
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018 2323

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed

Criticality Systems
Mohamed Hassan, Member, IEEE, and Rodolfo Pellizzoni, Member, IEEE

Abstract—Commercial off-the-shelf (COTS) heterogeneous
multiple processors systems-on-chip (MPSoCs) are appealing
platforms for emerging mixed criticality systems (MCSs). To sat-
isfy MCS requirements, the platform must guarantee predictable
timing bounds for critical applications, without degrading aver-
age performance for noncritical applications. In particular, this
paper studies the main memory subsystem, which in modern
MPSoCs is typically based on double data rate synchronous
dynamic access memory. While there exists previous work on
worst-case DRAM latency analysis, such work only covers a small
subset of possible COTS configurations, which are not targeted
at MCS. Therefore, we derive a generalized interference delay
analysis for DRAM main memory that accounts for a breadth
of features deployed in COTS platforms. We then explore the
design space by studying the effects of each feature on both the
worst-case delay for critical applications, and the bandwidth for
noncritical applications.

Index Terms—DRAM, memory, heterogeneous systems, mixed
criticality, multiple processors systems-on-chip (MPSoCs), real-
time systems, system-on-chip, timing analysis.

I. INTRODUCTION

MANY emerging embedded systems consist of tasks
with different criticalities, known as mixed criticality

systems (MCSs). Examples include self-driving cars, smart
grids, and healthcare devices [1]. A major challenge in MCS
is the different needs of applications with varying criticalities:
critical applications require guaranteed, predictable timing
bounds on worst-case execution time, while noncritical
applications demand good average time performance. This
places conflicting requirements on the hardware platform.
Taking the memory subsystem as an example, critical tasks
are latency sensitive; thus, they require guaranteed bounds on
the maximum latency suffered by memory accesses. In con-
trast, noncritical tasks opportunistically attempt to achieve as

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. Date of current version October 18, 2018. This article was
presented in the International Conference on Embedded Software 2018 and
appears as part of the ESWEEK-TCAD special issue. (Corresponding author:
Mohamed Hassan.)

M. Hassan was with Intel PSG, Toronto, ON M5S 2X9, Canada. He
is now with the University of Guelph, Guelph, ON, Canada (e-mail:
mohamed.hassan@uoguelph.ca).

R. Pellizzoni is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
rpellizz@uwaterloo.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2857379

high memory bandwidth (BW) as possible to improve their
average-case performance.

Due to their cost, performance, and energy efficiency,
multiple processors systems-on-chip (MPSoCs) provide
appealing platforms for MCS. In particular, heterogeneous
MPSoCs with diverse processing element (PE) types can
efficiently address the conflicting requirements of MCS; for
example, some existing commercial off-the-shelf (COTS) plat-
forms [2] already include a set of real-time PEs, optimized for
predictable timing, as well as a set of high-performance PEs
targeted at noncritical applications. However, careful design
choices among available COTS platforms, as well as rigorous
timing analysis, are both essential to guarantee satisfaction of
MCS requirements.

In this paper, we study the main memory subsystem,
which in modern MCS is typically based on double data
rate synchronous dynamic access memory technology [3].
Many research efforts have focused on providing DRAM solu-
tions for MCS; nonetheless, most of them have adopted the
approach of designing a custom memory controller (MC)
to provide tight analytical latency bounds [4]–[8], and thus
are not compatible with COTS platforms. Recently, two
related works have developed latency analyses for COTS
DRAM platforms [9], [10]. However, both works cover a
small subset of possible COTS configurations, which are
not targeted at MCS. For instance, they do not account
for features such as heterogeneity in PEs, or different pri-
ority levels in the DRAM scheduler, which can be used
to provide differentiated service to critical and noncritical
applications.

Toward this end, this paper explores a breadth of fea-
tures deployed in COTS platforms that affect the memory
performance of MCS applications both from worst-case delay
(WCD) and average-case BW perspectives. The feature set
covers heterogeneity in the PEs, operating system (OS)-level
memory partitioning, and request scheduling mechanisms at
the MC level. Based on this feature model, we explore a set
of 144 possible COTS platform instances. To guarantee WCD
bounds, we derive a generalized interference delay analysis
for DRAM main memory that computes the maximum delay
that any memory request from a critical application can suf-
fer due to the activity of other PEs. In addition, we study the
effect of each platform instance on the BW provided to non-
critical applications through an extensive set of architectural
simulations.

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a) (b) (c)

Fig. 1. DRAM timing constraints. (a) Intrabank timing constraints. (b) Interbank CAS timing constraints. (c) Interbank A timing constraints.

The rest of this paper is organized as follows. Section II
recaps the operation of DRAM, and Section III reviews
related work. Section IV presents the analyzed system fea-
tures. Sections V and VI contain our main contribution, the
derivation of a generalized DRAM delay analysis; Section V
introduces the basic building blocks, and Section VI applies
them to the varying configuration. Finally, Section VII details
our evaluation, and Section VIII provides concluding remarks.

II. BACKGROUND ON DRAM

A DRAM device is an array of memory cells consisting
of banks, with each bank organized by rows and columns. A
DRAM rank consists of multiple banks, and a DRAM channel
has one or more ranks. Each bank has a row buffer, which
acts as a cache for the memory array and is able to store a
single row. An on-chip MC manages requests from multiple
PEs to the off-chip DRAM device. The MC controls the device
by issuing DRAM commands through a dedicated command
bus; one command can be issued per clock cycle. The request
data is exchanged between the MC and the device through a
separate data bus.

Each request consists of an address and a type, either read
or write. The address is mapped by the MC to a specific bank,
row and column. If multiple concurrent requests arrive at the
MC, an arbiter decides the next request to service. To service
a request, the MC issues a set of DRAM commands based on
the state of the device: P, A, and CAS.

The P command (precharge) stores the data in the row
buffer back to the DRAM cells. The A command activates a
row by fetching it from the DRAM cells to the row buffer.
Finally, the CAS command reads (R) or writes (W) the
required column of data from the row buffer. In details, there
are three possible scenarios for a DRAM request.

1) If the requested row is already available in the row
buffer, the request consists of only a CAS command.

2) The requested bank is idle (i.e., does not have an acti-
vated row in the buffer). In this case, the MC issues an
A command first to activate the row, followed by a CAS
command.

3) The requested row is different from the activated row in
the row buffer (a bank conflict). In this case, the MC
issues all three commands: a) P to precharge the old
row; b) A to activate the requested row; and c) CAS to
read/write.

The JEDEC DRAM standard [3] defines a set of timing con-
straints on the three commands that must be satisfied by all

TABLE I
JEDEC TIMING CONSTRAINTS FOR DDR3-1333H [3]

MC designs; the value of each constraint depends on the spe-
cific DRAM device type and speed. Table I list all constraints
for a DDR3 device with one rank; we also show the value of
the constraints for the particular device speed we use in the
evaluation. Each constraint represents the minimum number of
clock cycles that must elapse between the transmission of a
command or data and a successive command or data; with the
exception of tFAW, which represents the minimum distance
between four, rather than two, consecutive A commands. We
also distinguish between two types of constraints: intrabank
constraints are applied between data/commands issued to the
same bank, while interbank constraints are applied between
data/commands of the same type (P, A, or CAS) issued to
any bank. For ease of exposition, Fig. 1(a) depicts the con-
sidered intrabank constraints on the example of consecutive
bank conflicts. Fig. 1(b) and (c) illustrates the considered inter-
bank constraints for CAS and A, respectively. There are no
interbank constraints for P.

For clarity, in the rest of this paper we will say that a
command (as well as the corresponding request) is intraready
at the current clock cycle if it satisfies all intrabank timing
constraints. If the command satisfies all interbank constraints,
we call it inter-ready. Of course, a command can only be
issued if it is both intraready and inter-ready, in which case
we say that the command is ready. Arbitration between differ-
ent requests usually follows a first ready-first come first serve
(FR-FCFS) scheduling scheme [9]. Under FR-FCFS, requests
are first queued into per-bank queues. Within each bank (intra-
bank arbitration), FR-FCFS prioritizes requests with locality
(that target data already available in a row buffer) to increase
DRAM throughput. As discussed above, such requests consist
of a CAS only, while requests that target non activated rows
could consist of all three commands.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PELLIZZONI: BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MCSs 2325

Finally, note that the DRAM has to be refreshed periodically
to retain stored data. This is achieved by the MC by issuing
REF (refresh) commands. Similar to previous work [9], [10],
we do not account for the delay from the refresh process
because it can be often neglected compared to other delays [9],
or otherwise, it can be added as an extra delay term to the
execution time of a task using existing methods [11], [12].

III. RELATED WORK

Due to its potential impact on predictability and
performance, many research efforts in the real-time commu-
nity have recently focused on managing contention for access
to DRAM resources. We distinguish between four main lines
of research. First, a large body of work has proposed new
MC designs to provide better WCD bounds (see [4] for
an overview); some of these works can also support MCS
by providing differentiated service to critical and noncritical
requestors, e.g., [5]–[8] and [13]. However, since they require
a redesign of the MC, they cannot be applied to existing COTS
platforms.

A second line of work has focused on OS-level mecha-
nisms to reduce contention in main memory. The approaches
in [14]–[16] use virtual memory to partition memory resources
among PEs; particularly, interference can be reduced by par-
titioning banks among the PEs, since a row activated by
one PE cannot be precharged due to a request of a differ-
ent PE. We discuss bank partitioning in Section IV-C. The
approach in [17] further limits contention by regulating the
maximum amount of memory BW that can be consumed by
any individual PE. Third, several works have proposed ana-
lytical approaches to bound the delay due to shared memory
contention on MPSoCs (see [18]–[22]), by either relying on
OS-level mechanisms [20] or information on task structure
and scheduling [18], [19], [21], [22]. However, the considered
memory models are simple, and cannot accurately capture the
behavior of complex arbitration schemes such as FR-FCFS that
are employed in COTS MCs to optimize DRAM throughput.

Finally, two previous papers have discussed latency bounds
for COTS MCs [9], [10], and are most related to this paper.
Reference [9] bounds memory access latencies, while assum-
ing that all PEs are in-order cores. Reference [10], on the other
hand, considers out-of-order PEs but it is restricted to systems
using bank partitioning. We find two main issues with these
approaches, which in turn motivate this paper.

1) Lack of Support for Different Criticalities: Both works
consider systems where all tasks have the same critical-
ity, which makes them ill-suited for MCS where both
critical and noncritical applications are running on the
same platform.

2) Limited Applicability: Each cited work assumes a spe-
cific platform instance with a certain MC architecture
and OS configuration. Accordingly, the derived bounds
cannot be widely applied to different COTS platforms.
In contrast, in this paper, we derive a generalized DRAM
delay analysis that can be applied to a variety of COTS
systems.

IV. SYSTEM MODEL

We consider an MCS comprising P PEs. Similar to previous
work [10], we assume that the last-level-cache of all PEs
employs a write-back write-allocate policy, such that a write
request to DRAM occurs only because of cache eviction of a
modified cache line. Additionally, we conduct the exploration
for a single-channel single-rank DRAM subsystem, and we
denote with NB the number of banks. Each PE can execute
any number of applications, but we assume that all applica-
tions mapped to a given PE are either critical or noncritical;
we find this to be a common requirement due to consider-
ations of reliability, fault containment, and error handling.
Hence, we classify the PEs between a set of Pcr critical
PEs and set of Pncr noncritical PEs, with P = Pcr + Pncr.
Our main goal is to derive an upper bound on the delay
incurred by any memory request of a critical PE under anal-
ysis, due to interference caused by memory requests of other
PEs. As discussed in [9], [12], and [20], this bound can then
be used to either derive the worst-case execution time of sin-
gle real-time task, or to perform response-time analysis for
a multitasking application. Following the same approach as
in [9] and [10], we make no assumption on the pattern of
computation and memory requests of the PE under analysis,
nor of interfering PEs. Additional information on the behavior
of tasks and the scheduling algorithm could result in a tighter
bound (see [18], [19], [21], [22]), albeit at the cost of com-
positionality in the analysis. On the other hand, we consider
in details the memory behavior of a COTS platform, which
depends on the PE architecture, the MC arbitration, and the
OS configuration. Hence, in the rest of this section we detail
the considered hardware and software features.

A. Memory Controller

We consider alternatives in the way the MC arbitrates
among memory requests.

1) Priority: Prior solutions [9], [10] consider a standard
FR-FCFS implementation which does not distinguish among
PEs. However, modern MCs such as Qualcomm’s [23] and
Intel’s [24] MCs support priority assignments to PEs. We
can leverage this feature in commodity MCs by assigning
higher priority to requests of critical PEs over requests of
noncritical PEs, thus lowering latency bounds for critical appli-
cations without the need for hardware changes. For the sake
of inclusiveness, we also consider configurations without PE
prioritization to match the assumption of previous works, and
to cover COTS MCs that do not support this feature.

2) Intrabank Arbitration: As discussed in Section II, FR-
FCFS favors intraready requests over non intraready ones. To
avoid starving the latter, MCs typically deploy a thresholding
mechanism on top of FR-FCFS [9], [24]–[26]. This mech-
anism can be implemented with various flavors; we assume
the implementation considered in [9] (which is also similar
to Intel’s [24]), where at most Nthr intraready requests can be
reordered ahead of any other request targeting the same bank.
We also cover MCs that do not implement any reordering
threshold.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2326 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

3) Interbank Arbitration: Based on several prior works and
patents (e.g., [14] and [27]–[29]), and industry expertise, we
assume that the MC deploys a round-Robin (RR) mechanism
among banks. In details, the considered RR scheduler selects
between intraready commands at the head of the bank queues;
when the last command of a request (CAS) is executed, then
the corresponding bank is moved to the back of the RR queue.
Two possible implementations of RR with regard to interbank
constraints are considered.

a) Reordering among all commands: If the scheduled
command is not inter-ready, the MC selects the first bank
(in the RR schedule) with an inter-ready command whether
it is the same type as the stalling command or not. For
instance, if the scheduled command is W and it is not inter-
ready due to the R-to-W switching constraint, the MC can
select an inter-ready R command at the head of another
bank. In other words, the MC allows for command reorder-
ing among intraready commands across banks regardless of
the command type (whether it is P, CAS, and A). Although
this aggressive optimization targets performance gains, it
can result in unbounded delays in some cases as we show
in Section VI.

b) Reordering among commands of different types:
The second implementation differs from the previous one in
allowing for reordering only across commands of different
types. For instance, if the command scheduled by RR is A
and it is not inter-ready, it does not stall ready CAS com-
mands of other banks. This implementation still achieves a
performance optimization, while preventing the unbounded-
ness of the previous one. For the sake of comprehensiveness,
we cover both implementations.

4) Read/Write Arbitration: Some COTS MCs prioritize
reads over writes because read accesses are more latency sen-
sitive than write accesses [10], [30]. They queue write accesses
into a dedicated write buffer and service them in batches. This
mechanism mitigates the turn-around time required to switch
the data bus between reads and writes. This is because the
controller will be servicing batches of same type (either con-
secutive reads or writes) instead of alternating between both
types. Accordingly, this mechanism can significantly improve
memory throughput. In our exploration, we cover both cases:
1) the MC assigns same priority for both reads and writes and
2) the MC employs write batching where it prioritizes reads
over writes. Since write batching can be implemented in dif-
ferent ways, for the latter case we consider the watermarking
implementation adopted by related work [10], which is simi-
lar to the one adopted by COTS MCs [23]: the MC services
a batch of Wbtch writes when the number of buffered writes
exceeds a given threshold.

Since writes are generated by the cache due to a write-
back of an evicted cache block, we assume that in the worst
case, each read request can generate a maximum of one write
request.

B. Processing Elements

We consider PE architectures with the following
configurations.

1) In-Order PEs (IO-All): All PEs are in-order, where each
PE has at most one pending memory request at any given time.
This is the architecture assumed by the analysis in [9].

2) Out-of-Order PEs (OOO-All): All PEs are out-of-order.
The maximum number of outstanding requests in the MC
queues for each PE is bounded by an architectural-dependant
constant PR. This is the architecture considered by [10]; here,
the value of PR depends on the architecture, in particular
on the number of entries in the miss status handling regis-
ter (MSHR) of the PE; the MSHR keeps track of the cache
misses which are currently being handled. For platforms with-
out write batching, PR accounts for both reads and writes.
For platforms with write batching, since reads and writes are
buffered in separate queues, we consider PR as the maximum
number of pending reads only.

3) Mix of In- and Out-of-Order PEs (IO-Cr): The previous
configurations do not take the heterogeneous nature of the
architecture or the mixed criticality nature of the applications
into account. Hence, we also consider COTS platforms that
have a mix of in-order and out-of-order PEs, where critical PEs
are in-order to achieve high predictability, while noncritical
PEs are OOO to achieve high average performance. One exam-
ple of such platforms is Xilinx Zynq UltraScale+ [2], which
comprises two Cortex R5 real-time cores and four Cortex A53
high-performance cores.

C. Bank Partitioning

As previously mentioned, some prior work
(e.g., [6]–[8] and [12]) considers DRAM bank parti-
tioning, where banks are partitioned among PEs to reduce
bank conflicts and hence improve WCD. Partitioning can
be conducted by changing the virtual to physical address
translation in the OS [14]–[16]; hence, it can be applied
to COTS MCs without hardware changes. We denote with
Part-All the case where partitioning is applied for all PEs,
which is the configuration analyzed in [10] and [20]. The
total number of banks assigned to critical and noncritical
PEs is denoted as NBcr and NBncr, respectively, such that
NB = NBcr + NBncr. On the other hand, we denote with
No-Part the case where all NB banks are shared among PEs,
so that requests are interleaved over all banks. In addition
to these two options, we cover a third alternative, denoted
as Part-Cr, which we argue is suitable for MCS: here, bank
partitioning is used for critical applications, the NB banks are
partitioned among critical PEs, so that no two critical PEs
share the same banks. However, noncritical PEs share banks
among each other and with critical PEs, and their requests
are interleaved across all banks. The intuition behind this
novel scheme is as follows.

1) Critical applications care more about WCD; hence,
it is okay to suffer an average performance penalty
by not interleaving requests of critical PEs, given
that partitioning reduces worst-case interference.
In contrast, interleaving is important for noncriti-
cal applications since they usually require a high
average-case BW.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PELLIZZONI: BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MCSs 2327

TABLE II
SYSTEM MODEL SYMBOLS

2) As we will show in Section VI, by leveraging PE pri-
oritization, the interference of noncritical PEs sharing a
bank with a critical PE is extremely diminished.

D. Platform Instances

Based on the discussed features, we repre-
sent each COTS platform instance with a tuple:
〈wb, thr, pr, breorder, pipe, part〉, where:

1) wb ∈ {0, 1} equals 1 if a write batching (read/write arbi-
tration) mechanism is employed in the system, and 0
otherwise;

2) thr ∈ {0, 1} indicates whether the MC implements a
threshold mechanism on FR-FCFS arbitration to prevent
starvation (thr = 1) or not (thr = 0);

3) pr ∈ {0, 1}, indicates whether the MC adopts a fixed
priority assignment among PEs (pr = 1) or not (pr = 0);

4) breorder ∈ {0, 1}, indicates whether the MC adopts
interbank reordering across all commands (breorder =
1) or only across commands of different types
(breorder = 0);

5) pipe ∈ {IO-All, IO-Cr, OOO-All} denotes the pipeline
architecture of the PEs;

6) part ∈ {No-Part, Part-Cr, Part-All} indicates the afore-
mentioned three bank partitioning schemes.

Overall, this results in 144 different platform instances. Each
instance is further characterized by a subset of the parameters
introduced in this section, which we summarize in Table II.

V. MEMORY DELAY BUILDING BLOCKS

We now focus on computing a WCD bound for a request
under analysis rua of a critical PE under analysis PEua. For
instances with wb = 0, we make no assumption on the type of
the request (R/W). For instances with wb = 1, we assume that
rua is a read request; write batching is typically employed in
architectures where writes do not stall the pipeline of PEs, and
hence the delay suffered by write requests does not affect the
execution time of applications. Write batching seeks to prevent
the write queue from getting full by switching to servicing
writes immediately once a threshold is exceeded.1

Our approach works as follows: we consider all timing con-
straints generated by commands of interfering requests of other

1We also assume that the write buffer is large enough to prevent it from
becoming full, which would stall the PE. This also aligns with previous work
that only considers configurations with write batching [10].

Fig. 2. Analysis approach: number of interfering requests and delay
components.

PEs serviced between the times when rua arrives and finishes
being processed, and all clock cycles where a command cannot
be issued due to command bus contention (if multiple com-
mands are ready at the same time, only one can be issued
per clock cycle). We then sum them all to obtain the delay
bound, after creating a pattern of commands that maximizes
the sum. In particular, we assume that the request under anal-
ysis suffers a bank conflict, so that it must issue all three
commands in sequence: P, A, and CAS. Since the next com-
mand in a sequence is issued by the MC when all related
timing constraints have elapsed and the command bus is free,
the obtained sum is a valid WCD bound. However, the bound
could be pessimistic, since in reality, multiple timing con-
straints could be simultaneously active. For example, consider
the time between an A command, and the next A command
to the same bank [note this is represented in Fig. 1(a)]. Based
on the timing constraints in Table I, the two commands must
be separated by tRC. However, note that a CAS, data, and P
command must also be issued in between, since a bank must
be precharged before being activated again. Hence, based on
the table, the two A commands must also be separated by
tRAS + tRP, and either tRCD + tWL + tB + tWR + tRP for a
write or tRCD + tRTP + tRP for a read. In summary, rather
than summing all three terms together, we can derive the delay
between two consecutive A commands to the same bank as:
MAX(tRC, MAX(tRAS, tRCD + tWL + tB + tWR) + tRP) for
a write, or as: MAX(tRC, MAX(tRAS, tRCD + tRTP) + tRP)

for a read. Since tRC = tRAS + tRP and tRTP < tWL +
tB + tWR for all DDR protocols, the delay between consec-
utive A commands to the same bank can be simplified to
MAX(tRAS, tRCD + tWL + tB + tWR) + tRP.

We next discuss how to systematically consider the effects
of all interfering requests. Our approach is depicted in Fig. 2,
which also summarizes the employed notation: we assume that
the maximum number of interfering requests is known; based
on such number, in this section, we compute bounds on the
maximum delay caused by the interfering requests. We will
then show how to derive the number of interfering requests in
Section VI, since it depends on the platform instance. More in
details, we categorize the interfering requests and associated
delay components as follows.

1) For instances with wb = 1, NWB represents the max-
imum number of interfering writes; correspondingly,
LWB(NWB) represents the maximum delay caused by the
NWB writes issued in batches. This is the first block in
Fig. 2. The remaining delay components LConf , LReorder,
and LInterB consider the interfering read requests. For

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2328 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

instances with wb = 0, the LWB delay is not present since
writes are not issued in batches. Instead, the remain-
ing delay components consider both read and writes
requests.

2) NConf is the number of interfering requests of other PEs
targeting the same bank as rua, which are serviced ahead
of rua because they arrived before it. To maximize the
corresponding conflict interference delay LConf (NConf),
we assume that all such requests target different rows,
resulting in bank conflicts. Hence, each request executes
a sequence of P, A, and CAS command. This is the
second block in Fig. 2.

3) NReorder is the number of interfering requests of
other PEs targeting the same bank as rua, and which
arrived after rua but are reordered ahead of rua
due to first-ready intrabank arbitration. As discussed
in Section II, such requests comprise a CAS only.
Correspondingly, LReorder(NReorder, wb) is the intrabank
reordering interference delay. The third block in Fig. 2
represents this case.

4) NInterB is the number of interfering requests of other
PEs targeting a different bank than rua, which can
interfere with each of the NConf + NReorder + 1 requests
that target the same bank as rua (including rua itself).
LInterB(NInterB, wb) is the corresponding interbank delay
caused on a request comprising a P, A, and CAS (third
and last blocks in Fig. 2), while LInterB

CAS (NInterB, wb)

is the delay on a request consisting of a CAS only
(fifth block in Fig. 2). Therefore, the total interbank
delay is: (NConf + 1) · LInterB(NInterB, wb) + NReorder ·
LInterB

CAS (NInterB, wb).
Based on the discussion above and assuming that the four
delay bounds LWB, LConf , LReorder, and LInterB are correctly
computed, we have thus obtained the following result.

Lemma 1: The WCD that rua suffers due to interference
from other PEs is bounded by

wb · LWB(NWB)+ LConf
(

NConf
)

+ Lreorder
(

NReorder, wb
)

+
(

NConf + 1
)

· LInterB(NInterB, wb
)

+ NReorder · LInterB
CAS

(
NInterB, wb

)
. (1)

A. Write Batching Delay LWB

In general, we cannot make any assumption on which banks
are targeted by the interfering writes; hence, in the worst case
we assume that all interfering writes cause bank conflicts.
Since bank conflict requests consist of all three commands,
we can determine the delay introduced by each bank conflict
write as the time between two successive A commands to the
same bank, which we previously computed. Hence, we obtain

LWB(NWB) = NWB · (MAX(tRAS, tRCD + tWL + tB + tWR)

+ tRP) (2)

B. Conflict Interference Delay LConf

As previously discussed, in the worst case all NConf

interfering requests can cause bank conflict. Equation (3)

computes the total conflict interference delay

LConf
(

NConf
)

= NConf · (MAX(tRAS, tRCD + tWL + tB

+ tWR) + tRP). (3)

C. CAS Latency

The remaining delay components depend on the latency
of executing some number NCAS of consecutive CAS com-
mands, which we hence denote as LCAS and compute next.
We consider two cases.

1) If write batching is employed, e.g., wb = 1, then all
requests (outside of already considered write batches)
are R. Situation between R1 and R2 in Fig. 1(b)
represents this case; since the only interbank tim-
ing constraint between two successive R is tCCD as
follows:

LCAS
(

NCAS, wb = 1
)

= NCAS · tCCD. (4)

2) Without write batching, e.g., wb = 0, in the worst case
requests can alternate types between R and W. This
forces the data bus to switch direction, introducing addi-
tional timing constraints: each R request suffers from
the W-to-R latency [between W4 and R5 in Fig. 1(b)],
while each W request suffers from the R-to-W latency
[between R2 and W3 in Fig. 1(b)]. Since furthermore
the W-to-R latency is always greater than the R-to-W
latency for all DRAM devices, the total latency can be
as calculated as

LCAS
(

NCAS, wb = 0
)

=
⌈

NCAS

2

⌉
· (tWL + tB + tWTR)

+
⌊

NCAS

2

⌋
· (tRTW). (5)

D. Intrabank Reordering Interference LReorder

As discussed, all NReorder requests are only CAS com-
mands. Hence, the delay due to intrabank reordering is upper
bounded in

LReorder
(

NReorder, wb
)

= LCAS
(

NReorder, wb
)
. (6)

E. Interbank Interference Delay LInterB

We next compute the maximum delay that a request r can
suffer due to timing constraints and command bus contention
caused by NInterB requests targeting other banks. Remember
that interbank timing constraints are applied between com-
mands of the same type. One possible strategy, used in [9],
would be to compute the maximum delays LInterB

PRE , LInterB
ACT , and

LInterB
CAS suffered by each command of request r, and then sum

them together to obtain LInterB = LInterB
PRE + LInterB

ACT + LInterB
CAS .

However, as shown in [10], this bound is highly pessimistic:
since both rua and the NInterB interfering requests execute the
P, A, and CAS commands in the same sequence, the tim-
ing constraints are effectively pipelined over three stages. We
can take advantage of the pipelining effect using the following
theorem, which is formally proven in [10].

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PELLIZZONI: BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MCSs 2329

Theorem 1 ([10, Th. 1]): Assume that the relative priori-
ties of executed requests remains the same over their P, A, and
CAS commands. Then the delay caused by an interfering inter-
bank request to the request under analysis is upper bounded
by the maximum delay on a single state, i.e., either the delay
caused by the interfering P command to the P command under
analysis, or A to A, or CAS to CAS.

Based on Theorem 1, we can obtain the interbank delay by
maximizing the delay caused by each of NInterB interfering
requests, assuming that each request interferes on only one
command

LInterB(NInterB, wb
) = max

∀NInterB
PRE +NInterB

ACT +NInterB
CAS ∈N

(
LInterB

PRE

(
NInterB

PRE

)+ LInterB
ACT

(
NInterB

ACT

)+ LInterB
CAS

(
NInterB

CAS , wb
))

where: NInterB
PRE + NInterB

ACT + NInterB
CAS = NInterB. (7)

Here, NInterB
PRE , NInterB

ACT , and NInterB
CAS represent the number of

interfering requests for the P, CAS, and A command of r,
respectively. Finally, Lemma 2 shows that the assumption on
relative priorities hold for all platform instances that yield a
bounded WCD.

Lemma 2: For a platform instance with breorder = 0 or
wb = 1, the relative priorities of executed requests remains
the same over the three commands.

Proof: Recall from Section IV that the MC deploys RR
among requests at the head of the bank queues that satisfy
their intrabank timing constraints. Hence, the three commands
have the same relative priority of the parent request. The only
situation in which this priority can change is if the MC prior-
itizes a command over other commands of same type because
it satisfies the interbank timing constraints. This can only hap-
pen for CAS commands, since all P commands have the same
interbank timing constraints, and the same for A. Due to the
bus switching delay, the MC can prioritize an R command
over a W command if the previously executed command was
an R, or vice versa. This is because R-to-W (W-to-R) delay
is larger than R-to-R (W-to-W) delay. If breorder = 0, this
reordering is prohibited by construction. Under wb = 1, only
read requests are considered for the interbank interference,
while the interference from write requests is accounted for
by the write batching interference. Thus, by construction, all
CAS commands with regard to (7) have the same interbank
timing constraints; thus, no reordering is again possible, and
the relative priorities of executed requests remain the same.

It remains to compute the individual delay terms.
1) For P: We can simply reuse [10, Lemma 2], which

we reproduce below, since the lemma depends only on the
behavior of timing constraints and not on the specific MC
arbitration.

Lemma 3 ([10, Lemma 2]): The maximum delay caused by
NInterB

PRE interfering P commands on the one under analysis is
upper bounded by

LInterB
PRE

(
NInterB

PRE

) = 2 · NInterB
PRE . (8)

The intuition behind the lemma is that there are no inter-
bank constraints on P, but P commands can be delayed due
to command bus contention with other commands. However,

no more than one A and one CAS command can be issued
every four clock cycles, yielding the bound.

2) For A: From Table I, A commands to different banks are
limited by two timing constraints: 1) each two A commands
to different banks has to be separated by at least tRRD cycles
and 2) no more than 4 A commands to different banks can be
issued every tFAW cycles. Fig. 1(c) illustrates both timing con-
straints for n interfering banks. Furthermore, an A command
can be delayed by CAS and P of other banks due to command
bus contention: at any clock cycle, the MC can only execute
at most one command. Since the number of interfering CAS
and P commands is bounded by 2 · NInterB as follows:

LInterB
ACT

(
NInterB

ACT

) = 2 · NInterB

+ MAX

(

NInterB
ACT · tRRD,

⌈
NInterB

ACT + 1

4
· tFAW

⌉)

. (9)

3) For CAS: We use the result in (4) and (5), yielding (10)
after adding the effect of command bus contention. Note that
we have to consider a sequence of NInterB

CAS + 1 commands,
since the first interfering CAS command can also be delayed
by previously triggered interbank constraints

LInterB
CAS

(
NInterB, wb

) = LCAS(NInterB + 1, wb
)+ 2 · NInterB.

(10)

VI. MEMORY DELAY ANALYSIS

In this section, we derive the number of interfering requests
NWB, NConf , NReorder, and NInterB for all 144 COTS platform
instances covered by the model in Section IV.

A. General Observations

Before detailing the final equations, we provide some obser-
vations that allow us to reduce the number of platform
instances that we need to analyze. In the following lemmas,
we use the symbol ✕ (don’t care) to denote that a feature
does not affect the WCD.

Lemma 4 (Unboundedness of FR-FCFS Without
Threshold): For a platform instance with thr = 0, if
part = No-Part, or part = Part-Cr and pr = 0, then WCD is
unbounded.

Proof: part = No-Part indicates that PEua shares banks
with other PEs. Since thr = 0, in the worst case, those other
PEs can always have a ready request to the bank entailing the
request under analysis, rua, to wait indefinitely. For part =
Part-Cr, PEua shares banks with noncritical PEs. In this case,
if pr = 0, those PEs can also always have ready requests
that get scheduled before rua, which entails its latency to be
unbounded.

Lemma 5 (Unboundedness of Interbank RR With
Reordering): If breorder = 1 and wb = 0, then WCD
is unbounded.

Proof: Under wb = 0, the controller does not batch writes
together; thus, every access whether it is R or W is handled
individually. Let rua to be a read request that is at the head
of its bank queue at time t0. Moreover, let the request that
is picked by the controller at time t0 = 0 according to the

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

RR policy across banks to be a write request. In addition,
all other banks have writes as pending requests. Since the
controller is servicing a write request, rua cannot be inter-
ready before tWL + tB + tWTR cycles according to the timing
constraints in Table I. However, the write requests from other
banks become inter-ready at cycle tCCD < tWL + tB + tWTR.
Fig. 1(b) depicts these timing constraints for different R/W
situations. Since breorder = 1, at cycle tCCD, the controller
will pick one of the inter-ready write requests. Consequently,
due to W-to-R turnaround constraint, rua readiness is pushed
to cycle tCCD+ tWL+ tB+ tWTR. Similarly, at time 2 · tCCD,
another write request from another bank is inter-ready and
further pushes the readiness of rua. Since this situation can
occur indefinitely, rua suffers from unbounded delay. Same
situation occurs if rua is a write and requests pending at other
banks are reads.

Lemma 6 (Part-All Effect): If part = Part-All, then
NReorder = NConf = 0, meaning that the request under anal-
ysis rua suffers neither from intrabank reordering nor conflict
interference. Furthermore, we have thr = ✕. Additionally if
wb = 0, then pipe = ✕.

Proof: NReorder and NConf both count requests of other PEs
that target the same bank as rua. Since part = Part-All dis-
allows bank sharing among PEs, only requests from PEua
can target the same bank as rua. Hence, it holds NReorder =
NConf = 0.

Next note that based on the system model in Section IV, thr
determines the number of requests that target the same bank
as rua and can be reordered ahead of it; hence, it can only
affect the intrabank reordering interference delay. Since such
delay is zero, we have thr = ✕.

Finally, assume that wb = 0; then rua does not suffer from
write batching delay. Since furthermore NReorder = NConf = 0,
the only nonzero delay component is the interbank reordering
interference. However, pipe cannot affect the number NInterB if
interbank interfering requests, since the RR arbitration restricts
NInterB based on the number of banks, rather than the num-
ber of interfering requests generated based on the pipeline
architecture of PEs. Hence, pipe = ✕.

Lemma 7 (Part-Cr Effect): If part = Part-Cr and wb = 0,
then rua suffers neither from intrabank reordering nor con-
flict interference from other critical PEs, and the worst-case
interference is agnostic to the pipeline architecture of critical
PEs (pipe of IO-Cr or OOO-All has the same effect on WCD).

Proof: Since part = Part-Cr disallows bank sharing among
critical PEs, requests from other critical PEs cannot target the
same bank as rua. Consequently, rua does not encounter intra-
bank reordering nor conflict interference from other critical
PEs. Recall from the proof of Lemma 6 that pipe affects con-
flicting and write batching interferences. As a result, if wb = 0,
having a system with OOO or in-order critical PEs has the
same effect on WCD.

Lemma 8 (Priority Effect): If pr = 1 and wb = 0, WCD of
rua is agnostic to the pipeline architecture of noncritical PEs.

Proof: Since pr = 1, rua has higher priority than noncritical
requests. Accordingly, regardless of the pipeline architecture of
noncritical PEs, rua incurs an interference from a maximum of
one noncritical request, which issued its command just before

TABLE III
CONFIGURATIONS.CONFIGURATIONS WITH wbj = 0 AND breorder = 1

ARE UNBOUNDED, WHILE FOR CONFIGURATIONS

WITH wbj = 1, breorder = ✕

the arrival of any critical request. The pipeline architecture of
the PEs can affect the number of write requests arriving after
rua and hence the write batching delay, but since wb = 0, this
is not relevant to the platform instance. Thus, WCD is agnostic
to the pipeline of noncritical PEs.

Lemma 9 (Priority With Part-Cr Effect): If the system
adopts a Part-Cr scheme and the MC prioritizes critical
requests (pr = 1), then thr = ✕. Furthermore, if the MC
does not deploy write batching (wb = 0), then pipe = ✕.

Proof: Since part = Part-Cr, PEua shares banks only with
noncritical PEs. In addition, since pr = 1 and using the same
reasoning in the proof of Lemma 8, in the worst case PEua
suffers interference from one noncritical request regardless
of the FR-FCFS threshold (thr = ✕). From Lemma 7, if
part = Part-Cr and wb = 0, WCD is agnostic to the pipeline
architecture of critical PEs (1). From Lemma 8, if pr = 1 and
wb = 0, WCD is agnostic to the pipeline of noncritical PEs
(2). From 1 and 2, pipe = ✕.

Lemma 10 (Write Batching Effect): If the MC implements
write batching (wb = 1), interbank reordering has no effect
on WCD (breorder = ✕).

Proof: From Section V, breorder only affects the inter-
bank interference component of the WCD. Furthermore from
Lemma 2, if wb = 1, the value of LInterB(NInterB, wb)

in (7) holds independently of the value of breorder. Hence,
breorderj = ✕.

Based on the observations established by Lemmas 4–9,
Table III maps the 144 platform instances into 25 differ-
ent configurations, where each configuration has a unique
WCD bound and represents one or multiple instances. For
ease of notation, we represent each configuration as confgj =
〈wbj, thrj, prj, breorderj, pipej, partj〉, where again we use the
symbol ✕ to denote that a feature can take any value for that
configuration since it does not affect the WCD. For exam-
ple, confg1 = 〈wb1 = 0, thr1 = ✕, pr1 = 0, breorder1 =
0, pipe1 = ✕, part1 = Part-All〉 denotes the set of 6 instances
with no write batching, no threshold mechanism, no interbank
reordering, and partitioning for all PEs. Instances which are
proved to have unbounded WCD are shown as unbounded in
Table III.

In the next section, we analyze configurations without
write batching (wbj = 0) (configurations 1–10), while
Section VI-C covers configurations with write batching
(configurations 11–25).

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PELLIZZONI: BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MCSs 2331

TABLE IV
NConf , NReorder , AND NInterB FOR CONFIGURATIONS

WITHOUT WRITE BATCHING

B. Configurations Without Write Batching

We first illustrate how to derive the number of interfering
requests for configuration 3 in Lemma 11, followed by all
other configurations in Lemma 12.

Lemma 11: Under confg3 = 〈wb3 = 0, thr3 = 1, pr3 =
0, breorder3 = 0, pipe3 = OOO-All, part3 = No-Part〉,
NConf = (P − 1) · PR, NReorder = Nthr, and NInterB =
NB − 1 such that based on Lemma 1, rua encounters a WCD
bounded by

LConf ((P − 1) · PR) + Lreorder(Nthr, 0)

+ ((P − 1) · PR + 1) · LInterB(NB − 1, 0)

+ Nthr · LInterB
CAS (NB − 1, 0).

Proof:
1) Since pipe3 = OOO-All, each PE can have a maximum

of PR pending requests. Also since pr3 = 0, all PEs
have the same priority. Hence, in the worst case rua can
suffer conflict interference from PR nonready requests
arriving before rua for each other PE. Thus, NConf =
((P − 1) · PR).

2) Since the MC deploys threshold-based FR-FCFS arbi-
tration, rua can suffer interference from a maximum of
Nthr ready requests arriving after rua to the same bank;
hence, NReorder = Nthr.

3) rua encounters interbank interference from all other
banks, therefore, NInterB = NB − 1. Substituting in (1)
yields the WCD bound.

Lemma 12: Under confgj, where j ∈ [1, 10], NConf ,
NReorder, and NInterB have the values tabulated in Table IV.

Proof: Values for confg3 are already proved in Lemma 11.
1) Under both confg1 and confg2, part1 = part2 = Part-All.

Hence, according to Lemma 6, rua suffers from neither
conflict nor intrabank reordering interference; therefore,
Nconf = NReorder = 0. Since under confg1, pr1 = 0, rua
can suffer interbank interference from all other banks
(NInterB = NB − 1). In contrast, confg2 has pr2 = 1;
thus, rua suffers interference from all other critical banks
in addition to a maximum of one noncritical bank.
Therefore, NInterB = NBcr.

2) For configurations confg4–confg10, rua can suffer
interference from all other banks; thus, NInterB = NB−1.

3) For configurations confg4–confg7, confg9, and confg10,
rua suffers intrabank reordering interference due to the
FR-FCFS policy. Since thr = 1 for these configurations,
a maximum of Nthr requests can get reordered before rua.

Accordingly, NReorder = Nthr for these configurations.
On the other hand, since confg8 has part8 = Part-Cr and
pr8 = 1, FR-FCFS has no effect on WCD (Lemma 9),
and NReorder = 0.

4) For confg4, pipe4 = IO-Cr. Accordingly, each crit-
ical PE has a maximum of one pending request,
while each noncritical PEs can have up to PR pend-
ing requests. Therefore, in the worst case rua suffers
conflict interference from Pcr − 1 requests from crit-
ical PEs and Pncr · PR from noncritical ones; hence,
Nconf = Pncr · PR + Pcr − 1. Contrarily, confg5 has
pipe5 = IO-All. Consequently, in the worst case rua suf-
fers conflict interference from P − 1 requests (NConf =
P − 1).

5) For confg6, all PEs are OOO but pr6 = 1. rua suffers
conflict interference from a maximum of one request
from noncritical PEs and PR requests from each other
critical PE. As a result, NConf = (Pcr − 1) · PR + 1. The
difference between confg7 and confg6 is in the pipeline
architecture of critical PEs. Under confg7, critical PEs
are in-order with a maximum of one pending request at
any time. This reduces NConf for confg7 to be NConf =
(Pcr − 1) + 1 = Pcr.

6) Under configurations confg8–confg10, PEua share banks
only with noncritical PEs. Therefore, rua does not suf-
fer a conflict interference from critical PEs. For confg9,
pr9 = 0 and noncritical PEs are OOO. As a result, under
confg9, NConf = Pncr · PR. Although confg10 also has
pr10 = 0, it has pipe10 = IO-All. Hence, each noncrit-
ical PE can have a maximum of one pending request
at any time. As a result, under confg10, NConf = Pncr.
Since pr8 = 1, under confg8, rua can suffer interference
from a maximum of one request from all noncritical PEs
and NConf = 1.

C. Configurations With Write Batching

We now discuss the WCD for write batching configura-
tions (configurations confg11–config28). Based on (1) and using
a similar procedure as in Lemma 12, we obtain the values
of NConf , NReorder, and NInterB using Table IV, based on the
equivalent configuration with wb = 0.

We next calculate the maximum number NWB of interfering
writes as NWB = Wbtch + Nbefore

R + Nafter
R . Recall that in the

worst case, every time a read request arrives at the MC, one
write request can be enqueued in the write buffer. The term
Wbtch accounts for the interference caused by requests arrived
before rua: in the worst case, rua arrives while the MC has
just started to serve a write batch, which consists of Wbtch
requests. The remaining terms Nbefore

R and Nafter
R accounts for

read requests that arrive after the arrival of rua but before rua
completes; each such read request can add one extra write
request to the buffer. Nbefore

R is the number of read requests
that arrive after rua but are executed before it because of the
intrabank FR-FCFS and the interbank RR policies. Nbefore

R
depends on the configuration, and is determined by Table V.
For configurations 11–13 and 23–25, rua does not suffer any
intrabank reordering interference. However, rua can wait for

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2332 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

TABLE V
Nbefore

R FOR DIFFERENT WRITE BATCHING CONFIGURATIONS

NB − 1 requests from other banks due to the RR policy. Since
configurations14–16 support prioritization and have a Part-All
scheme, rua only suffers from NBcr − 1 requests accessing
other critical banks, in addition to a maximum of one noncrit-
ical request; thus, Nbefore

R = NBcr. For configurations 17–22
and 26–28, a maximum Nthr requests can arrive after rua to
same bank and get serviced before it because of FR-FCFS
effect, while each of these Nthr requests can also wait for
NB requests from other banks because of RR policy. Thus,
Rbefore = Nthr · NB for these configurations in Table V. On the
other hand, Nafter

R is the number of read requests that arrive
after rua’s arrival but before its completion time, and are exe-
cuted after rua. Nafter

R depends on the number of concurrent
requests that each PE can generate as

Nafter
R =

⎧
⎨

⎩

P · PR, if pipej = OOO
Pcr + Pncr · PR, if pipej = IO-Cr
P, if pipej = IO-All.

(11)

VII. EVALUATION

We use MacSim [31], a multiprocessor architectural simu-
lator integrated with DRAMSim2 [28]. MacSim models x86
instruction-set architecture and supports in-order and out-of-
order PEs. Furthermore, it allows the configuration of the
maximum number of pending requests through managing the
number of entires in MSHRs. MacSim has a frontend that
includes the virtual-to-physical mapping. This enables us to
implement partitioning without running an actual OS. We
extend this frontend to support the three partitioning schemes
discussed in Section IV. DRAMSim2 [28] is a detailed simu-
lator for the DRAM subsystem. It has per-bank queues with
FR-FCFS arbitration among requests to same bank. Moreover,
it provides a parameter to configure the threshold of FR-FCFS.
Finally, it deploys RR across banks. We extend DRAMSim2
to support priority assignment amongst different PEs as well
as write batching.

We use benchmarks from the EEMBC-auto suite [32],
which include representative applications from the embedded
automotive domain. We use the a2time and rspeed benchmarks
as the critical tasks running on critical PEs. Both benchmarks
exhibit high instruction dependencies; hence, they are latency
sensitive. In addition, we use the matrix and aifftr bench-
marks as the noncritical applications as they are the two most
memory-intensive applications in the EEMBC suite. In addi-
tion, to stress the worst-case interference delay, we use two
synthetic benchmarks: 1) latency and 2) BW [17]. Latency rep-
resents a latency-sensitive application, while BW represents a
BW sensitive application. We use latency as a critical appli-
cation and BW as the noncritical applications. Table VI sum-
marizes the setup of the evaluation. Sections VII-A and VII-B

TABLE VI
EVALUATION PARAMETERS CONFIGURATION

discuss the WCD and BW results of configurations without
write batching, while Section VII-E discusses write batching
findings. Sections VII-C and VII-D study the effects of num-
ber of PEs in the system and the FR-FCFS threshold value on
WCD, respectively.

A. Worst-Case Interference Delay of Different MPSoC
Configurations

Fig. 3 delineates the WCD for COTS MPSoCs with differ-
ent set of features. Fig. 3 shows both the analytical latency
bounds derived in Section VI, and the observed experimental
WCD for both EEMBC and synthetic benchmarks. In Part-All
[Fig. 3(a)], we depict WCD for configurations that support FR-
FCFS threshold as well as configurations that do not support
it. While for no-Part [Fig. 3(b)] and Part-Cr with no prior-
ity [Fig. 3(c, i)], we only show configurations with FR-FCFS
threshold support since those that do not support the threshold
mechanism have unbounded WCD.

Observations:
1) Fig. 3(a) shows that both thr (thr = 1) and noThr

(thr = 0) exhibit almost identical WCD. This confirms
the conclusion of Lemma 6 that in MPSoCs with parti-
tioned banks among all PEs (Part-All), the existence of
FR-FCFS threshold mechanism has no effect on WCD.

2) Lemma 6 concludes that WCD in (Part-All) configu-
rations is independent of the pipeline architecture of
PEs. For the same priority setting, Fig. 3(a) illustrates
that IO-Cr and OOO-All have very similar experimental
WCD. This is particularly true for the synthetic work-
loads, where this experimental WCD is also close to the
analytical bound since the workloads are more memory
stressful. However, IO-All has considerably less WCD
[compare for example OOO-All and IO-Cr results for
noPr in Fig. 3(a)]. This is because the worst-case sce-
nario for this case assumes that IO-All issues a sufficient
number of requests in a very short time to saturate the
FR-FCFS threshold. This scenario is hard to achieve
in practice. This also justifies the big gap between the
experimental WCD and the analytical bound for the
IO-All configurations.

3) Fig. 3(b) shows that if critical PEs have higher prior-
ity [pr in Fig. 3(b)], configurations with either IO-Cr or
IO-All exhibit similar WCD. For synthetic workloads,
IO-All has slightly less WCD than IO-Cr for the same

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PELLIZZONI: BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MCSs 2333

(a)

(b)

(c)
(i) (ii)

Fig. 3. Worst-case interference delay in ns for different system configurations.
(a) Systems with Part-All partitioning scheme. (b) Systems with No-Part parti-
tioning scheme. (i) thr = 1 and pr = 0. (ii) thr = ✕ and pr = 1. (c) Systems
with Part-Cr partitioning scheme.

reason as in Observation 2. This confirms the conclu-
sion of Lemma 6 that in MPSoCs with prioritization,
the pipeline architecture of the noncritical PEs has no
effect on WCD.

4) MPSoCs that partition banks among PEs and assigns
critical PEs a higher priority achieve the smallest
observed and analytical WCD [pr in Fig. 3(a)]. This cor-
responds to MPSoCs with configuration 2. In contrast,
the maximum observed WCD occurs in MPSoCs that
share banks among PEs and assign same priority for all
PEs [noPr in Fig. 3(b)]. This corresponds to MPSoCs
with configuration 3 (Lemma 11).

5) Mapping critical PEs to different banks (Part-Cr)
achieves best results for MPSoCs that assigns critical
PEs a higher priority [Fig. 3(c, ii)]. This is because
Part-Cr substantially reduces interference from other
critical PEs to only interbank interference leaving non-
critical PEs as the only source for intrabank interference.
Orthogonally, pr = 1 reduces intrabank interference

Fig. 4. BW of noncritical PEs.

(a) (b)

Fig. 5. Sensitivity of WCD to number of critical PEs. Configurations 1, 2,
and 8. (b) Configurations 3–7, 9, and 10.

from noncritical cores to only one request at maximum.
As a result, the total WCD is remarkably reduced.

B. Bandwidth of Noncritical PEs

Fig. 4 depicts the BW delivered to the noncritical PEs under
different configurations. Although Part-All scheme (which is
followed by many related works [6]–[8], [10], [12], [20]) is
able to substantially reduce WCD of the critical PEs compared
to no-Part [Fig. 3(a) and (b)], it also significantly reduces the
BW delivered to the noncritical PEs (Fig. 4). On the other
hand, results show that Part-Cr is a viable solution that reduces
WCD for critical PEs without compromising the BW of the
noncritical PEs. For instance, compare confg6, confg2, and
confg8, where all configuration parameters other than parti-
tioning are the same. Compared to confg6 [Fig. 3(b)], confg2
[Fig. 3(a)] reduces WCD of critical PEs by 96%, while confg8
[Fig. 3(c, ii)] reduces WCD by 89%. On the other hand, as
Fig. 4 depicts, noncritical PEs encounter a 60% BW degrada-
tion under confg2, while this degradation is negligible (only
0.85%) for confg8.

C. Sensitivity to Number of Interfering PEs

We study the scalability of the WCD with the number of co-
existing PEs in the MPSoC. Fig. 5 plots the WCD at number
of critical PEs of Pcr = 1 (this is the one under analysis, which
means no interfering critical PEs), 2, 4, and 6. The number of
noncritical PEs in Fig. 5 is 2. On the other hand, Fig. 6 plots
the WCD at number of noncritical PEs of Pcr = 1, 2, 4, and
6. The number of critical PEs in this case is 2.

Observations:
1) Fig. 5(a) illustrates that WCD of a critical request in

configurations 1, 2, and 8 is agnostic to the number of
interfering critical and noncritical PEs. This is because
configurations 1 and 2 deploy a Part-All scheme, while
configuration 8 deploys Part-Cr with fixed priority.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

(a) (b)

Fig. 6. Sensitivity of WCD to number of noncritical PEs. (a) Configurations
1, 2, and 8. (b) Configurations 3–7, 9, and 10.

These configurations are crucial to consider, especially
if the number of PEs in the MPSoC is larger or
the task requires a fixed known WCD independent of
other PEs.

2) Fig. 5(b) shows that WCD in configurations 9 and 10 is
independent of the number of co-existing critical PEs in
the MPSoC. This is because both configurations deploy
a Part-Cr scheme.

3) Similarly, Fig. 6(b) shows that WCD in configurations
6 and 7 is independent of the number of co-existing
noncritical PEs in the MPSoC. This is because both con-
figurations prioritize critical PEs over noncritical ones
(pr6 = pr7 = 1).

4) WCD is more sensitive to the number of co-existing
critical PEs in MPSoCs with configurations 3 and 6 as
compared to configurations 4, 5, and 7. This can be
observed by looking at the slope (rate of change) of dif-
ferent plots in Fig. 5(b). The intuition is that MPSoCs
with configurations 3 and 7 have critical PEs with OOO
pipeline, while in configurations 4, 5, and 7, critical PEs
are in-order. In fact, the slope of configurations 3 and 6
is 4× that of configurations 4, 5, and 7. The reason is
that PR = 4 for OOO PEs, while effectively PR = 1 for
in-order PEs.

5) Similarly, in Fig. 6(b), the slope of plots of configura-
tions 3, 4, and 9 is 4× that of configurations 5 and
10. That is, because configurations 3, 4, and 9 have
OOO noncritical PEs, while configurations 5 and 10
have in-order noncritical PEs.

6) A final observation is that partitioning schemes have
scalability limitations with the increase of P. Part-All
requires that NB ≥ P to be able to partition banks across
all PEs, while Part-Cr requires NB ≥ Pcr. Therefore, we
do not simulate beyond a maximum of P = 8 since the
number of banks in the system is 8. Such limitation does
not exist in configurations with no-Part.

D. Sensitivity to the FR-FCFS Threshold

We study the effect of the maximum number of ready
requests that can get reordered before one critical request
(Nthr). Fig. 7 plots WCD for different configurations at Nthr ∈
{1, 2, 4, 8, 16, 32, 64}.

Observations:
1) Configurations 1 and 2 [Fig. 7(a)] have a WCD that

is independent of Nthr. This is because they eliminate

(a) (b)

Fig. 7. Effect of different Nthr values on WCD. (a) Configurations 1, 2, and 8.
(b) Configurations 3–7, 9, and 10.

Fig. 8. WCD of write batching versus non write batching.

reordering interference from all PEs by mapping them
to different banks (Part-All).

2) Configuration 8 [Fig. 7(a)] also has a WCD that is inde-
pendent of Nthr. Configuration 8 eliminates reordering
interference from critical PEs by mapping them to differ-
ent banks (Part-Cr). In addition, it eliminates reordering
interference from noncritical PEs by assigning them
lower priority than critical PEs.

3) The rate of change (slope) is the same across config-
urations 3–7, 9, and 10 in Fig. 7(b). This is because
the reordering component (as discussed in Section V)
depends only on the value of Nthr, and the JEDEC timing
parameters.

E. Effect of Write Batching

To study the effect of write batching on WCD, we also exe-
cute the same experiment setup in Section VII-A using the BW
and latency synthetic benchmarks. Fig. 8 compares obtained
experimental WCD results from configurations with no write
batching (shown as noWb-expr) with those obtained from
configuration with write batching. In addition, Fig. 8 depicts
the analytical WCD bounds for write batching configurations
obtained from the static analysis conducted in Section VI
(shown as WB-analytical). For visibility purposes, all results
are normalized to the experimental WCD results with write
batching; the y-axis is in log scale.

Observations:
1) Write batching significantly increases the analytical

WCD. This is because the per-request analysis (as
Section VI-C discusses) has to assume the worst case
situation, where a read suffers from the maximum num-
ber of writes and all these writes are conflicts. However,

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PELLIZZONI: BOUNDING DRAM INTERFERENCE IN COTS HETEROGENEOUS MPSoCs FOR MCSs 2335

this is a highly pessimistic situation that may never
be observed experimentally. Accordingly, there is a big
gap between analytical and observed WCD for write
batching configurations. Fig. 8 shows that the analyt-
ical WCD can be as large as 100× compared to the
observed WCD.

2) On the other hand, overall, write batching reduces exper-
imental latencies. Across all configurations, we found
that WCD of noWb-expr is 2.84× on average as com-
pared to Wb-expr. As Fig. 8 illustrates, this number can
reach up to 10× for some configurations. Consequently,
the overall conclusion is that while write batching dra-
matically increases the pessimism of analytical WCD, it
can actually have a positive effect on measured delay.
This conclusion aligns with earlier observations in [10],
which notes that the pathological arrival patterns induced
by write batching prevent the determination of tight
delay bounds.

VIII. CONCLUSION

In this paper, we derived a generalized analysis that bounds
the per-request delay that a PE suffers in DRAM due to
interference by other PEs. The analysis accounts for a breadth
of features found in modern MPSoC platforms. In total, we
explore 144 possible COTS platform instances. We then inves-
tigate the effect of these features on an MCS, based on both
the derived analytical memory delay bound for critical appli-
cations, and the average BW for noncritical applications. Our
exploration leads to several key observations, of which we
highlight the following four.

1) Certain feature configurations result in unbounded delay
bounds, and thus should be avoided in MCS.

2) Compared to previous work, leveraging existing features
such as PE prioritization can allow the designer to better
tradeoff the maximum delay for critical applications and
the BW for noncritical ones.

3) There is interdependency among the effects of the fea-
tures on both the delay and the BW. Existence of some
features can countermand the effect of other features.
For instance, if the MC supports request prioritization
and the OS assigns different banks to critical PEs, the
pipeline architecture of all PEs have no effect on delay
bounds.

4) While the write batching mechanism works well in the
average case, it unfortunately induces pathological cases
that result in high bounds on per-request delay. A differ-
ent read-write reordering mechanism could be designed
to improve worst-case bounds [33]. In alternative, one
approach to address write batching is to incorporate
its effect on the job-driven analysis [9] rather than the
request-driven analysis. Job-driven analysis can reduce
pessimism by incorporating information on the maxi-
mum number of requests produced by other PEs during
the execution of the task under analysis; but it comes
at the cost of composability, e.g., the delay bound can
be affected by changes to other applications running on
different PEs.

REFERENCES

[1] M. Hassan, “Heterogeneous MPSoCs for mixed-criticality systems:
Challenges and opportunities,” IEEE Design Test, vol. 35, no. 4,
pp. 47–55, Aug. 2018.

[2] V. Boppana et al., “UltraScale+ MPSoC and FPGA families,” in Proc.
IEEE Hot Chips Symp. (HCS), 2015, pp. 1–37.

[3] DDR3 SDRAM JEDEC, JEDEC Standard jesd79-3b, 2008.
[4] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel, “A comparative study of

predictable DRAM controllers,” ACM Trans. Embedded Comput. Syst.,
vol. 17, no. 2, 2018, Art. no. 53.

[5] M. Hassan, H. Patel, and R. Pellizzoni, “A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems,” in
Proc. Real Time Embedded Technol. Appl. Symp. (RTAS), Seattle, WA,
USA, 2015, pp. 307–316.

[6] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical
memory controller using bank privatization and fixed priority schedul-
ing,” in Proc. Embedded Real Time Comput. Syst. Appl. (RTCSA), 2014,
pp. 1–10.

[7] J. Jalle et al., “A dual-criticality memory controller (DCmc): Proposal
and evaluation of a space case study,” in Proc. IEEE Real Time Syst.
Symp. (RTSS), 2014, pp. 207–217.

[8] D. Guo and R. Pellizzoni, “A requests bundling DRAM controller for
mixed-criticality systems,” in Proc. IEEE Real Time Embedded Technol.
Appl. Symp. (RTAS), 2017, pp. 247–258.

[9] H. Kim et al., “Bounding memory interference delay in COTS-based
multi-core systems,” in Proc. IEEE Real Time Embedded Technol. Appl.
Symp. (RTAS), 2014, pp. 145–154.

[10] H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-aware memory
interference delay analysis for cots multicore systems,” in Proc. IEEE
Euromicro Conf. Real Time Syst., 2015, pp. 184–195.

[11] B. Bhat and F. Mueller, “Making dram refresh predictable,” in Proc.
Euromicro Conf. Real Time Syst., 2010, pp. 145–154.

[12] Z. P. Wu, R. Pellizzoni, and D. Guo, “A composable worst case latency
analysis for multi-rank DRAM devices under open row policy,” Real
Time Syst., vol. 52, no. 6, pp. 761–807, 2016.

[13] M. Hassan, H. Patel, and R. Pellizzoni, “PMC: A requirement-aware
dram controller for multicore mixed criticality systems,” ACM Trans.
Embedded Comput. Syst., vol. 16, no. 4, 2017, Art. no. 100.

[14] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in Proc. IEEE Real Time Embedded Technol. Appl. Symp.
(RTAS), Berlin, Germany, 2014, pp. 155–166.

[15] N. Kim et al., “Attacking the one-out-of-m multicore problem by com-
bining hardware management with mixed-criticality provisioning,” in
Proc. Real Time Syst., 2017, pp. 1–12.

[16] X. Pan, Y. Gownivaripalli, and F. Mueller, “TintMalloc: Reducing
memory access divergence via controller-aware coloring,” in Proc. Int.
Parallel Distrib. Process. Symp. (IPDPS), Chicago, IL, USA, 2016,
pp. 363–372.

[17] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-
core platforms,” IEEE Trans. Comput., vol. 65, no. 2, pp. 562–576,
Feb. 2016.

[18] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource
load for the performance analysis of multiprocessor systems,” in Proc.
Conf. Design Autom. Test Europe, 2010, pp. 759–764.

[19] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. W. Pei, and
N. Stoimenov, “A formal approach to the worst-case response time anal-
ysis of multicore systems with memory contention,” Real Time Syst.,
vol. 50, nos. 5–6, pp. 736–773, 2014.

[20] R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo, “WCET
derivation under single core equivalence with explicit memory budget
assignment,” in Proc. IEEE Euromicro Conf. Real Time Syst. (ECRTS),
2017, pp. 1–23.

[21] R. Trüb, G. Giannopoulou, A. Tretter, and L. Thiele, “Implementation
of partitioned mixed-criticality scheduling on a multi-core plat-
form,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, 2017,
Art. no. 122.

[22] B. Rouxel, S. Derrien, and I. Puaut, “Tightening contention delays
while scheduling parallel applications on multi-core architectures,”
ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, 2017,
Art. no. 164.

[23] Qualcomm Snapdragon 600E Processor APQ8064E Recommended
Memory Controller and Device Settings Application Note, Qualcomm,
San Diego, CA, USA, 2016.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

2336 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 2018

[24] External Memory Interface Handbook Volume 2: Design Guidelines,
Intel, Santa Clara, CA, USA, 2017.

[25] M. Hassan and H. Patel, “MCXplore: Automating the validation pro-
cess of DRAM memory controller designs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 5, pp. 1050–1063, May 2018.

[26] M. Hassan and H. Patel, “MCXplore: An automated framework for val-
idating memory controller designs,” in Proc. IEEE Conf. Design Autom.
Test Europe (DATE), 2016, pp. 1357–1362.

[27] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
Amsterdam, The Netherlands: Morgan Kaufmann, 2010.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan./Jun. 2011.

[29] M. Calle and R. Ramaswami, “Multi-bank scheduling to improve
performance on tree accesses in a dram based random access memory
subsystem,” U.S. Patent 6 839 797, Jan. 4, 2005.

[30] M. Hassan, A. M. Kaushik, and H. Patel, “Reverse-engineering embed-
ded memory controllers through latency-based analysis,” in Proc. IEEE
Real Time Embedded Technol. Appl. Symp. (RTAS), Seattle, WA, USA,
2015, pp. 297–306.

[31] H. Kim, J. Lee, N. Lakshminarayana, J. Lim, and T. Pho, “Macsim:
Simulator for heterogeneous architecture,” Georgia Inst. Technol.,
Atlanta, GA, USA, Rep., 2012.

[32] J. Poovey, Characterization of the EEMBC Benchmark Suite, North
Carolina State Univ., Raleigh, NC, USA, 2007.

[33] L. Ecco and R. Ernst, “Tackling the bus turnaround overhead in real-
time SDRAM controllers,” IEEE Trans. Comput., vol. 66, no. 11,
pp. 1961–1974, Nov. 2017.

Mohamed Hassan (M’11) received the M.Sc.
degree from Cairo University, Giza, Egypt, in
2012 and the Ph.D. degree from the University of
Waterloo, Waterloo, ON, Canada, in 2017.

He was a Research and Development SoC Lead
Engineer with Intel PSG, Toronto, ON, Canada.
He is an Assistant Professor with the School of
Engineering, University of Guelph, Guelph, ON,
Canada. His current research interests include real-
time embedded systems, multicore architectures, and
hardware validation and security.

Rodolfo Pellizzoni (M’05) received the master’s
degree from Scuola Superiore Sant’Anna, Pisa, Italy,
in 2005 and the Ph.D. degree from the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, in 2010.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Waterloo, Waterloo, ON, Canada. His current
research interests include real-time systems and tim-
ing analysis, with a particular focus on HW/SW
architectures for timing predictability and safety
certification.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:37:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

