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 Real-time systems aRe those systems whose 
proper behavior depends not only on their function-
ality but also on their response time. Until recently, 
real-time systems have been limited to safety- 
critical domains such as avionics and spacecrafts. 
However, with the emanating cyber-physical sys-
tems (CPS) and Internet-of-Things (IoT) revolu-
tion, real-time systems are becoming ubiquitous  
in many emerging domains. Examples include trans-
portation such as smart vehicles, infrastructures 
such as power grids, healthcare such as implantable 
devices, and industrial environment such as robots. 
These domains pose two new major aspects that 
did not traditionally exist in real-time systems: the 
mixed-criticality nature of its software applications 
and the multiple-processor SoC (MPSoC) architec-
ture of its hardware components. 
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Mixed-criticality  
systems (MCSs) 

These domains are no 
longer solely hosting iso-
lated safety- critical tasks. 
Instead, they execute var-
ious tasks with different 
criticalities, where the 
criticality of a task is deter-

mined based on the consequences of the failure to 
meet its requirements. For instance Figure 1 illus-
trates a subset of the tasks embedded on a modern 
vehicle. Tasks such as the antilock braking system 
(ABS), the steering, and the engine control units are 
of high-criticality. Meeting the timing requirements 
of those tasks [historically known as hard real-time 
(HRT) tasks] is a life-safety condition. Other tasks 
such as the infotainment system and the connec-
tivity box (such as internet, radio, WiFi, etc.) are of 
low criticality in the sense that they do not require 
strict timing guarantees. Instead, their proper func-
tionality requires a high average-case performance. 
A third class of tasks contains tasks with medium 
criticality, known as soft real-time (SRT) tasks, 
such as the navigation system and the instrument 
cluster in a vehicle. They require a predictable exe-
cution time, which is not as strict as higher critical 
tasks, as well as a reasonable average-case perfor-
mance. The number of criticality levels is domain 
specific and is not limited to three. For instance, 
the DO-178C avionics standard defines five levels of 
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assurance, whereas the  ISO-26262 defines four auto-
motive safety integrity levels. 

MPSoCs 
MPSoCs are appealing platforms for emerging 

MCS domains primarily due to the benefits they 
provide in cost, area, power consumption, and 
performance compared to traditional computing 
systems. In addition, heterogeneous MPSoCs allow 
customized solutions to increase these benefits. The 
main intuition is that designing a single processing 
element (PE) to meet conflicting requirements of 
MCS tasks is inefficient due to the limited cost, area, 

and battery budgets of MCS. Contrarily, designing 
custom PEs toward meeting those requirements has 
already proved its efficaciousness in current SoCs. 
Examples include specialized digital signal proces-
sors (DSPs), cipher, and multimedia PEs. In fact, 
one of the early motives of evolving MPSoCs was the 
real-time, low area, and low-power demands from 
embedded systems [1]. The envision for MCS is that 
a task with a particular criticality can be scheduled 
in an expedient core with the appropriate level of 
hardware predictability. Figure 2 delineates an 
example of such heterogeneous MPSoC architec-
ture. In the near future, MPSoCs are expected to 
be used in all embedded system domains [2], [3]. 
To make this a reality, researchers made sincere 
efforts to provide MPSoCs tailored for safety-critical 
tasks (e.g., [2]–[4]). Companies started to develop 
MPSoCs that include dictated real-time processing 
units such as the Zynq UltraScale+MPSoC [5] from 
Xilinx, and the heterogeneous Nona-Core SoC from 
Renesas [6]. Safety standards are also slowly shifting 
toward considering multiple PEs. For instance, the 
AUTOSAR standard from the automotive industry 
released a guide to deploy software tasks onto multi-
core architectures in a recent revision [7]. 

These two aspects together (MCS and MPSoCs) 
of emerging embedded systems bring out a number 
of challenges that has to be carefully repelled. The 
focus of this paper is to highlight those challenges, 
the proposed solutions in literature to address them, 
and the open issues yet to be addressed. We limit our 
discussion to four aspects of MCS: theoretical mode-
ling, timing interference, data sharing, and security. 

MCS model

Current model
As identified by Vestal [8], the MCS model differs 

from the traditional real-time task model because 
of the uncertainty in considered worst-case execu-
tion time (WCET). Basically, the computed WCET 
of a task is an estimate calculated using extensive 
experimental testing and/or static analysis meth-
ods. Hence, based on the accuracy and pessimism 
levels of these methods, different estimates may 
exist (Figure 3). The higher the criticality of a task 
is, the more pessimistic its WCET estimates are. This 
observation resulted in representing the WCET as a 
function in the criticality level, C(l). The majority of 
MCS papers consider a model of only two CLs, LO 
and HI [9]. Each task has C(LO) and C(HI), where 

Figure 1. Examples of tasks running on a 
modern vehicle.

Figure 2. Example of a heterogeneous MPSoC 
platform.
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C(LO) < C(HI). The system operates initially in a 
normal mode, where it considers the C(LO) of each 
task and both higher and lower critical tasks utilize 
the hardware resources. Runtime techniques are 
used to monitor execution times of running tasks. If 
a higher critical task exceeds its C(LO), the system 
switches to a degraded mode, where it suspends 
all lower critical tasks and considers the C(HI) of 
the higher critical ones. This dynamic migration 
between various modes is a key characteristic of 
MCS as compared to single-criticality systems. 

Issues with the current model 
There exist a number of issues with approaches 

adopting this simplified widely considered model. 
Figure 4 highlights the three issues we believe are of 
most importance in MPSoCs. 

Suspension
Upon switching to the degraded mode, no guar-

antees are given to lower critical tasks. The dual-crit-
icality model deems lower-critical as noncritical; 
hence, there are no consequences of suspending 
them. Nevertheless, in systems with multiple CLs such 
as in the ISO-26262 standard, which has four ASILs A 
( lowest) to D (highest), suspension of tasks of ASIL A 
may be acceptable, while suspension of tasks of ASIL 
C may be prohibitively unacceptable solution as it 
may result in safety issues. Changes to the model have 
been proposed to provide certain guarantees to the 
lower critical tasks either by assigning different WCETs 
[10] or different periods [11] at different modes. An 
alternative approach is followed in [12], where instead 
of directly switching the mode and suspending lower 
critical tasks, the memory service guarantees of those 
tasks are degraded to reduce the interference on the 
higher critical tasks to accommodate for the increase 
in the execution time. These approaches consider a 
system-wide mode switch, where all the system com-
ponents and tasks migrate to the new mode. 

MPSoC Reconsiderations. In an MPSoC, there may 
be no need to deploy such full-system mode migra-
tion. Assume a scenario where a task,  τi running on 
the medium-criticality (SRT) core in Figure 2 such that 
it exceeds its depicted C for the current mode, say 
because of a soft fault or a temperature increase in 
the SRT core. There exist opportunities to keep other 
noninterfering cores running the same set of tasks (i.e., 
no effective mode switching), while switching only the 

necessary core(s). Other techniques can be migrating 
tasks to “more-predictable” cores to avoid more switch-
ing at all. For the exemplified scenario, tasks running 
on that particular SRT-core can be migrated to an 
HRT-core (if possible) upon the monitored increase in  
 τi’s C. So, a set of runtime decisions now exist, thanks 
to the heterogeneity nature of MPSoCs. Such MPSoC-
related opportunities are yet to be explored. 

Number of CLs and sources of uncertainty
Restricting the model to only two criticali-

ties is not sufficient to meet industry standards, 
which define up to five levels as previously men-
tioned. It may seem that extending approaches that 

Figure 3. Different WCET estimates.

Figure 4. Current MCS model and its issues.
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consider this model to more than two criticalities 
is straightforward. However, in most cases it is not. 
For instance, the suspension issue discussed in the 
first point is an outcome of a dual-criticality model, 
in which lower critical tasks are deemed noncrit-
ical. For systems with multiple levels, different 
approaches than suspension have to be considered. 

MPSoC Reconsiderations. The heterogeneous 
nature of MPSoCs has a direct effect on the number 
of CLs. The standard model assumes that the uncer-
tainty in WCET does not come from the system itself; 
rather, it comes from our inability to measure (or 
compute) it with complete confidence [9]. Although 
the latter part of this assumption still holds for 
MPSoCs, the former does not. Yes, the WCET estimate 
in MPSoCs is still a function of our confidence level 
of the used tools. However, we argue that the archi-
tecture of MPSoCs originates uncertainties as well. In 
traditional single-core or symmetric multiple-proces-
sor (SMP) architectures, where core (or cores) exe-
cuting a task does not affect its measured execution 
time. However, in a heterogeneous MPSoC (e.g., in 
Figure 2), the decision of which cores are used to 
execute a task directly affects the level of certainty 
in its WCET. For instance, an HRT core is usually 
simple in terms of micro-architecture with almost 
no implemented architectural optimizations. This 
is necessary to allow for high level of analyzability, 
which leads to tight WCETs for safety-critical tasks. 
Contrarily, a high-performance core usually deploys 
speculative optimizations such as out-of-order exe-
cution and branch prediction. As a result, the confi-
dence level in a task’s WCET when it runs on an HRT 
core definitely differs from the case when the same 
task runs on a high-performance core. The interde-
pendency dilemma that requires investigation here 
is that the WCET estimates become a function in the 
task-to-core mapping, which is part of the scheduling 
algorithm that relies on these estimates as inputs. 

Overheads 
Monitoring tasks and switching between running 

modes engross high overheads. However, to simplify 
the scheduling problem of MCS, most approaches 
ignore these overheads. Although this may be a the-
oretically acceptable assumption as these overheads 
are implementation related, a practical adoption of 
these approaches in industry mandates careful quan-
tification of these overheads. Recently, a few efforts 
have been proposed to bridge this gap [13], [14]. 

While the former [13] focuses on single-core, the lat-
ter [14] evaluates multicore platforms. Both efforts 
consider the implementation of a subset of proposed 
scheduling mechanisms; thus, more studies are 
required to identify implementation-related issues of 
theory-based novel MCS scheduling techniques. 

MPSoC Reconsiderations. Deployment of MCS 
onto MPSoCs requires addressing the scalability chal-
lenges associated with these scheduling and moni-
toring techniques. Furthermore, mode switching in 
MPSoCs may incur task migrations or reassignment 
of heterogeneous cores to tasks; thus, the effects of 
these decisions on the switching overhead need to 
be quantified. On the other hand, MPSoCs open the 
door for customized solutions. For instance, dedicat-
ing a PE for the runtime monitoring possibly helps 
in faster detection of exceptional events, therefore 
enabling the system to react in a timely manner. 
The architecture of this PE can be further tailored to 
optimize the behavior of the monitoring techniques. 
Specialized PEs are widely used by current MPSoCs, 
which usually dictate PEs for security, connectivity, 
data signal processing, and other tasks. 

Shared resources: Timing interference
In MPSoCs, different PEs in the system interfere 

with each other, while competing to access memory 
resources that are shared amongst them. As shown 
in Figure 2, these shared resources include intercon-
nects, on-chip caches, and off-chip dynamic ran-
dom access memories (DRAMs). This interference 
is a challenge for real-time systems because oper-
ations of one core affect the temporal behavior of 
other cores, which complicates the timing analysis 
of the system. 

Since the aforementioned MCS model originally 
evolved for single-core systems, most of the pro-
posed approaches adopting it do not incorporate 
these interferences in their scheduling or analysis 
[15]. Experiments show that memory interferences 
can contribute up to 300% to the WCET [16], while 
the memory bus interference can solely increase the 
WCET up to 44% [17]. Consequently, it is of unavoid-
able necessity to account for these interferences for 
MPSoC MCS. There exist proposals to address this 
interference in multicore MCS at the interconnect 
(see [12], [15]), the shared cache (see [18], [19]), 
and the shared DRAM (see [20]). However, most of 
these approaches consider SMP architectures and 
do not account for the heterogeneity of MPSoCs.
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MPSoC Reconsiderations. Bounding the timing 
interference in MPSoCs is a burdensome goal for 
many reasons. 

• The interference exaggerates with the increase 
in the number of PEs competing on the shared 
resources. 

• Each type of PEs has its own memory access 
behavior, which complicates the analysis, thus 
leading to more pessimism. For instance, data- 
intensive PEs such as multimedia and DSP pro-
cessors can saturate system queues by their 
memory requests if not carefully arbitrated. Thus, 
unlike most of the current approaches, a require-
ment- and criticality-aware arbitration is a must 
to deliver differential service to PEs. 

• Understanding the architectural details of shared 
resources (such as the interconnect and the 
memory hierarchy) is inevitable to derive realis-
tic bounds. 

On the other hand, MPSoCs provide unique opportu-
nities that do not exist in SMPs. Efforts to investigate 
these opportunities will facilitate the deployment of 
MCS onto MPSoCs. Examples of research directions 
are as follows. 

• Which memory levels should be shared amongst 
which cores to meet various requirements of 
MCS. For instance, does the GPU share the last-
level cache with the CPU? 

• How to distribute the cache architecture? Would 
implementing a nonuniform cache architecture 
(NUCA), which is a norm in manycore systems, 
be an adequate approach for MCS (e.g., helping 
in achieving different levels of isolation)? 

• Usually, MPSoCs integrate different types of 
on-chip memories such as hardware-managed 
caches and software-managed scratch-pad 
memories (SPMs). Most of the currently availa-
ble approaches focus on a single type. Similarly, 
MPSoCs support different types of available off-
chip memories such as double data rate (DDR), 
graphics DDR (GDDR), and low-power DDR 
(LPDDR). Investigating the cooperation of these 
types is also worth investigating. 

Shared resources: Shared data 
One of the most challenging burdens for computer 

architects is to maintain correctness of shared data 

stored in memory hierarchies of multiple-PEs plat-
forms, which is known as cache coherence. Although 
cache coherence has been extensively investigated 
for conventional performance-oriented platforms, 
embedded systems introduce new challenges from 
the predictability perspective. For instance, empiri-
cal studies show that the data interference and the 
coherence effects can make the parallel execution 
of an application 3.87× slower than its sequential  
execution [21], while the worst-case coherence 
latency exhibits quadratic growth with increasing 
number of PEs [22]. Real-time community has intro-
duced various solutions to address this problem, 
which we categorize into three approaches identi-
fying the applicability of each approach to MPSoCs. 

Prevention
This approach avoids the problems resulting from 

data sharing by completely disallowing it through 
enforcing complete isolation between tasks. At the 
shared cache, mechanisms such as strict cache par-
titioning and coloring are used [23]. At the DRAM 
level, bank privatization is utilized to uniquely map 
tasks to different banks. Isolation is an attractive 
solution as it simplifies the analysis and minimizes 
timing interference, while ensuring data correctness. 
However, data isolation suffers from three limita-
tions: 1) it adopts the independent-task model, thus 
disabling any communication amongst tasks; 2) it 
may result in a poor memory or cache utilization 
(For instance, a task can keep evicting its cache lines 
if it reaches the maximum of its partition size, while 
other partitions may remain underutilized.); and  
3) it does not scale with increasing number of cores. 
For example, the number of cores in the system has 
to be less than or equal to the number of DRAM 
banks to be able to achieve isolation at DRAM. 

MPSoC Reconsiderations. It might be acceptable 
for traditional real-time task models to assume iso-
lation in order to achieve uniprocessor-equivalence 
[24] in multiprocessor platforms, thus allowing the 
reuse of maturely developed scheduling approaches 
for uniprocessors. However, with the emerging tech-
nologies that continuously adopt new functionali-
ties, complete isolation seems to be a prohibitively 
costly solution. Considering the automotive appli-
cations in Figure 1, they utilize data collected by 
various sensors to conduct the appropriate act. This 
data is usually shared and used by applications with 
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different criticalities. For instance, the brake sensors 
are utilized by both the high-critical ABS and the 
driver assistance and cruise control tasks which are 
of medium-criticality [25]. In addition, with the mas-
sive concurrency of MPSoCs, solutions preventing 
simultaneous running of dependent (i.e., data shar-
ing) tasks are becoming evidently ill-suited as they 
diminish the performance gains of MPSoCs due to 
the aforementioned three limitations. Accordingly, 
researchers recognized that in order to have any 
practical impact, scheduling techniques must per-
mit data sharing [22], [26] and the following two 
approaches are recently proposed to solve data shar-
ing problems without enforcing isolation. 

Shared-data aware scheduler
This approach combines operating system 

techniques, profiling, and hardware performance 
counters to envision the effects of data sharing. 
Accordingly, the scheduler is constructed such that 
it minimizes those effects [21], [26]. For example, if 
two tasks share data, a simple solution is to schedule 
them such that they do not simultaneously run on 
different PEs. This can be achieved either by post-
poning the execution of one of them, or mapping 
them to the same PE [26]. 

MPSoC Reconsiderations. These scheduling-based 
solutions are promising since they address the 
shared data problem, while not enforcing isolation. 
However, some of these solutions have limited appli-
cability to MPSoCs. For example, given the high level 
of parallelism in MPSoCs, mapping dependent tasks 
to same core may not be a viable solution as it lim-
its performance gains. Similarly, collecting runtime 
readings from performance counters may not be 
cost effective in terms of overheads given the large 
number and heterogeneity of PEs in MPSoCs. 

Predictable hardware cache coherence
A recent work [22] manages shared data in 

real-time systems through deploying a hardware 
cache coherence protocol. Identifying the sources 
of unpredictability due to coherence interference, 
this paper promotes certain invariants to maintain 
toward allowing simultaneous and predictable 
accesses to shared data. These invariants are satisfied 
by augmenting the classic modify-share-invalidate 
(MSI) protocol with transient coherence states and 
minimal architectural changes. The advantage of 

this approach is that programers do not need to 
explicitly manage coherence of shared data in the 
application. In addition, it does not require any mod-
ifications to existing scheduling algorithms. 

MPSoC Reconsiderations. This approach does 
not address coherence in MCS. In addition, this 
approach, along with all the discussed approaches, 
considers SMPs. Effects of heterogeneity on these 
approaches are not investigated yet. For example, 
how coherence operates across different types of 
PEs? One coherence protocol might not fit all types 
and allowing for different coherence protocols 
can be a better solution for MCS if the interaction 
between these protocols is carefully designed. 

Security of MPSoC MCS
Security is one of the biggest challenges encoun-

tering researchers and engineers of CPS. The more 
ubiquitous the CPS become, the more concerning 
their security is. To exemplify, various vulnerabilities 
have been reported in industrial supervisory con-
trol and data acquisition (SCADA) systems [27] and 
smart vehicles [28], [29]. Researchers also managed 
to reverse engineer architectural details in embedded 
platforms by running hand-crafted C-programs [30]. 

MPSoC Reconsiderations. Three aspects make 
the development of secure MPSoC MCS a burden 
challenge. 

Cyber-physical nature of MCS
MCS in many emerging domains interact with the 

physical world, which makes them CPS. Embedded 
components in these CPS manage sensitive tasks; 
therefore, any security breach could lead to cata-
strophic consequences. These consequences range 
from revealing personal information (e.g., from 
wearable devices) to a global threat (e.g., compro-
mising a nuclear plant). Consequently, ensuring 
the security of these systems is a first-class mission. 
In addition, the interaction with the physical world 
allows for threats that did not exist in traditional 
computing systems. For example, researchers suc-
cessfully managed to gain access to locked cars by 
only eavesdropping a single signal from the original 
remote keyless entry unit of the car [28]. 

Heterogeneity of MPSoCs
On the one hand, each PE of MPSoC has differ-

ent characteristics and can even be an intellectual 
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proprietary of a third-party entity. Accordingly, the 
security problems of each of these PEs are inherited. 
On the other hand, these PEs share system com-
ponents and interact with each other. This opens 
the door for new across-PEs threats. Accordingly, 
threats and vulnerabilities in MPSoCs are harder to 
analyze, detect, and assess compared to traditional 
systems. To exemplify, the well-known Stuxnet 
attack exploited the authentication of the Siemens 
programmable logic controller to access a Windows 
machine [27]. 

Shared hardware components in MPSoCs
Historically, security was not considered as a 

concern for MCS because isolation was a design 
aspect of these systems, where each task (or group 
of tasks with same criticality) is running on a PE (or 
a partition of PEs) that is completely isolated from 
other PEs (or partitions). As a consequence, sen-
sitive tasks that require high levels of security are 
isolated from nonsecure tasks. However, in MPSoCs 
this is not the case. Different PEs, and hence tasks, 
share hardware components and isolation is con-
sidered a costly solution as previously explained. 
Again, this creates new potential threats. To exem-
plify, researchers were able to control sensitive 
(considered secure) electronic control units (ECUs) 
such as the engine control in a Jeep Cherokee car by 
compromising the (considered insecure) radio unit 
because the radio unit shares the controller area net-
work (CAN) with these ECUs [29]. To address these 
challenges, three research directions are necessary 

toward secure deployment of MPSoC MCS: 1) iden-
tifying new vulnerabilities of MPSoCs, which did 
not exist in traditional platforms; 2) developing 
cost- and performance-effective methodologies to 
prevent or mitigate them; and 3) adopting security 
as a first-class citizen in designing MPSoCs for MCS 
(secure-by design concept). 

We aRgue that mPsoCs will be soon the dom-
inating platform for emerging embedded systems 
domains. Despite the tremendous benefits and 
opportunities they provide, certain challenges have 
to be addressed and new research directions need 
to be explored. Four aspects are of great impor-
tance upon deploying MCS on MPSoCs: theoret-
ical modeling, timing interference, data sharing, 
and security. For each of these aspects, Table 1 
highlights both the remarkable challenges and the 
opportunities that MPSoCs uniquely create. These 
challenges and opportunities can be back traced to 
three characteristics of MPSoCs: 1) large number of 
PEs; 2) heterogeneity of PEs; and 3) different types 
of shared resources amongst PEs. We believe that 
seizing these opportunities and addressing associ-
ated challenges will enable enormous advances for 
MCS applications. 
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