. The first group investigates the effect of FR-FCFS on conventional high-

performance multi-core platforms. In these platforms, FR-FCFS aims to increase DRAM through-

put by prioritizing ready accesses to an already-open row (row hits). This behavior may lead to un-

fairness across different running applications. Applications with a large number of ready accesses

are given higher priority; thus, other applications are penalized and may even starve. Researchers

attempt to solve these problems by proposing novel scheduling mechanisms such as ATLAS [17],

PARBS [24], TCM [18], and most recently, BLISS [29]. The common trend among all these designs

is promoting application-aware memory controller scheduling.

On the other hand, fairness is not an issue for real-time predictable memory controllers. In fact,

prioritization is commonly adopted by those controllers to favor critical cores, for instance. How-

ever, FR-FCFS is not also a perfect match for those controllers, yet for a different reason. Critical

applications executing on real-time systems must have bounded latency. Because of the prioriti-

zation and reorder nature of FR-FCFS, memory latency can be bounded by limiting the maximum

number of reorderings that can be performed, such as in [34] and [14]. However, we believe that

such bounds are generally over-pessimistic to be usable in practice since the interference caused

by multiple requestors competing for memory access is extremely high; hence, we do not consider

them in this evaluation. Instead, many works have been proposed to provide guaranteed memory

latency bounds for real-time systems [4, 6, 8, 10, 11, 13, 20, 21, 25, 27, 30, 33], of which we con-

sider [4, 6, 10, 11, 20, 21, 25, 33] in this comparative study. We briefly discuss the efforts we did not

consider in the study along with the reasons for this decision. Afterwards, we discuss the MCs we

consider in the study in detail in Section 4.1.

Goossen et al. proposed a mixed-row policy memory controller [8] that leaves the row open

for a fixed amount before closing it. This method requires aggressive memory accesses to take

advantage of the open row access windows, which are normally suitable for out-order memory

accesses. In our simulations, we proposed that every request is in order which may not fully utilize

the open windows. Reineke et al. designed the PRET controller [27] with private bank mapping.

This work is not taken into account because it relies on a specific precision-timed architecture

(PTARM [23]), which makes the controller incompatible with standard cache-based architectures.

Kim et al. [13] designed a mixed criticality with private bank mapping. The design is very similar

to ORP [13] and DCmc [11] except that it assumes a non-critical requestor can share the same

bank with the critical requestor with lower priority in the command level. MEDUSA [30] assigns

different priority for read and write requests, but all the other predictable MCs treat both requests

equally.

4.1 Predictable Memory Controller Analysis

In this section, we summarize the state-of-the-art predictable DRAM memory controllers [4, 6, 10,

11, 20, 21, 25, 33] described in the literature. In general, we consider as predictable all MCs that

are composable. A MC is composable if requestors cannot affect the temporal behavior of other
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Table 2. Memory Controllers Summary

AMC PMC RTMem ORP DCmc ReOrder ROC MCMC

Req. Size N Y Y N N N N N

Mix-Criti.
Fix

Prio.

Req.

Sched.
N N

Fix

Prio.
N Ranks

Fix

Prio.

Rank N N N N N Y Y Y

Addr. Map. Intlv. Intlv. Intlv. Priv. Priv. Priv. Priv. Priv.

Req. Sched. RR WC TDM
WC

TDM
Dirc RR Dirc Dirc TDM

Page Policy Close Hybrid Hybrid Open Open Open Open Close

Cmd. Sched. Static Static Dyn. Dyn. Dyn. Dyn. Dyn. Static

requestors [1]. This implies that applications running on different cores have independent tem-

poral behaviors, which allows for independent and incremental system development [16]. How-

ever, we notice that composability is used with two different semantics in the literature, which

we term analytically and runtime composable. A MC is analytically composable if it supports

an analysis that produces a predictable upper bound on request latency that is independent of

the behavior of other requestors. A MC is runtime composable if the runtime memory schedule

for a requestor is independent of the behavior of other requestors. Runtime composability implies

analytical composability, but not vice versa. All the selected designs are analytical composable,

however (non-work-conserving) TDM is the only arbitration that supports runtime composabil-

ity, potentially at the cost of degrading average-case performance. In Table 2, we classify each MC

based on its architectural design choices (address mapping, request arbitration, page policy, and

command scheduling) and additional features (variable request size, mixed criticality, and rank

support). Note that in the table, Dirc (direct) represents the case where command generation can

be performed in parallel for requestors with private banks such that the request at the head of each

request queue can be directly passed to the corresponding command queue.

4.1.1 Analyzable MC (AMC). AMC [25] is the first design for predictable MC which employs the

simplest scheduling scheme: static command scheduling with close-page policy is used to construct

ofline command bundles for read/write requests.

4.1.2 Programmable MC (PMC). PMC [10] employs a static command scheduling strategy with

four static command bundles based on the minimum request size in the system. For a request size

that can be completed within one bundle, PMC uses close-page policy. However, PMC divides

larger requests into multiple bundles using open-page policy. PMC also employs an optimiza-

tion framework to generate an optimal work-conserving TDM schedule. The framework supports

mixed-criticality systems, allowing the system designer to specify requirements in terms of either

maximum latency or minimum bandwidth for individual requestors. The generated TDM schedule

comprises several slots, and requestors are mapped to slots based on an assigned period.

4.1.3 Dynamic Command Scheduling MC (RTMem). RTMem [21] is a memory controller back-

end architecture using dynamic command scheduling and can be combined with any front-end

request scheduler; we decided to implement work-conserving TDM because it provides a fair ar-

bitration among all requestors. RTMem accounts for variable request size by decoding each size
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into a number of interleaved banks (BI) and a number of operations per bank (BC) based on a

pre-defined table. The BI and BC values are selected ofline to minimize the request latency.

4.1.4 Private Bank Open Row Policy MC (ORP). To the best of our knowledge, ORP [33] is the

first example of a predictable MC using private bank and open-page policy with dynamic command

scheduling. Latency bounds are derived assuming that the number of close-row and open-row

requests for an application are known, for example based on static analysis [3]. The MC uses

a complex FIFO command arbitration to exploit maximum bank parallelism, but still essentially

guarantees RR arbitration for fixed-size critical requests.

4.1.5 Dual-Criticality MC (DCmc). Similar to ORP, DCmc [11] uses a dynamic command sched-

uler with open page policy, but it adds support for mixed-criticality and bank sharing among

requestors. Critical requestors are scheduled according to RR, while non-critical requestors are

assigned lower priority and scheduled according to FR-FCFS. The controller supports a flexible

memory mapping; requestors can be either assigned private banks, or interleaved over shared

sets of banks. Our evaluation considers the private bank configuration since it minimizes latency

bounds for critical requestors.

4.1.6 Rank Switching, Open-row MC (ROC). ROC [20] improves over ORP using multiple ranks

to mitigate the tW T R and tRTW timing constraints. As noted in Section 2, such timing constraints

do not apply to operations targeting different ranks. Hence, the controller implements a two-level

request arbitration scheme for critical requestors: the first level performs a RR among ranks, while

the second level performs a RR among requestors assigned to banks in the same rank. ROC’s

rank-switching mechanism can support mixed-criticality applications by mapping critical and

non-critical requestors to different ranks. FR-FCFS can be applied for non-critical requestors.

4.1.7 Read/Write Bundling MC (ReOrder). ReOrder [4, 5] improves over ORP by employing

CAS reordering techniques to reduce the access type switching delay. It uses dynamic com-

mand scheduler among all the three DRAM commands: round-robin for ACT and PRE commands,

and read/write command reorder for the CAS command. The reordering scheme schedules CAS

commands in successive rounds, where all commands in the same round have the same type

(read/write). This eliminates repetitive CAS switching timing for read and write commands. If

there are multiple ranks, the controller schedules the same type of CAS in one rank, and then

switches to another, in order to minimize the rank switching.

4.1.8 Mixed Critical MC (MCMC). MCMC [6] uses a similar rank-switching mechanism as in

ROC, but applies it to a simpler scheduling scheme using static command scheduling with close-

page policy. TDM arbitration is used to divide the timeline into a sequence of slots alternating

between ranks. Each slot is assigned to a single critical requestor and any number of non-critical

requestors; the latter are assigned lower priority. The slot size can be minimized by using a suf-

ficient number of ranks to mitigate the tW T R /tRTW timing constraints and a sufficient number of

slots to defeat the intra-bank timing constraints. As with TDM arbitration, the main drawback of

this approach is that bandwidth will be wasted at runtime if no requestor is ready during a slot.

4.2 Analytical Worst-Case Memory Access Latency

As discussed in Section 4.1, all considered predictable MCs are analytically composable. In

particular, all authors of cited papers provide, together with their MC design, an analytical

method to compute a worst-case bound on the maximum latency suffered by memory requests

of a task running on a core under analysis, which is considered one of the memory requestors.

This bound depends on the timing parameters of the employed memory device, any other static
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system characteristics (such as the number of requestors), and potentially the characteristics of

the tasks (such as the row hit ratio), but does not depend on the activity of the other requestors.

To do so, all related work assumes a task running on a fully timing compositional core [31],

such that the task can produce only one request at a time, and it is stalled while waiting for the

request to complete. The WCET of the task is then obtained as the computation time of the task

with zero-latency memory operations plus the computed worst-case total latency of memory

operations. Note that in general no restriction is placed on soft or non-real-time requestors, i.e.,

they can be out-of-order cores or DMA devices generating multiple requests at a time.

In the rest of this section, we seek to formalize a common expression to compute the mem-

ory latency induced by different predictable controllers. Inspired by the WCET derivation method

detailed in [14, 33], we shall use the following procedure: (1) for a close-page controller, we com-

pute the worst -case latency LatencyReq of any request generated by the task. Assuming that the

task under analysis produces NR memory requests, the total memory latency can then be upper

bounded by NR · LatencyReq . (2) For an open page controller, we compute worst-case latencies

LatencyReq−Open and LatencyReq−Close for any open and close request, respectively. Assuming

that the task has row hit ratio HR, we can then simply follow the same procedure used for close-

page controllers by defining

LatencyReq = LatencyReq−Open · HR + LatencyReq−Close · (1 − HR). (1)

Based on the discussion above, Equations (2) and (3) summarize the per-request latency for a

close-page and an open-page MC, respectively, where HR is the row hit ratio of the task and REQr
is either the number of requestors in the same rank as the requestor under analysis (for controllers

with rank support), or the total number of requestors in the system (for controllers without rank

support).

LatencyReq = BasicAccess + Inter f erence · (REQr − 1) , (2)

LatencyReq = (BasicAccess + RowAccess · (1 − HR)) (3)

+ (Interference + RowInter · (1 − HR)) · (REQr − 1).

In the proposed latency equations, we factored out the terms HR and REQr to represent the fact

that for all considered MCs, latency scales proportionally to REQr and (1 − HR). The four latency

components, BasicAccess , RowAccess , Interference, and RowInter , depend on the specific MC and

the employed memory device, but they also intuitively represent a specific latency source. For a

close-page controller,BasicAccess represents the latency encountered by the requests itself, assum-

ing no interference from other requestors; note that since predictable MCs treat read and write op-

erations in the same way, their latency is similar and we thus simply consider the worst case among

the two. Interference instead expresses the delay caused by every other requestor on the commands

of the request under analysis. For an open-page controller, BasicAccess and Interference represent

the self-latency and interference delay for an open request, while RowAccess and RowInter repre-

sent the additional latency/interference for a close request, respectively. We will make use of this

intuitive meaning to better explain the relative performance of different MCs in Section 5.

We tabulate the values of these four latency terms for all covered MCs in Table 3. Equations are

derived based on the corresponding worst-case latency analysis for each MC. We refer the reader

to [4–6, 10, 11, 20, 25, 33] for detailed proofs of correctness and tightness evaluation; we then show

how to derive the latency expression for each MC in Appendix B. In particular, note that the authors

of [4, 5] make a different assumption on the arrival pattern of requests compared to this work;

hence, in Appendix A we show how to adapt the analysis. While the numeric values in Table 3 are

specific for a DDR3-1600H memory device, the general equations and related observations hold
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Table 3. MC General Equation Components (K (cond ) Equals 1 if cond is Satisfied and 0 Otherwise)

RowInter Interference BasicAccess RowAccess

AMC NA (15 · K (BI = 8) + 42) · BC (15 · K (BI = 8) + 42) NA

PMC

RTMem
NA

K (BC = 1) · ((15 · K (BI =
8) + 42)) +K (BC >
1) · ((4 · BC + 1) · BI +
13 + 4 · K (BI = 8))

K (BC = 1) · ((15 · K (BI =
8) + 42)) +K (BC �
1) · ((4 · BC + 1) · BI + 13 +

4 · K (BI = 8))

NA

DCmc 0 28 · BC 13 · BC 18

ORP 7 13 · BC 19 · BC + 6 27

ReOrder 7 + 3R 8R · BC (8R + 25) · BC 33 + 3R

ROC 3 · R + 6 (3 · R + 12) · BC (3 · R + 24) · BC + 6 3 · R + 27

MCMC NA

Slot · R · BC Slot · R · BC + 22

Where Slot =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

42/PE i f (REQr ≤ 6) ∧ (R ≤ 2)

9 i f (R = 2) ∧ (REQr > 6)

7 Otherwise

NA

FR-FCFS 0 224 · BC 24 · BC 18

for all considered memory devices. In the table, BI and BC represent the bank interleaving and

burst count parameters, as discussed in Section 3.1, while R represents the number of ranks of the

memory module.

For MCs that support multiple ranks, when the number of requestors in each rank is the same,

the expression can be rearranged to be a function of the total number of requestors in the sys-

tem REQ , instead of using the requestors per rank REQr . The expression is demonstrated in

Equation (4).

Based on Equation (4), we introduce four alternative terms: Interference (perREQ) =
Inter f er ence

R

and RowInter (perREQ) = RowInter
R

to represent the interference from any other requestors, and

the self-latency terms BasicAccess (perREQ) = BasicAccess − Inter f erence · (R−1)
R

and RowAccess

(perREQ) = RowAccess − RowInter · (R−1)
R

. These terms will be used in Tables 5 and 6 to compare

the analytical terms between MCs with and without rank support.

LatencyReq = (BasicAccess + RowAccess · (1 − H R )) + (Inter f er ence + RowInter · (1 − H R )) ·
(

REQ

R
− 1

)

=

(
BasicAccess − Inter f er ence · (R − 1)

R

)
+

(
RowAccess − RowInter · (R − 1)

R

)
· (1 − H R )

+

(
Inter f er ence

R
+

RowInter

R
· (1 − H R )

)
· (REQ − 1). (4)

5 EXPERIMENTAL EVALUATION

We next present an extensive experimental evaluation of all considered predictable MCs. We

start by discussing our experimental framework in Section 5.1. Then, we show results in terms

of both simulated latencies and analytical worst-case bounds in Section 5.2. In particular, we

start by showing execution time results for a variety of memory-intensive benchmarks. We then

compare the worst-case latencies of the MCs based on the number of requestors and row hit

ratio, as modeled in Section 4.2. At last, we evaluate both the latency and bandwidth available

to requestors with different properties (request sizes and criticality) and on different memory
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Table 4. EEMBC Benchmark Memory Traces

Benchmark Computation Time (ns) Number of Requests Bandwidth (MB/s) Row Hit Ratio

a2time 660,615 2,846 275 0.35

cache 1,509,308 5,503 233 0.18

basefp 1,051,300 3,336 202 0.30

irrflt 1,022,514 3,029 189 0.33

aifirf 1,035,458 2,765 170 0.40

tblook 1,152,044 2,865 159 0.35

modules (data bus width and speed). Finally, based on the obtained results, Section 5.3 provides

a discussion of the relative merits of the different MCs and their configurations.

5.1 Experimental Framework

The way the discussed MCs have been evaluated in their respective papers is widely different

in terms of selected benchmarks and evaluation assumptions such as the operation of the front-

end, the behavior of the requestors, and the pipelining through the controller. The consequence is

that it is not possible to directly compare the evaluation results of these designs with each other.

Therefore, we strive to create an evaluation environment that allows the community to conduct a

fair and comprehensive comparison of existing predictable controllers.

We select the EEMBC auto benchmark suite [26] as it is representative of actual real-time ap-

plications. Using the benchmark, we generate memory traces using MACsim architectural simu-

lator [15]. The simulation uses a x86 CPU clocked at 1GHz with private 16KB level 1, 32KB level

2, and 128KB level 3 caches. The output of the simulation is a memory trace containing a list of

accessed memory addresses together with the memory request type (read or write), and the arrival

time of the request to the memory controller. In Table 4, we present the information for memory

traces with bandwidth higher than 150MB/s, which can stress the memory controller with in-

tensive memory accesses. We provide the computation time of each application without memory

latency, the total number of requests, and the open request (row hit) ratio. An essential note is

related to the behavior of the processor. As discussed in Section 4.2, to obtain safe WCET bounds

for hard real-time tasks, all related work assume a fully timing compositional core [31]. Therefore,

we decided to run the simulations under the same assumption: in the processor simulation, traces

are first derived assuming zero memory access latency. The trace is then fed to a MC simulator

that computes the latency of each memory request. In turn, the request latency is added to the

arrival time of all successive requests in the same trace, meaning a request can only arrive to the

memory controller after the previous request from the same requestor has been complete. This

represents the fact that the execution of the corresponding application would be delayed by an

equivalent amount on a fully timing compositional core.

Each of the considered MCs is designed with a completely different simulator, which varies in

simulation assumption as we described above, and simulation model such as event-driven or cycle-

accurate. In this case, it is very difficult to fairly evaluate the performance of these controllers by

running individual simulators. Therefore, we have implemented all the designs based on a common

simulation engine, which allows us to realize each memory controller by specifying their memory

address mapping, request scheduler, command generator, and command scheduler. We use state-

of-the-art DRAM device simulator Ramulator [19] as the DRAM device model in the simulation

framework because Ramulator provides a wide range of DRAM standards.

In this way, we can guarantee that all designs are running with the same memory device, the

same type of traces, the same request interface, and no delay through the memory controller. For all
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Fig. 4. EEMBC Benchmark WCET with eight 64B REQs and 64bit Data Bus.

analyses and simulations, we use the timing constraints of the DDR3-1600H 2GB device provided

in Ramulator. We configured each controller for best performance; AMC, PMC, and RTMem are

allowed to interleave up to the maximum number of banks per rank (eight) based on the request

size and the data bus width. ROC and MCMC are configured to use up to four ranks. In DCmc,

we assume no bank sharing is allowed between HRT requestors. In the following experiments,

in order to stress the memory utilization, we used one of the listed EEMBC benchmarks as the

trace under analysis, and depending on the number of requestors (REQ) connected to the memory

controller, we applied (REQ -1) synthetic benchmarks with memory bandwidth greater than 1GB/s

to maximize the memory utilization and interference to the trace under analysis.

5.2 Evaluation Results

5.2.1 Benchmark Execution Times. We demonstrate the worst-case execution time in Figure 4

for all the selected memory intensive benchmarks. In all experiments in this section, unless oth-

erwise specified, we set up the system with eight requestors (REQs), where REQ0 is considered as

the requestor under analysis and is executing one benchmark. We also assume 64 bytes requests

with a bus sizeWBU S = 64 bits. For controllers using multiple ranks (ReOrder, ROC, and MCMC),

requestors are evenly split among ranks, leading to four requestors per rank with two ranks, and

two requestors per rank with four ranks. When measuring the execution time of the benchmark,

the simulation will be stopped once all the requests in REQ0 have been processed by the memory

controller. The execution time of each benchmark is normalized based on the analytical bound of

AMC. The color bar represents the simulated execution time for the requestor (benchmark) under

analysis and the T-sharp bar represents the analytical worst-case execution time.

To best demonstrate the performance for each MC, in the rest of the evaluation, we use the

benchmark with highest bandwidth a2time, and we plot the worst-case per-request latency

LatencyReq , so that results are not dependent on the computation time of the task under anal-

ysis. For the analytical case, LatencyReq is derived according to either Equation (2) or Equation (3),

while in the case of simulations, we simply record either the maximum latency of any request (for

close-page controllers) or the maximum latencies of any open and any close request (for open-page

controllers), so that LatencyReq can be obtained based on Equation (1).

5.2.2 Number of Requestors. In this experiment, we evaluate the impact of the number of

requestors on the analytical and simulated worst-case latency per memory request of REQ0.

Figures 5 and 6 show the latency of a close request and an open request as the number of requestors

varies from 4 to 16.3 Furthermore, in Table 5 we show the analytical equation components for all

3Note that since ORP and DCmc assign one REQ per bank and use a single rank, for the sake of fair comparison we assume

they can access 16 banks even when using DDR3.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 53. Publication date: February 2018.



A Comparative Study of Predictable DRAM Controllers 53:15

Fig. 5. WC latency per close request of REQ0 wtih 64-bit data bus.

Fig. 6. WC latency per open request of REQ0 wtih 64-bit data bus.

Table 5. WC Latency (perREQ) Components with BI=1, BC=1

AMC/PMC/RTMem DCmc ORP ROC 2/4 ReOrder 1/2/4 MCMC 2/4

Interference 42 28 13 9 6 8 9 7

RowInterfer NA 0 7 6 5 9 6 4 NA

BasicAccess 42 13 25 25 24 33 31 29

RowAccess NA 18 27 27 25 39 33 31 NA

MCs.4 We make the following observations: (1) For interleaved banks MCs (AMC, PMC, and RT-

Mem), latency increases exactly proportionally to the number of requestors: Interference is equal

to RowInter. The latency components are also larger than other controllers, because these MCs

implement scheduling at the request level through an arbitration between requestors. In this case,

one requestor gets its turn only when other previously scheduled requestors complete their re-

quests. The timing constraint between two requests is bounded by the re-activation process of the

same bank, which is the longest constraint among all others. Therefore, increasing the number of

requestors has a large effect on the latency. (2) Bank privatized MCs (DCmc, ORP, ReOrder, ROC,

and MCMC) are less affected by the number of requestors because each requestor has its own bank

and it only suffers interference from other requestors on different banks. The timing constraints

between different banks are much smaller than constraints on the same bank. Dynamic command

scheduling is used in DCmc, ORP, ReOrder, and ROC to schedule requestors at the command level.

Increasing the number of requestors increases the latency for each command of a request, there-

fore, the latency for a request also depends on the number of commands it requires. For example,

a close request in open-page MCs can suffer interference from other requestors for PRE, ACT, and

4Note that since the request size is 64 bytes and the data bus width is 64 bits, each request can be served by one CAS

command with a burst length of 8. Therefore, the parameter BI and BC is set to 1.
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Fig. 7. Average request latency for open-page MCs.

CAS commands. MCMC uses fixed TDM to schedule requestors at the request level. Increasing the

number of requestors increases the number of TDM slots one requestor suffers. (3) MCs that are

optimized to minimize read-to-write and write-to-read penalty (ReOrder, ROC, and MCMC) have

much lower interference, especially for open requests, compared to other controllers. For close re-

quests, MCMC achieves significantly better results than other controllers, since it does not suffer

extra interference on PRE and ACT commands. Note that for ReOrder, the open request latency

does not change with different number of ranks, while the close request latency is reduced due to

less interference on PRE and ACT commands. Furthermore, the simulated latency in some cases

increases with the number of ranks because the rank switching delay can introduce extra latency

compared to executing a sequence of commands of the same type in a single rank system.

5.2.3 Row Locality. As we described in Section 3, the row hit ratio is an important property of

the task running as a requestor for MCs with open-page policy. In this experiment, we evaluate

the impact of row hit ratio on the worst-case latency of open-page MCs ORP, DCmc, ReOrder, and

ROC. In order to maintain the memory access pattern, and change the row hit ratio, we synthet-

ically modify the request address to achieve a row hit ratio from 0% to 100%. Instead of showing

the worst latency for both close and open requests, we take the average latency of the application

as the general expression proposed in Section 4.2. As expected, in Figure 7 we observe that both

the analytical latency bound and the simulated latency decrease as the row hit ratio increases.

The impact of row hit ratio can be easily predicted from the equation based on the RowAccess and

RowInter components.

5.2.4 Data Bus Width. In this experiment, we evaluate the request latency by varying the data

bus widthWBU S from 32 to 8 bits. Using smaller data bus width, same size of request is served with

either interleaving more banks or multiple accesses to the same bank. The commands generated

by the bank privatized MCs depend on the applied page policy. For open-page private MCs (DCmc,

ORP, ReOrder, and ROC), a PRE+ACT followed by a number of CAS commands are generated for

a close request. On the other hand, MCMC needs to perform multiple close-page operations, and

each request needs multiple TDM rounds to be completed. The analytical and simulated worst-

case latency per request is plotted in Figure 8, while Table 6 shows the analytical components as

a function of the number of interleaved banks BI for interleaved MCs and number of consecutive

accesses to the same bank BC for private bank MCs; for example, with 64 bytes request size and

8 bits data bus, interleaved banks MCs interleave through BI=8 banks and bank privatized MCs

require BC=8 accesses to the same bank. We can make the following observations: (1) The ana-

lytical bound for MCs with interleaved bank mapping is not affected by the size of the data bus of

32 or 16 bits because the activation window for the same bank (tRC ) can cover all the timing con-

straints for accessing up to four interleaved banks. In the case of 8 bits width, the MCs interleave

over eight banks, resulting in 36% higher latency because of the timing constraints between the
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Fig. 8. Worst-case latency per request of REQ0 with eight REQs.

Table 6. WC Latency (perREQ) Components with 8 REQ(Ex = 15 · K (BI = 8))

AMC/PMC/

RTMem DCmc ORP ROC 2/4 ReOrder 1/2/4 MCMC 2/4

Interference 42 + Ex 28BC 13BC 9BC 6BC 8BC 9BC 7BC

RowInter NA 0 7 4 3 9 6 4 NA

BasicAccess 42 + Ex 13BC 19BC + 6 21BC + 6 18BC + 6 33BC 31 29

RowAccess NA 18 27 27 26 39 33 31 NA

CAS commands in the last bank of a request and the CAS command in the first bank of the next

request (such as tW T R ). Interleaved banks MCs can process one request faster by taking benefit of

the bank parallelism for a request, hence leading to better access latency. (2) Both the analytical

bound and the simulation result for MCs with private bank increase dramatically when the data

bus width gets smaller; both Interference and BasicAccess are linear or almost linear with BC, given

that each memory request is split into multiple small accesses. However, RowInter and RowAccess

are unchanged, since the row must be opened only once per request.

5.2.5 Memory Device. The actual latency (ns) of a memory request is determined by both the

memory frequency and the timing constraints. In general, the length of timing constraints in num-

ber of clock cycles increases when the memory device gets faster. Each timing constraint has a

different impact on MCs designed with different techniques. For example, the 4-Activation win-

dow (tF AW ) has an impact on interleaved bank MCs if one request needs to interleave over more

than four banks, and affects private bank MCs only if there are more than four requestors in

the system. In this experiment, we look at the impact of memory devices on both the analyti-

cal and simulated worst-case latency. We run each MC with memory devices from DDR3-1066E

to DDR3-2133L which cover a wide range of operating frequencies. We also show the difference

between devices running in same frequency but different timing constraints such as DDR3-1600K

and DDR3-1600H. Figure 9 represents the latency per request for each MC, and it shows that as the

frequency increases, the latency decreases noticeably for MCs with private bank mapping, while

MCs with interleaved banks exhibit little change. This is because the interleaved banks MCs are

bounded by the re-activation window to the same bank, which does not change much with the

operating frequency.

5.2.6 Large Request Size. In this experiment, we consider different request sizes. We configure

the system to include four requestors with a request size of 64 bytes (simulating a typical CPU),

and four requestors generating large requests with a size of 2,048 bytes (simulating a DMA device).

RTMem and PMC are the only controllers that natively handle varying request sizes. RTMem has
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Fig. 9. Worst-case latency per request of REQ0.

Table 7. Large Request Configuration

AMC PMC1 PMC2 PMC3 RTMem4/8 RTMem8/4

BI=4

BC=8
[0 1 2 3 4 5 6 7]

[0 1 2 3 4 5]

[0 1 2 3 6 7]

[0 1 2 3 4] [0 1 2 3 5]

[0 1 2 3 6] [0 1 2 3 7]

BI=4

BC=8

BI=8

BC=4

Fig. 10. WC latency of 64B REQ0. Fig. 11. Bandwidth of 2,048B REQ7.

a lookup table of BI and BC based on the request size, while PMC uses a different number of

scheduling slots for requestors of different types. Overall, we employ the following configuration:

(1) AMC interleaves four banks with auto-precharge CAS commands, given that interleaving can

go up to four banks without any delay penalty, and performs multiple interleaved accesses based

on the request size; (2) PMC changes the scheduling slot order for different requestor types to trade

off between latency and bandwidth; (3) RTMem changes the commands pattern for large requests;

(4) private bank MCs (ORP, DCmc, ReOrder, ROC, and MCMC) do not differentiate the request

size, and each large request is served as a sequence of multiple accesses, similarly to the previous

experiment with small data bus width. The configuration for AMC, RTMem, and PMC is shown in

Table 7. PMC executes all the predefined slot sequences in the configuration and repeats the same

order after all the sequences are processed. In detail, the number in each sequence is the requestor

ID and the order in the sequence is the order of requestor arbitration. In short, PMC_1 assigns

one slot per requestor; PMC_2 assigns double the number of slots to small requests compared to

large requests; and PMC_4 assigns to small requests four times the number of slots. The worst-case

latency per request for REQ0 with 64 bytes request is shown in Figure 10 and the bandwidth of

REQ 7 with 2,048 bytes request is shown in Figure 11. For private bank MCs, the access latency

for small requests is not affected by the large requests because all the requestors are executed in

parallel and the interference is only caused by memory commands instead of the requests. AMC is

not affected because the slot for each requestor is the same based on the configuration. On the other

hand, the bandwidth for the large requestor is low compared to MCs that take the request size into

consideration. RTMem can switch the command pattern for a large request. The latency for the

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 53. Publication date: February 2018.



A Comparative Study of Predictable DRAM Controllers 53:19

Table 8. Mixed Critical System Configuration for Multi-Rank MCs

ROC2/ReOrder2 ROC4_1/ReOrder4 ROC4_2 MCMC2 MCMC4

Rank 0 8HRT 4HRT 3HRT 4HRT+4SRT 2HRT+2SRT

Rank 1 8SRT 4HRT 3HRT 4HRT+4SRT 2HRT+2SRT

Rank 2 NA 4SRT 2HRT NA 2HRT+2SRT

Rank 3 NA 4SRT 8SRT NA 2HRT+2SRT

Fig. 12. WC latency of of HRT REQ0. Fig. 13. Bandwidth of SRT REQ8.

small requestor is slightly higher when the large request is configured as [BI=4, BC=8] comparing

to [BI=8 and BC=4]. However, the bandwidth is slightly increased. Based on the arbitration scheme

of PMC, the latency for small request and bandwidth for large requestor are greatly affected. The

tradeoff between the latency and bandwidth is very obvious.

5.2.7 Mixed Criticality. The system is configured with eight HRT REQs as before, but on top of

that, there are another eight SRT REQs in the system. We can observe how much impact the SRT

REQs can have on the HRT REQs and the performance of SRT requestor in each MC. AMC, DCmc,

and MCMC assign priority to HRT over SRT requestors. PMC employs a predefined slot sequence

similar to PMC2 in Table 7, which schedules four SRT with eight HRT REQs in one round. ROC

and ReOrder 2/4 assign different ranks to HRT and SRT REQs. However, the analysis for ReOrder

2/4 implicitly assumes an equal number of requestors in each rank; on the other hand, we test two

different configurations for ROC, since the latency bound depends only on the number of other

HRT requestors assigned to the same rank. Note that all open-page MCs have been configured to

apply FR-FCFS for SRT REQs to maximize the bandwidth.5 ROC, ReOrder 2/4, and MCMC require

specific assignments of HRT and SRT requestors to individual ranks; the employed configurations

are detailed in Table 8.

Results are plotted in terms of latency for HRT REQ0 in Figure 12 and bandwidth for SRT REQ8

in Figure 13. For MCs that do not differentiate HRT and SRT REQs (RTMen, ORP, and ReOrder),

the latency is the same as having 16 REQs in the system. The analytical latency of a HRT request

for AMC and DCmc is increased due to the possibility of scheduling one SRT requestor before a

HRT requestor. PMC can trade off the latency for HRT and the bandwidth for SRT by employing

different slot sequence. ROC can adjust the tradeoff by allocating requestors in different ranks.

In general, open-page MCs perform much better in terms of available bandwidth for SRT REQs

compared to close-page MCs, since they can take advantage of row hits and requests reordering

in the average case. In particular, note that while MCMC on two ranks has the second lowest

5DCmc [11], ROC [20], and ReOrder 2/4 [5] specifically mention such policy for SRT REQs. We have extended the request

scheduler of ORP and ReOrder 1 to support the same configuration for the sake of fair comparison. We do not apply such

policy to close-page MCs since it would not yield any benefit.
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analytical latency for HRT REQs, it provides almost no bandwidth to SRT REQs. This is because

the slot size for MCMC on two ranks is fairly large, leading to low memory utilization.

5.3 Discussion

Based on the obtained results, we now summarize the key takeaways of the evaluation.

5.3.1 Memory Configuration. The characteristics of the employed memory module: data bus

width, memory device speed, and number of ranks, have a significant impact on the relative per-

formance of the tested MCs. Out of the three main characteristics, the data bus width seems by far

the most important. A memory device with smaller data bus can be better utilized by MCs with

interleaved banks because each request can be served by accessing a number of banks in parallel.

On the other hand, private bank MCs can have better memory access latency when wider data bus

is used, where a memory request can be served with less accesses to the same bank. In general, pri-

vate bank MCs perform better for bus width of 32 bits and above, while interleaved bank MCs pull

ahead at widths of 16 bits and below. At the same time, it is important to recognize that bus width

is the major factor in the cost of the main memory subsystem: while doubling the data bus width

or doubling the number of ranks both require doubling the number of DRAM chips, an enlarged

data bus width also requires adding extra physical pins to the memory controller, which can be ex-

pensive. In addition, private bank MCs show moderate improvements in latency on faster devices,

and significant improvements in both latency and bandwidth from increasing the number of ranks

(see also Section 5.3.2). However, the impact of faster memories is negligible for interleaved bank

MCs since the bounding constraint of re-activation to the same bank is almost constant through

all devices.

In summary, based on performance alone, we believe that interleaved bank MCs are suitable for

simple microcontrollers, employing small bus width of 8 or 16 bits and slow, single rank devices,

while private bank MCs allow improved performance at higher cost on more complex systems.

However, outside of the performance/cost tradeoff, it is also important to recognize that private

bank MCs impose a more complex system configuration: main memory must be partitioned among

requestors. Note that if data must be shared among multiple HRT requestors, such data can be

allocated to a shared bank [11], but the resulting latency bound for accesses to shared data then

becomes similar to AMC as the controller cannot avoid row conflicts.

5.3.2 Write-Read Switching. Among private bank MCs, the latency bounds for ReOrder, ROC,

and MCMC are generally significantly better than ORP and DCmc: this is because the arbi-

tration schemes used by the former are designed to minimize the impact of the long read-to-

write and write-to-read switching delays, either by reordering CAS commands, or by switch-

ing between ranks. Among the three MCs, MCMC shows the smallest latencies, followed by

ROC/ReOrder 2/4 and ReOrder 1. Given that the main difference between MCMC and ROC is

the page policy (close vs. open), a relevant takeaway is that based on current analysis technol-

ogy, there seems to be no advantage in employing open-page policy for latency minimization:

based on Table 5, for open requests ROC performs slightly better than MCMC, but it suffers a

heavy penalty hit for close requests. This is because MCMC can construct an efficient, TDM-like

memory schedule that effectively pipelines the delays suffered by the PRE, ACT, and CAS com-

mands, while the analysis for open-page controllers requires adding the interference on PRE, ACT,

and CAS: again looking at Table 5, ROC and MCMC have the same Interference term, but ROC

suffers from an additional RowInter term which adds an extra 55%–66% latency for close-page

accesses.

ReOrder 2/4 shows similar latency bounds to ROC, albeit ROC scales slightly better with the

number of requestors on four ranks (see Table 5). It also offers better average bandwidth for SRT
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and large size requestors compared to ROC. MCMC shows poor performance in terms of provided

bandwidth to both SRT and large size requestors, especially for the two ranks case, due to poor

average memory utilization and close-page policy. It also imposes the most constraints on the

system by requiring TDM arbitration: a SRT requestor cannot be assigned to more than one slot,

meaning that with eight HRT requestors, no SRT requestor could consume more than 1/8 of the

provided throughput under any circumstance. This could be a significant issue for devices such

as GPU which can typically saturate memory bandwidth even when running alone. Finally, we

need to notice that the evaluation has been conducted using the tRT R (rank-to-rank switching)

timing constraint suggested by Ramulator, which is 2 for all devices. For memory modules with

larger values of tRT R [5], the performance of both ROC and MCMC would rapidly drop, since the

Interference term for both MCs cannot be smaller than tBU S + tRT R , while ReOrder 2/4 is much less

affected.

5.3.3 Latency and Bandwidth Tradeoffs. When a system is characterized by different size of

requests or mixed temporal criticality requirements, a tradeoff between latency and bandwidth

must be considered by the designer as shown in the experiments in Sections 5.2.6 and 5.2.7. In

general, PMC appears more suitable for handling systems with various request sizes because it

can be explicitly configured to handle the tradeoff. RTMem provides the best bandwidth to large

requests, but it does so at the cost of increasing latency for small requests compared to AMC by

100%. For SRT requestors, the fixed priority mechanism employed by AMC, DCmc, and MCMC can

strongly limit the bandwidth of SRT requestors depending on the workload of the HRT requestors;

in general, no guarantee can be made on minimum bandwidth offered to SRT requestors. Apart

from PMC, ROC and ReOrder 2/4 can also provide guaranteed bandwidth to SRT requestors by

allocating them to dedicated ranks, at the cost of increased latency for HRT requestors.

5.3.4 Analytical Bounds vs. Simulation Results. We can make three important observations re-

garding the difference between the analytical latency and the simulated worst-case latency in the

provided experiments: (1) they are identical for MCs with static command scheduling and close-

page policy (AMC, PMC, and MCMC) because the schedule slot is calculated based on the worst

timing constraints in all situations; (2) they have slight difference for the only MC with dynamic

command scheduling and close page (RTMem) because the scheduler can differentiate the type

of commands and the location the command targets. The opportunity for the worst-case scenario

to happen is highly depending on the actual memory request pattern; (3) they have relative large

difference for MCs with dynamic command scheduling and open-page policy (DCmc, ORP, Re-

Order, and ROC). We believe this indicates that the analyses for these controllers are fundamen-

tally pessimistic, especially for close-page accesses. As noted in Section 5.3.2, the analysis derives

the bound by adding together the maximum delays suffered by each command of a request, but this

cannot happen in reality: if a request suffers maximum interference on its ACT command, then it

should not be able to suffer maximum interference on its CAS command as well (see also [34] for

an in-depth discussion on the problem, but note that the presented approach cannot be directly

extended to controllers that reorder commands). Hence, we believe it is important to focus on de-

riving tighter analysis for MCs with dynamic command scheduling. An approach based on model

checking is proposed in [22] and applied to RTMem, but its high computational complexity seems

to make it inapplicable to a large number of requestors and open-page MCs.

6 CONCLUSIONS

The performance of real-time multicore systems can be highly impacted by the behavior of the

memory controller. A large number of design proposals [4–6, 10, 11, 20, 21, 25, 33] for predictable

DRAM controllers have been recently proposed in the literature; however, due to the complexity
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of comparing multiple controllers on an even ground, there is a significant lack of experimen-

tal evaluation. This article has attempted to bridge such gap by both comparing state-of-the-art

predictable controllers based on key configuration parameters, and by proposing an experimental

and analytical evaluation based on memory traces generated using EEMBC benchmarks. We be-

lieve our results show that there is no universally better controller; rather, the choice of controller

should be guided by the desired memory configuration, analytical guarantees, and application

characteristics.
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