
472168-2356/17 © 2017 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJuly/August 2018

Heterogeneous MPSoCs
for Mixed-Criticality
Systems: Challenges
and Opportunities
Mohamed Hassan
Intel Corporation

 Real-time systems aRe those systems whose
proper behavior depends not only on their function-
ality but also on their response time. Until recently,
real-time systems have been limited to safety-
critical domains such as avionics and spacecrafts.
However, with the emanating cyber-physical sys-
tems (CPS) and Internet-of-Things (IoT) revolu-
tion, real-time systems are becoming ubiquitous
in many emerging domains. Examples include trans-
portation such as smart vehicles, infrastructures
such as power grids, healthcare such as implantable
devices, and industrial environment such as robots.
These domains pose two new major aspects that
did not traditionally exist in real-time systems: the
mixed-criticality nature of its software applications
and the multiple-processor SoC (MPSoC) architec-
ture of its hardware components.

Digital Object Identifier 10.1109/MDAT.2017.2771447
Date of publication: 8 November 2017; date of current version:
13 July 2018.

Mixed-criticality
systems (MCSs)

These domains are no
longer solely hosting iso-
lated safety- critical tasks.
Instead, they execute var-
ious tasks with different
criticalities, where the
criticality of a task is deter-

mined based on the consequences of the failure to
meet its requirements. For instance Figure 1 illus-
trates a subset of the tasks embedded on a modern
vehicle. Tasks such as the antilock braking system
(ABS), the steering, and the engine control units are
of high-criticality. Meeting the timing requirements
of those tasks [historically known as hard real-time
(HRT) tasks] is a life-safety condition. Other tasks
such as the infotainment system and the connec-
tivity box (such as internet, radio, WiFi, etc.) are of
low criticality in the sense that they do not require
strict timing guarantees. Instead, their proper func-
tionality requires a high average-case performance.
A third class of tasks contains tasks with medium
criticality, known as soft real-time (SRT) tasks,
such as the navigation system and the instrument
cluster in a vehicle. They require a predictable exe-
cution time, which is not as strict as higher critical
tasks, as well as a reasonable average-case perfor-
mance. The number of criticality levels is domain
specific and is not limited to three. For instance,
the DO-178C avionics standard defines five levels of

Editor’s note:
This article presents the challenges and the opportunities in designing
mixed-criticality systems with heterogeneous Multiple-Processor Systemon-
Chip (MPSoC) architectures.

—Tulika Mitra, National University of Singapore
—Jürgen Teich, University of Erlangen-Nürnberg

—Lothar Thiele, Swiss Federal Institute of Technology, Zurich

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

48 IEEE Design&Test

Time-Critical Systems Design Part II

assurance, whereas the ISO-26262 defines four auto-
motive safety integrity levels.

MPSoCs
MPSoCs are appealing platforms for emerging

MCS domains primarily due to the benefits they
provide in cost, area, power consumption, and
performance compared to traditional computing
systems. In addition, heterogeneous MPSoCs allow
customized solutions to increase these benefits. The
main intuition is that designing a single processing
element (PE) to meet conflicting requirements of
MCS tasks is inefficient due to the limited cost, area,

and battery budgets of MCS. Contrarily, designing
custom PEs toward meeting those requirements has
already proved its efficaciousness in current SoCs.
Examples include specialized digital signal proces-
sors (DSPs), cipher, and multimedia PEs. In fact,
one of the early motives of evolving MPSoCs was the
real-time, low area, and low-power demands from
embedded systems [1]. The envision for MCS is that
a task with a particular criticality can be scheduled
in an expedient core with the appropriate level of
hardware predictability. Figure 2 delineates an
example of such heterogeneous MPSoC architec-
ture. In the near future, MPSoCs are expected to
be used in all embedded system domains [2], [3].
To make this a reality, researchers made sincere
efforts to provide MPSoCs tailored for safety-critical
tasks (e.g., [2]–[4]). Companies started to develop
MPSoCs that include dictated real-time processing
units such as the Zynq UltraScale+MPSoC [5] from
Xilinx, and the heterogeneous Nona-Core SoC from
Renesas [6]. Safety standards are also slowly shifting
toward considering multiple PEs. For instance, the
AUTOSAR standard from the automotive industry
released a guide to deploy software tasks onto multi-
core architectures in a recent revision [7].

These two aspects together (MCS and MPSoCs)
of emerging embedded systems bring out a number
of challenges that has to be carefully repelled. The
focus of this paper is to highlight those challenges,
the proposed solutions in literature to address them,
and the open issues yet to be addressed. We limit our
discussion to four aspects of MCS: theoretical mode-
ling, timing interference, data sharing, and security.

MCS model

Current model
As identified by Vestal [8], the MCS model differs

from the traditional real-time task model because
of the uncertainty in considered worst-case execu-
tion time (WCET). Basically, the computed WCET
of a task is an estimate calculated using extensive
experimental testing and/or static analysis meth-
ods. Hence, based on the accuracy and pessimism
levels of these methods, different estimates may
exist (Figure 3). The higher the criticality of a task
is, the more pessimistic its WCET estimates are. This
observation resulted in representing the WCET as a
function in the criticality level, C(l). The majority of
MCS papers consider a model of only two CLs, LO
and HI [9]. Each task has C(LO) and C(HI), where

Figure 1. Examples of tasks running on a
modern vehicle.

Figure 2. Example of a heterogeneous MPSoC
platform.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

49July/August 2018

C(LO) < C(HI). The system operates initially in a
normal mode, where it considers the C(LO) of each
task and both higher and lower critical tasks utilize
the hardware resources. Runtime techniques are
used to monitor execution times of running tasks. If
a higher critical task exceeds its C(LO), the system
switches to a degraded mode, where it suspends
all lower critical tasks and considers the C(HI) of
the higher critical ones. This dynamic migration
between various modes is a key characteristic of
MCS as compared to single-criticality systems.

Issues with the current model
There exist a number of issues with approaches

adopting this simplified widely considered model.
Figure 4 highlights the three issues we believe are of
most importance in MPSoCs.

Suspension
Upon switching to the degraded mode, no guar-

antees are given to lower critical tasks. The dual-crit-
icality model deems lower-critical as noncritical;
hence, there are no consequences of suspending
them. Nevertheless, in systems with multiple CLs such
as in the ISO-26262 standard, which has four ASILs A
(lowest) to D (highest), suspension of tasks of ASIL A
may be acceptable, while suspension of tasks of ASIL
C may be prohibitively unacceptable solution as it
may result in safety issues. Changes to the model have
been proposed to provide certain guarantees to the
lower critical tasks either by assigning different WCETs
[10] or different periods [11] at different modes. An
alternative approach is followed in [12], where instead
of directly switching the mode and suspending lower
critical tasks, the memory service guarantees of those
tasks are degraded to reduce the interference on the
higher critical tasks to accommodate for the increase
in the execution time. These approaches consider a
system-wide mode switch, where all the system com-
ponents and tasks migrate to the new mode.

MPSoC Reconsiderations. In an MPSoC, there may
be no need to deploy such full-system mode migra-
tion. Assume a scenario where a task, τi running on
the medium-criticality (SRT) core in Figure 2 such that
it exceeds its depicted C for the current mode, say
because of a soft fault or a temperature increase in
the SRT core. There exist opportunities to keep other
noninterfering cores running the same set of tasks (i.e.,
no effective mode switching), while switching only the

necessary core(s). Other techniques can be migrating
tasks to “more-predictable” cores to avoid more switch-
ing at all. For the exemplified scenario, tasks running
on that particular SRT-core can be migrated to an
HRT-core (if possible) upon the monitored increase in
 τi’s C. So, a set of runtime decisions now exist, thanks
to the heterogeneity nature of MPSoCs. Such MPSoC-
related opportunities are yet to be explored.

Number of CLs and sources of uncertainty
Restricting the model to only two criticali-

ties is not sufficient to meet industry standards,
which define up to five levels as previously men-
tioned. It may seem that extending approaches that

Figure 3. Different WCET estimates.

Figure 4. Current MCS model and its issues.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

50 IEEE Design&Test

Time-Critical Systems Design Part II

consider this model to more than two criticalities
is straightforward. However, in most cases it is not.
For instance, the suspension issue discussed in the
first point is an outcome of a dual-criticality model,
in which lower critical tasks are deemed noncrit-
ical. For systems with multiple levels, different
approaches than suspension have to be considered.

MPSoC Reconsiderations. The heterogeneous
nature of MPSoCs has a direct effect on the number
of CLs. The standard model assumes that the uncer-
tainty in WCET does not come from the system itself;
rather, it comes from our inability to measure (or
compute) it with complete confidence [9]. Although
the latter part of this assumption still holds for
MPSoCs, the former does not. Yes, the WCET estimate
in MPSoCs is still a function of our confidence level
of the used tools. However, we argue that the archi-
tecture of MPSoCs originates uncertainties as well. In
traditional single-core or symmetric multiple-proces-
sor (SMP) architectures, where core (or cores) exe-
cuting a task does not affect its measured execution
time. However, in a heterogeneous MPSoC (e.g., in
Figure 2), the decision of which cores are used to
execute a task directly affects the level of certainty
in its WCET. For instance, an HRT core is usually
simple in terms of micro-architecture with almost
no implemented architectural optimizations. This
is necessary to allow for high level of analyzability,
which leads to tight WCETs for safety-critical tasks.
Contrarily, a high-performance core usually deploys
speculative optimizations such as out-of-order exe-
cution and branch prediction. As a result, the confi-
dence level in a task’s WCET when it runs on an HRT
core definitely differs from the case when the same
task runs on a high-performance core. The interde-
pendency dilemma that requires investigation here
is that the WCET estimates become a function in the
task-to-core mapping, which is part of the scheduling
algorithm that relies on these estimates as inputs.

Overheads
Monitoring tasks and switching between running

modes engross high overheads. However, to simplify
the scheduling problem of MCS, most approaches
ignore these overheads. Although this may be a the-
oretically acceptable assumption as these overheads
are implementation related, a practical adoption of
these approaches in industry mandates careful quan-
tification of these overheads. Recently, a few efforts
have been proposed to bridge this gap [13], [14].

While the former [13] focuses on single-core, the lat-
ter [14] evaluates multicore platforms. Both efforts
consider the implementation of a subset of proposed
scheduling mechanisms; thus, more studies are
required to identify implementation-related issues of
theory-based novel MCS scheduling techniques.

MPSoC Reconsiderations. Deployment of MCS
onto MPSoCs requires addressing the scalability chal-
lenges associated with these scheduling and moni-
toring techniques. Furthermore, mode switching in
MPSoCs may incur task migrations or reassignment
of heterogeneous cores to tasks; thus, the effects of
these decisions on the switching overhead need to
be quantified. On the other hand, MPSoCs open the
door for customized solutions. For instance, dedicat-
ing a PE for the runtime monitoring possibly helps
in faster detection of exceptional events, therefore
enabling the system to react in a timely manner.
The architecture of this PE can be further tailored to
optimize the behavior of the monitoring techniques.
Specialized PEs are widely used by current MPSoCs,
which usually dictate PEs for security, connectivity,
data signal processing, and other tasks.

Shared resources: Timing interference
In MPSoCs, different PEs in the system interfere

with each other, while competing to access memory
resources that are shared amongst them. As shown
in Figure 2, these shared resources include intercon-
nects, on-chip caches, and off-chip dynamic ran-
dom access memories (DRAMs). This interference
is a challenge for real-time systems because oper-
ations of one core affect the temporal behavior of
other cores, which complicates the timing analysis
of the system.

Since the aforementioned MCS model originally
evolved for single-core systems, most of the pro-
posed approaches adopting it do not incorporate
these interferences in their scheduling or analysis
[15]. Experiments show that memory interferences
can contribute up to 300% to the WCET [16], while
the memory bus interference can solely increase the
WCET up to 44% [17]. Consequently, it is of unavoid-
able necessity to account for these interferences for
MPSoC MCS. There exist proposals to address this
interference in multicore MCS at the interconnect
(see [12], [15]), the shared cache (see [18], [19]),
and the shared DRAM (see [20]). However, most of
these approaches consider SMP architectures and
do not account for the heterogeneity of MPSoCs.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

51July/August 2018

MPSoC Reconsiderations. Bounding the timing
interference in MPSoCs is a burdensome goal for
many reasons.

• The interference exaggerates with the increase
in the number of PEs competing on the shared
resources.

• Each type of PEs has its own memory access
behavior, which complicates the analysis, thus
leading to more pessimism. For instance, data-
intensive PEs such as multimedia and DSP pro-
cessors can saturate system queues by their
memory requests if not carefully arbitrated. Thus,
unlike most of the current approaches, a require-
ment- and criticality-aware arbitration is a must
to deliver differential service to PEs.

• Understanding the architectural details of shared
resources (such as the interconnect and the
memory hierarchy) is inevitable to derive realis-
tic bounds.

On the other hand, MPSoCs provide unique opportu-
nities that do not exist in SMPs. Efforts to investigate
these opportunities will facilitate the deployment of
MCS onto MPSoCs. Examples of research directions
are as follows.

• Which memory levels should be shared amongst
which cores to meet various requirements of
MCS. For instance, does the GPU share the last-
level cache with the CPU?

• How to distribute the cache architecture? Would
implementing a nonuniform cache architecture
(NUCA), which is a norm in manycore systems,
be an adequate approach for MCS (e.g., helping
in achieving different levels of isolation)?

• Usually, MPSoCs integrate different types of
on-chip memories such as hardware-managed
caches and software-managed scratch-pad
memories (SPMs). Most of the currently availa-
ble approaches focus on a single type. Similarly,
MPSoCs support different types of available off-
chip memories such as double data rate (DDR),
graphics DDR (GDDR), and low-power DDR
(LPDDR). Investigating the cooperation of these
types is also worth investigating.

Shared resources: Shared data
One of the most challenging burdens for computer

architects is to maintain correctness of shared data

stored in memory hierarchies of multiple-PEs plat-
forms, which is known as cache coherence. Although
cache coherence has been extensively investigated
for conventional performance-oriented platforms,
embedded systems introduce new challenges from
the predictability perspective. For instance, empiri-
cal studies show that the data interference and the
coherence effects can make the parallel execution
of an application 3.87× slower than its sequential
execution [21], while the worst-case coherence
latency exhibits quadratic growth with increasing
number of PEs [22]. Real-time community has intro-
duced various solutions to address this problem,
which we categorize into three approaches identi-
fying the applicability of each approach to MPSoCs.

Prevention
This approach avoids the problems resulting from

data sharing by completely disallowing it through
enforcing complete isolation between tasks. At the
shared cache, mechanisms such as strict cache par-
titioning and coloring are used [23]. At the DRAM
level, bank privatization is utilized to uniquely map
tasks to different banks. Isolation is an attractive
solution as it simplifies the analysis and minimizes
timing interference, while ensuring data correctness.
However, data isolation suffers from three limita-
tions: 1) it adopts the independent-task model, thus
disabling any communication amongst tasks; 2) it
may result in a poor memory or cache utilization
(For instance, a task can keep evicting its cache lines
if it reaches the maximum of its partition size, while
other partitions may remain underutilized.); and
3) it does not scale with increasing number of cores.
For example, the number of cores in the system has
to be less than or equal to the number of DRAM
banks to be able to achieve isolation at DRAM.

MPSoC Reconsiderations. It might be acceptable
for traditional real-time task models to assume iso-
lation in order to achieve uniprocessor-equivalence
[24] in multiprocessor platforms, thus allowing the
reuse of maturely developed scheduling approaches
for uniprocessors. However, with the emerging tech-
nologies that continuously adopt new functionali-
ties, complete isolation seems to be a prohibitively
costly solution. Considering the automotive appli-
cations in Figure 1, they utilize data collected by
various sensors to conduct the appropriate act. This
data is usually shared and used by applications with

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

52 IEEE Design&Test

Time-Critical Systems Design Part II

different criticalities. For instance, the brake sensors
are utilized by both the high-critical ABS and the
driver assistance and cruise control tasks which are
of medium-criticality [25]. In addition, with the mas-
sive concurrency of MPSoCs, solutions preventing
simultaneous running of dependent (i.e., data shar-
ing) tasks are becoming evidently ill-suited as they
diminish the performance gains of MPSoCs due to
the aforementioned three limitations. Accordingly,
researchers recognized that in order to have any
practical impact, scheduling techniques must per-
mit data sharing [22], [26] and the following two
approaches are recently proposed to solve data shar-
ing problems without enforcing isolation.

Shared-data aware scheduler
This approach combines operating system

techniques, profiling, and hardware performance
counters to envision the effects of data sharing.
Accordingly, the scheduler is constructed such that
it minimizes those effects [21], [26]. For example, if
two tasks share data, a simple solution is to schedule
them such that they do not simultaneously run on
different PEs. This can be achieved either by post-
poning the execution of one of them, or mapping
them to the same PE [26].

MPSoC Reconsiderations. These scheduling-based
solutions are promising since they address the
shared data problem, while not enforcing isolation.
However, some of these solutions have limited appli-
cability to MPSoCs. For example, given the high level
of parallelism in MPSoCs, mapping dependent tasks
to same core may not be a viable solution as it lim-
its performance gains. Similarly, collecting runtime
readings from performance counters may not be
cost effective in terms of overheads given the large
number and heterogeneity of PEs in MPSoCs.

Predictable hardware cache coherence
A recent work [22] manages shared data in

real-time systems through deploying a hardware
cache coherence protocol. Identifying the sources
of unpredictability due to coherence interference,
this paper promotes certain invariants to maintain
toward allowing simultaneous and predictable
accesses to shared data. These invariants are satisfied
by augmenting the classic modify-share-invalidate
(MSI) protocol with transient coherence states and
minimal architectural changes. The advantage of

this approach is that programers do not need to
explicitly manage coherence of shared data in the
application. In addition, it does not require any mod-
ifications to existing scheduling algorithms.

MPSoC Reconsiderations. This approach does
not address coherence in MCS. In addition, this
approach, along with all the discussed approaches,
considers SMPs. Effects of heterogeneity on these
approaches are not investigated yet. For example,
how coherence operates across different types of
PEs? One coherence protocol might not fit all types
and allowing for different coherence protocols
can be a better solution for MCS if the interaction
between these protocols is carefully designed.

Security of MPSoC MCS
Security is one of the biggest challenges encoun-

tering researchers and engineers of CPS. The more
ubiquitous the CPS become, the more concerning
their security is. To exemplify, various vulnerabilities
have been reported in industrial supervisory con-
trol and data acquisition (SCADA) systems [27] and
smart vehicles [28], [29]. Researchers also managed
to reverse engineer architectural details in embedded
platforms by running hand-crafted C-programs [30].

MPSoC Reconsiderations. Three aspects make
the development of secure MPSoC MCS a burden
challenge.

Cyber-physical nature of MCS
MCS in many emerging domains interact with the

physical world, which makes them CPS. Embedded
components in these CPS manage sensitive tasks;
therefore, any security breach could lead to cata-
strophic consequences. These consequences range
from revealing personal information (e.g., from
wearable devices) to a global threat (e.g., compro-
mising a nuclear plant). Consequently, ensuring
the security of these systems is a first-class mission.
In addition, the interaction with the physical world
allows for threats that did not exist in traditional
computing systems. For example, researchers suc-
cessfully managed to gain access to locked cars by
only eavesdropping a single signal from the original
remote keyless entry unit of the car [28].

Heterogeneity of MPSoCs
On the one hand, each PE of MPSoC has differ-

ent characteristics and can even be an intellectual

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

53July/August 2018

proprietary of a third-party entity. Accordingly, the
security problems of each of these PEs are inherited.
On the other hand, these PEs share system com-
ponents and interact with each other. This opens
the door for new across-PEs threats. Accordingly,
threats and vulnerabilities in MPSoCs are harder to
analyze, detect, and assess compared to traditional
systems. To exemplify, the well-known Stuxnet
attack exploited the authentication of the Siemens
programmable logic controller to access a Windows
machine [27].

Shared hardware components in MPSoCs
Historically, security was not considered as a

concern for MCS because isolation was a design
aspect of these systems, where each task (or group
of tasks with same criticality) is running on a PE (or
a partition of PEs) that is completely isolated from
other PEs (or partitions). As a consequence, sen-
sitive tasks that require high levels of security are
isolated from nonsecure tasks. However, in MPSoCs
this is not the case. Different PEs, and hence tasks,
share hardware components and isolation is con-
sidered a costly solution as previously explained.
Again, this creates new potential threats. To exem-
plify, researchers were able to control sensitive
(considered secure) electronic control units (ECUs)
such as the engine control in a Jeep Cherokee car by
compromising the (considered insecure) radio unit
because the radio unit shares the controller area net-
work (CAN) with these ECUs [29]. To address these
challenges, three research directions are necessary

toward secure deployment of MPSoC MCS: 1) iden-
tifying new vulnerabilities of MPSoCs, which did
not exist in traditional platforms; 2) developing
cost- and performance-effective methodologies to
prevent or mitigate them; and 3) adopting security
as a first-class citizen in designing MPSoCs for MCS
(secure-by design concept).

We aRgue that mPsoCs will be soon the dom-
inating platform for emerging embedded systems
domains. Despite the tremendous benefits and
opportunities they provide, certain challenges have
to be addressed and new research directions need
to be explored. Four aspects are of great impor-
tance upon deploying MCS on MPSoCs: theoret-
ical modeling, timing interference, data sharing,
and security. For each of these aspects, Table 1
highlights both the remarkable challenges and the
opportunities that MPSoCs uniquely create. These
challenges and opportunities can be back traced to
three characteristics of MPSoCs: 1) large number of
PEs; 2) heterogeneity of PEs; and 3) different types
of shared resources amongst PEs. We believe that
seizing these opportunities and addressing associ-
ated challenges will enable enormous advances for
MCS applications.

 References
 [1] A. Jerraya and W. Wolf, Multiprocessor Systems-On-

Chips. New York, NY, USA: Elsevier, 2004.

 [2] P. Axer, M. Sebastian, and R. Ernst, “Reliability

analysis for MPSoCs with mixed-critical, hard

Table 1. Opportunities and challenges.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

54 IEEE Design&Test

Time-Critical Systems Design Part II

real-time constraints,” in Proc. IEEE/ACM/IFIP Int.

Conf. Hardware/Softw. Codesign Syst. Synthesis

(CODES+ISSS), Taipei, Taiwan, Oct. 2011,

pp. 149–158.

 [3] C. El Salloum, M. Elshuber, O. Höftberger, H. Isakovic,

and A. Wasicek, “The across MPSoC—A new

generation of multi-core processors designed for

safety-critical embedded systems,” Microprocessors

Microsyst., vol. 37, no. 8, pp. 1020–1032, 2013.

 [4] R. Pellizzoni, P. Meredith, M.-Y. Nam, M. Sun,

M. Caccamo, and L. Sha, “Handling mixed-criticality in

SoC-based real-time embedded systems,” in Proc. 7th

ACM Int. Conf. Embed. Softw. (EMSOFT), Grenoble,

France, Oct. 2009, pp. 235–244.

 [5] V. Boppana, S. Ahmad, I. Ganusov, V. Kathail,

V. Rajagopalan, and R. Wittig, “Ultrascale+ MPSoC

and FPGA families,” in Proc. IEEE Hot Chips Symp.

(HCS), Cupertino, CA, USA, Aug. 2015, pp. 1–37.

 [6] C. Takahashi et al., “4.5 a 16nm FinFET

heterogeneous nona-core SoC complying with

ISO26262 ASIL-B: Achieving 10–7 random hardware

failures per hour reliability,” in Proc. IEEE Int. Solid-

State Circuits Conf. (ISSCC), San Francisco, CA,

USA, 2016, pp. 80–81.

 [7] AUTOSAR, “A guide to multi-core systems.” [Online].

Available: http://www.autosar.org/fileadmin/files/

standards/classic/4-1/software-architecture/general/

auxiliary/AUTOSAR_EXP_MultiCoreGuide.pdf

 [8] S. Vestal, “Preemptive scheduling of multi-criticality

systems with varying degrees of execution time

assurance,” in Proc. IEEE Int. Real-Time Syst. Symp.

(RTSS), Porto, Portugal, 2007, pp. 239–243.

 [9] A. Burns and R. Davis, Mixed Criticality Systems—A

Review, Dept. Comput. Sci., Univ. York, York, U.K.,

Tech. Rep., 2013.

 [10] A. Burns and S. Baruah, “Towards a more practical

model for mixed criticality systems,” in Proc.

Workshop Mixed-Criticality Syst. (WMCS), Waco, TX,

USA, Apr. 2013, pp. 1–6.

 [11] H. Su and D. Zhu, “An elastic mixed-criticality task

model and its scheduling algorithm,” in Proc. IEEE

Design Autom. Test Eur. Conf. (DATE), Grenoble,

France, Mar. 2013, pp. 147–152.

 [12] M. Hassan and H. Patel, “Criticality-and requirement-

aware bus arbitration for multi-core mixed criticality

systems,” in Proc. IEEE Real-Time Embed. Technol.

Appl. Symp. (RTAS), Vienna, Austria, Apr. 2016,

pp. 1–11.

 [13] H.-M. Huang, C. Gill, and C. Lu, “Implementation and

evaluation of mixed-criticality scheduling approaches

for sporadic tasks,” ACM Trans. Embed. Comput.

Syst. (TECS), vol. 13, no. 4s, p. 126, 2014.

 [14] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and

L. Thiele, “Mixed-criticality runtime mechanisms and

evaluation on multicores,” in Proc. IEEE Real-Time

Embed. Technol. Appl. Symp. (RTAS), Seattle, WA,

USA, Apr. 2015, pp. 194–206.

 [15] G. Giannopoulou, N. Stoimenov, P. Huang, and

L. Thiele, “Scheduling of mixed-criticality applications

on resource-sharing multicore systems,” in Proc. IEEE

Int. Conf. Embed. Softw. (EMSOFT), Montreal, QC,

Canada, Sep. 2013, pp. 1–15.

 [16] R. Pellizzoni, A. Schranzhofer, J.-J. Chen,

M. Caccamo, and L. Thiele, “Worst case delay

analysis for memory interference in multicore systems,”

in Proc. IEEE Design Autom. Test Eur. Conf. (DATE),

Dresden, Germany, Apr. 2010, pp. 741–746.

 [17] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha,

“Coscheduling of CPU and I/O transactions

in cots-based embedded systems,” in Proc. IEEE

Real-Time Syst. Symp. (RTSS), Barcelona, Spain,

Nov. 2008, pp. 221–231.

 [18] M. Chisholm, B. C. Ward, N. Kim, and J. H. Anderson,

“Cache sharing and isolation tradeoffs in multicore

mixed-criticality systems,” in Proc. IEEE Real-

Time Syst. Symp. (RTSS), San Antonio, TX, USA,

Dec. 2015, pp. 305–316.

 [19] B. Lesage, I. Puaut, and A. Seznec, “Preti: Partitioned

real-time shared cache for mixed-criticality real-time

systems,” in Proc. ACM Int. Conf. Real-Time Netw.

Syst. (RTNS), Pont á Mousson, France, Nov. 2012,

pp. 171–180.

 [20] M. Hassan, H. Patel, and R. Pellizzoni, “A framework

for scheduling DRAM accesses for multi-core mixed-

time critical systems,” in Proc. IEEE Real-Time

Embed. Technol. Appl. Symp. (RTAS), Seattle, WA,

USA, Apr. 2015, pp. 307–316.

 [21] G. Gracioli and A. A. Fröhlich, “On the design

and evaluation of a real-time operating system for

cache-coherent multicore architectures,” ACM SIGOPS

Oper. Sys. Rev., vol. 49, no. 2, pp. 2–16, 2016.

 [22] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable

cache coherence for multi-core real-time systems,”

in Proc. IEEE Real-Time Embed. Technol. Appl.

Symp. (RTAS), Pittsburgh, PA, USA, Apr. 2017,

pp. 235–246.

 [23] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich,

and R. Pellizzoni, “A survey on cache management

mechanisms for real-time embedded systems,” ACM

Comput. Surv. (CSUR), vol. 48, no. 2, p. 32, 2015.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

55July/August 2018

 [24] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha,

and H. Yun, “WCET (m) estimation in multi-core

systems using single core equivalence,” in Proc.

27th IEEE Euromicro Conf. Real-Time Syst.

(ECRTS), 2015, Lund, Sweden, Jul. 2015,

pp. 174–183.

 [25] R. Ernst and M. Di Natale, “Mixed criticality

systems—A history of misconceptions?” IEEE Design

Test, vol. 33, no. 5, pp. 65–74, 2016.

 [26] M. Chisholm, N. Kim, B. C. Ward, N. Otterness,

J. H. Anderson, and F. D. Smith, “Reconciling the

tension between hardware isolation and data sharing

in mixed-criticality, multicore systems,” in Proc. IEEE

Real-Time Syst. Symp. (RTSS), Porto, Portugal, 2016,

pp. 57–68.

 [27] R. Langner, “Stuxnet: Dissecting a cyberwarfare

weapon,” IEEE Security Privacy, vol. 9, no. 3,

pp. 49–51, 2011.

 [28] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès,

“Lock it and still lose it-on the (in) security of

automotive remote keyless entry systems,” in Proc.

25th USENIX Security Symp. (USENIX Security 16),

Austin, TX, USA, Aug. 2016.

 [29] C. Miller and C. Valasek, “Remote exploitation of an

unaltered passenger vehicle,” Black Hat USA, Las

Vegas, NV, USA, vol. 2015, 2015.

 [30] M. Hassan, A. M. Kaushik, and H. Patel, “Reverse-

engineering embedded memory controllers through

latency-based analysis,” in Proc. IEEE Real-Time

Embed. Technol. Appl. Symp. (RTAS), Seattle, WA,

USA, Apr. 2015, pp. 297–306.

Mohamed Hassan is an SoC Research
and Development Engineer at Intel Corporation,
Toronto, ON, Canada. His current research interests
include real-time embedded systems, multicore
architectures, hardware validation, and security.
He has a PhD from the University of Waterloo,
Waterloo, ON, Canada (2017).

 Direct questions and comments about this article to
Mohamed Hassan, Intel Corporation, Toronto, ON M1K
3S5, Canada; e-mail: mohamed.hassan@ieee.org.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:57 UTC from IEEE Xplore. Restrictions apply.

mailto:mohamed.hassan@ieee.org

