Bounding DRAM Interference in COTS Heterogeneous
MPSoCs for Mixed Criticality Systems

Mohamed Hassan and Rodolfo Pellizzoni

EMBEDDED

SYSTEMS
WEEK

2 WATERLOO




Methodology 04

Outline




+ Emerging Systems No longer solely hosting @
isolated safety-critical tasks

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed
Criticality Systems

Mixed Criticality Systems




+ Emerging Systems No longer solely hosting @
isolated safety-critical tasks
» Execute tasks with different criticalities
 Criticality @ consequences of failure to meet
requirements

Mixed Criticality Systems




+ Emerging Systems No longer solely hosting @
isolated safety-critical tasks
» Execute tasks with different criticalities
 Criticality @ consequences of failure to meet
requirements

o~

Mixed Criticality Systems




Challenges Facing Autonomous Vehicles Key Requirements of Automotive-Grade IP

Reduce Risk and Accelerate Qualification for Automotive SoCs m
P

Accelerate ISO 26262 functional safety assessments to help
ensure designers reach target ASIL lg

Exploding Performance
Requirements

Real-Time Processing
of Sensors

Functional Safety

Reliability

High performance compute

Infotainment
Cluster
Driver assist

Synops)

Vehicle interface
Compute, Control, Sense

Real-time control
Safe
Secure

User experience

Responsive
Reliable
Fast boot

Cost  Quality Ecosystem Temperature
18 ©ARM 2016 ARM

ixed Criticality Systems




Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed
Criticality Systems

MPSoCs



Shared 10

Low cost

High performance

Energy Efficiency

Low time-to-market (3" party IPs)

MPSoCs MOTIVATION




Heterogenous MPSoCs

» Variety of processing capabilities
- Best-suits MCS conflicting
requirements

Heterogenous MPSoCs |MoTvaTiON




Complementary SoC processor requirements

High performance compute
Infotainment
Cluster
Driver assist
Vehicle interface
User experience

Compute, Control, Sense

Real-time control

Computation
Automation

Sensing

Quality

Ecosystem

Exploding Rise of het
Performance Cachieoh
Requirements ache coly
Safety and Security
Realalime Different Il
Sensor .
Ensuring ¢

Processing

Ultra-High
Safety &
Reliability

Pressure to comply to industry standards - IS0 26262
Functional Safety - Performance - Area Tradeoffs

Linley Autaniomous HW Conference 2017 | @ Copyright 2017 NetSpeed System:

Communication

Automotive Applications Require Different SoC

Architectures

Control
Actuation

ARM

Feature reduction

Pa“e_"_‘ Feature classification
Recognition

Augmentation

Computation & processing
Feedback and

. F ke L
etion eedback loop

Avoidance signalling

High-End ADAS Infotainment

R4, Ethernet AVB, MIPI, HDMI,
\, ADC, UFS, eMMC
Aultimedia

iion

+ IP: Ethernet 10/100/1000, ADC, IfF peripherals
+ Medium Density NVM

omputing

= Smaller amounts of data
= Highly structured data
» Complex computation/item

’ Avoidance éignalling

DSP, Accel

SYNopsys®

« Lots of data
+ Simple computation/item
« Massive parallelism

detection

| Object detection |

Augmentation | i bpﬁcai flowq“

GPU, ISP

i Noise removal

>



e u_ = = B GBd-bit Quad-Core Multiple Power Domains
Cﬂrtex A53 with Virtualization Power Gated Islands

« Application
ARM Processors \/ﬁ\ Power Management @
\ =

Safety & Reliability
m IECE1508, 15026262

- System Isolation &
IEC Error Mitigation, Lockstep

ARM Processors

32-bit Dual-Core
Application Offload

| Real-Time
| e
i Cortex R5

Security
( W Information Assurance
J Trust, Anti-Tamper, Trustfona

Key and Yault Management

High Speed
yr Peripherals
f USE 3.0, PCla Gen2, GbE
SATAZ. 0, DisplayPort

H.265/264 CODECSs

=

. Graphics/Video

"m. ARM Mali-200MP
HEVC

UltraScale

|

FPGA Logic
I UltraRAM, PCle Gend, Runtime SW & Tools
L 100G Ethernat, AMS ’

OS5, RTOS, AMP, Hypervisor
Development, Heterogeneous Debug,
Hardware!/Software Profiling &
Performance Analysis

Heterogenous MPSoCs with Real-time

Processors




WMaster BIS|

Controller

uster I]'

Core || Core
iI| o 2

u

L ﬂ'g‘*mner IPs
i -

'iFleal-r.Ime CPU

Other IPs | Other IPs

On-Chip Interconnect

{

LPDDRY Controller

B : eisT controller

Heterogenous MPSoCs with Real-time

Processors




« DRAM Consists of multiple banks @

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed

Criticality Systems

Background DRAM




« DRAM Consists of multiple banks @

DRAM
Storage element | Column Decoder
. (capacitor) [ [T
Word Line Data In/Out =+ Sense Amps

Buffers

\ ... Bit Lines...

Bit Line

Memory
Array

Row Decoder
Word Lines 3‘

Switching
element

Background




« DRAM Consists of multiple banks @
* The memory controller (MC) manages accesses to DRAM

Data In/Out [+ Sense Amps
Buffers

MEMORY
CPU BUS | CONTROLLER E

Row Decoder |
. |-Word Lines |.
>3
5 3
&2
<

Background




« DRAM Consists of multiple banks

* The memory controller (MC) manages accesses to DRAM

* A request in general consists of:
* ACTIVATE command:

* Bring data row from cells into sense amplifiers

Background

CPU

BUS

DRAM

I Column Decoder |

Data In/Out

Buffers
MEMORY
CONTROLLER

. | Word Lines §.

Row Decoder




« DRAM Consists of multiple banks @
* The memory controller (MC) manages accesses to DRAM
* A request in general consists of:

* ACTIVATE command:
* Bring data row from cells into sense amplifiers

« RD/WR commands: .
* To read/write from specific columns in A;DMOW Deciilar
the sense amplifiers T
Sasers g
e " mﬁgﬂﬁ E . ... Bit Lines...
Memory

Array

Row Decoder
. { Word Lines §.

Background




« DRAM Consists of multiple banks @
* The memory controller (MC) manages accesses to DRAM
* A request in general consists of:

* ACTIVATE command:
* Bring data row from cells into sense amplifiers

« RD/WR commands: .
» To read/write from specific columns in A;DMOW Fofler
the sense amplifiers T
« PRECHARGE command: wemomy | o T Lines..
« to write back a previous row in the sense | ¥ [ |conrotten—

Memory
Array

amplifiers before bringing the new one

Row Decoder
. { Word Lines §.

Background




« DRAM Consists of multiple banks @
* The memory controller (MC) manages accesses to DRAM
* A request in general consists of:
* ACTIVATE command:
* Bring data row from cells into sense amplifiers
 RD/WR commands:

» To read/write from specific columns in
~tRCD tWL tWR tRP

the sense amplifiers A W . ] D) A)
* PRECHARGE command:
 to write back a previous row in the sense = fRAS : ")

amplifiers before bringing the new one
» All commands have associated timing constraints that have
to be satisfied by the controller

Background




Shared 10

* P processing elements
= P, critical + P non-critical
LLC is write-back write-allocate
e Writes to DRAM are only cache
evictions
Single-channel single-rank DRAM
subsystem
Nz DRAM banks
Shared cache(s)

System Overview




Shared 10

P processing elements
= P critical + P non-critical
LLC is write-back write-allocate
* Writes to DRAM are only cache
evictions

Single-channel single-rank DRAM
subsystem

Nz DRAM banks

Goal:

Derive an upper bound on the
delay incurred by any memory
request of a critical PE

System Overview




Applications /Memory Behavior \

Depends on?:

OS Configuration

PE Architecture

System Details




/ . \ PEs can be given priorities

Applications Memory BEhaV|0r COTS platforms support different priority
. levels

\ De pe N d S on ? ’ Existing analysis does not account for this

OS Configuration FR-FCFS
COTS also supports a threshold on

reordering to prevent starvation

PE Architecture

RR across banks

Two flavors:
* Always schedule ready commands of any

Tel type (high performance)
Shared cache(s)
ared cache(s M C PO I ICIes * Reorder only commands of different type
(prevent starvation)

Reads and writes have same priority
Serve in batches, where reads have higher
priority

System Details



Inter-bank Reorder
* 1: Reorder across all commands
* 0: Reorder commands of diff types

R/W Reorder

* 1: write batching
* 0: no write batching

MPSoC
Platform
Instances

FR-FCFS Threshold
e 1: FR-FCFS is capped
* 0: nocapon FR-FCFS

Pipeline

* JO-All: All PEs are In-order

* JO-Cr: Critical PEs are in-order
* OOO-AIl: All PEs are 000

Priority
e 1: Critical PEs are higher priorit
* 0: no priority

Partitioning

* No-Part: No Partitioning
Part-Cr: Partition among critical apps
* Part-All: Partition among all apps

Platform Instances




Inter-bank Reorder
* 1: Reorder across all commands
* 0: Reorder commands of diff types

R/W Reorder

* 1: write batching
* 0: no write batching

R MPSoC
FR-FCFS Thresho
e 1: FR-FCFS is capped Plathrm

* 0: no cap on FR-FCFS lnstances
Priority
e 1: Critical PEs are higher priorit

* 0: no priority

Pipeline

* JO-All: All PEs are In-order

* JO-Cr: Critical PEs are in-order
* OOO-AIl: All PEs are 000

Partitioning
* No-Part: No Partitioning
Part-Cr: Partition among critical apps
144 different platform * Part-All: Partition among all apps
instances!

Platform Instances



wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

part thr pr
000 10-Cr 10-All OO0 I10-Cr 10-All OO0 10-Cr 10-All OO0 I10-Cr l10-All

R
< 0 1
s 1 0

1 1
. 0 0 144 Platform
g 0 1 Instances
) 1 0
2

1 1

0 0
ﬁ-._,) 0 1
S 1 0

1 1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

part thr pr
000 10-Cr 10-All OO0 I10-Cr 10-All OO0 10-Cr 10-All OO0 I10-Cr l10-All

_ 0 0
< 0 1
s 1 0

1 1 Observation 1:

0 0 Unboundedness of inter-bank RR with reordering
s 0 1
<ZD 1 0

1 1

0 0
Q 0 1
yu
. 1 0

1 1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

part thr pr
000 10-Cr IO-All OO0 I10-Cr 10-All OO0 10-Cr IO-All OO0 I0-Cr 10-All
0 o
< 0 1
5 1 0
1 1
0 0
s 0 1
<ZD 1 0
1 1
0 0
= 0 1
yu
. 1 0
1 1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

part thr pr
000 10-Cr IO-All OO0 I10-Cr 10-All OO0 10-Cr IO-All OO0 I0-Cr 10-All

0 o0
< 0 1
5 1 0

1 1

0 0 Observation 2:
E 0 1 Write batching effect
<ZD 1 0

1 1

0 0
= 0 1
ju
. 1 0

1 1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

part thr pr
000 10-Cr IO-All OO0 I10-Cr 10-All OO0 10-Cr IO-All OO0 I0-Cr 10-All
0 o
< 0 1
5 1 0
1 1
0 0
s 0 1
<ZD 1 0
1 1
0 0
= 0 1
£
. 1 0
1 1

General Observations METHODOLOGY




s | i wb=0,breorder=0 wb=0,breorder=1 _

Pr 000 10-Cr 10-All 000 10-Cr 10-All 00O 10-Cr 10-Al
0o o
?f 0o 1
g 1 0
1| 1
L 0 o0
g 0 1
S 1 0
R
0o o
S o 1
g 1 0
1| 1

General Observations METHODOLOGY




s | i wb=0,breorder=0 wb=0,breorder=1 _

A OO0 I0-Cr 10-All OO0 10-Cr 10-All OO0 I0-Cr IO-All
0 0
= o0 1
5 1 0
1 1
y VB Observation 3:
5 Bl Unboundedness of FR-FCFS without threshold
2 1
1
_ 0
S 0
5 1
1

General Observations METHODOLOGY




s | i wb=0,breorder=0 wb=0,breorder=1 _

Pr 000 10-Cr 10-All 000 10-Cr 10-All 00O 10-Cr 10-Al
0o o
?f 0o 1
g 1 0
1| 1
L 0 o0
g 0 1
S 1 0
R
0o o
S o 1
g 1 0
1| 1

General Observations METHODOLOGY




s | i wb=0,breorder=0 wb=0,breorder=1 _

.
> 000 10-Cr I0-All OO0 I10-Cr 10-All OO0 I10-Cr IO-All
_ 0 0
< 0 1
I 1 0
¥ Observation 4:
1)l Part-All effect
o 0
<ZD 1
1
0
S o0
s 1
1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 _

part thr pr
000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All
< 0 1 confg2 confgld confgl5 confgl6
o1 o e confell confg1z confgls
1 1 confg2 confgld confgl5 confgl6
0 0
kS 0 1
e 1 0
1 1
o o uwouo  uneouwoe
o 0 1
g 1 0
1 1

General Observations

METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 _

part thr pr
000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All

o o [EcEHE
= o 1 o
£ s

1 Observation 5:

0 Part-Cr effect when wb=0
5 0
2 1

1

0
o) 0
5 1

1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1

part thr pr
000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All

0 0

= 0 1
G
1 1

0 0

5 0 1
2 1 0
1 1

0 0

o 0 1
g 1 0
1 1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 _

part thr pr
000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All

_ 0 o confl ‘confgll confgl2 confgl3
< 0 1 confg2 confgld confgl5 confgl6
1 Observation 6:
0 Priority effect when wb=0
CE 0
§ 1
1
0
S 0
5 1
1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1

part thr pr
000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All
o o ENGHEI
S o 1 [ @
L1 e
0 0
2 1 0
1 s o
o o uwouom
o 0 1
E 1 o e
1 conaion

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 _

000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All

part thr pr

_ 0 o [ eonfgl confgll confgl2 confgl3
< 0 1 confg2 confgld confgl5 confgl6
§ 1 .
- Observation 7:
0 Priority with Part-Cr effect
5 0
o 1
= X Same as Part-All effect!!
0
o) 0
g 1
1

General Observations METHODOLOGY




wb=0,breorder=0 wb=0,breorder=1 _

part thr pr
000 10-Cr 10-All 000 10-Cr 10-All 000 10-Cr 10-All
< 0 1 confg2 confgld confgl5 confgl6
o1 o e confell confg1z confgls
1 1 confg2 confgld confgl5 confgl6
0 0
kS 0 1
e 1 0
1 o
o o uwouwoo
g o 1 conf8
g 1 0 confgd
L

General Observations

METHODOLOGY




wb=0,breorder=0

part thr pr
000 10-Cr 10-All
o o [T
S o 1 [ @
L1 e

0 0
c 1 0 confg3 confgd Confg5
o o uweouwoe
g o 1 R
,_fE 1 0 _ confgl0
.

wb=0,breorder=1
000 10-Cr 10-All

000

10-Cr

10-All

confgl7 confgl8 confgl9
confg20 confg21l confg22

confg26 confg27 confg28

144 Instances =2 28 Configurations

General Observations

METHODOLOGY



« Consider all timing constraints generated by commands of interfering requests o@
other PEs serviced between the times when r, arrives and finishes

* + Delays due to command bus contention

« Compute WCD for each configuration?

rua
finishes

I W

rua
arrives

o

Memory Delay Building Blocks METHODOLOGY




« Consider all timing constraints generated by commands of interfering requests o@
other PEs serviced between the times when r, arrives and finishes

* + Delays due to command bus contention

« Compute WCD for each configuration? @&
« Still too much
* Not general enough L,

finishes

rua
arrives

o

Memory Delay Building Blocks METHODOLOGY




« Consider all timing constraints generated by commands of interfering requests o@
other PEs serviced between the times when r, arrives and finishes

* + Delays due to command bus contention

« Compute WCD for each configuration? @& « Configuration-
« Still too much > independent DRAM
« Not general enough delay components ©

finishes

I W

rua
arrives

o

Memory Delay Building Blocks METHODOLOGY




« We classify interfering requests (aka delay @
sources) into four types - causing four basic
interferences:

rua

finishes

fua WCD
arrives | € =

Memory Delay Building Blocks METHODOLOGY




« We classify interfering requests (aka delay WCeCD = @
sources) into four types - causing four basic LimterB(Inters yp)
interferences:

1. Inter-bank interference (requests to other banks)

nterB  Tua
finishes

LI nterB

fua WCD
arrives | € =

Memory Delay Building Blocks METHODOLOGY




« We classify interfering requests (aka delay WCeCD = @
sources) into four types - causing four basic LimterB(Inters yp)
interferences: +wb x LVE(NWE)

1. Inter-bank interference (requests to other banks)
2. Write batch Interference (only for R/W reordering)

NWB \nterB Mia

l finishes

fua WCD
arrives | € =

Memory Delay Building Blocks METHODOLOGY




« We classify interfering requests (aka delay WCD = @

sources) into four types - causing four basic LimterB(Inters yp)
interferences: +wb x LWB(NWB)
1. Inter-bank interference (requests to other banks) +LConf (NConT)

2. Write batch Interference (only for R/W reordering)
3. Conflict interference (requests to same bank
different rows arrived before r,)

NWB \Conf NnterB  Tua
finishes

LI nterB

Mia WCD
arrives | € N

Memory Delay Building Blocks METHODOLOGY




« We classify interfering requests (aka delay WCD = @

sources) into four types - causing four basic LimterB(Inters yp)
interferences: +wb x LWB(NWB)
1. Inter-bank interference (requests to other banks) +LConf (NConT)

2. Write batch Interference (only for R/W reordering) +N™ x LIters (NIMers wh)
3. Conflict interference (requests to same bank
different rows arrived before r,)

NWB \Conf NnterB  Tua
| finishes
v

‘ LWB LConf NConfoInterB

Mia WCD
arrives | € N

Memory Delay Building Blocks METHODOLOGY




« We classify interfering requests (aka delay WCD = @

sources) into four types - causing four basic LInterB(InterB ), h)
interferences: +wb x LVE(NWE)
1. Inter-bank interference (requests to other banks) +LEOM (NComT)
2. Write batch Interference (only for R/W reordering) +N¢" x LMe™5 (NeT5 wh)
3. Conflict interference (requests to same bank + LReorder (NReorder, wh)

different rows arrived before r,)
4. Intra-bank Reorder interference (FR-FCFS)

NWB \Conf [\JReorder NnterB  Tua
| finishes
v

LI nterB

‘ LWB LConf NConfoInterB LReorder

Mia WCD
arrives | € N

Memory Delay Building Blocks METHODOLOGY




@)

« We classify interfering requests (aka delay WCeCD =

sources) into four types - causing four basic LInterB(InterB ), h)
interferences: +wb x LWB(NWB)

1. Inter-bank interference (requests to other banks) +LEOM (NComT)

2. Write batch Interference (only for R/W reordering) +N¢" x LMe™5 (NeT5 wh)

3. Conflict interference (requests to same bank + [Reorder(yReorder )
different rows arrived before r,) FNRETAT x g™ (NTETE, wh)

CAS
4. Intra-bank Reorder interference (FR-FCFS)

rua

NWB NConf NReorder N\nterB

| finishes

v

‘ LWB LConf NConf x [InterB LReorder LReorder ><LInterB LInterB

CAS
Mia WCD
arrives || € N

Memory Delay Building Blocks METHODOLOGY




* Let's assume we know # of interfering requests WCD = @

(Ns), how to compute the latency components LInterB(InterB ), h)
(LS)? +wh x LWB (NWB)
> s only depend on Ns and JEDEC “known” timing +LEOM (N CoT)
constraints _|_NConf % LInterB(NInterB,Wb)

+ LReorder (NReorder’ Wb)
_|_NReorder % LICrfqtgrB (NlnterB, Wb)

Memory Delay Building Blocks METHODOLOGY




* Let's assume we know # of interfering requests @

(Ns), how to compute the latency components
(Ls)?

—> Ls only depend on Ns and JEDEC “"known” timing
constraints

> L as example

LEOM (NCOY = NCON x (MAX(tRAS,tRCD + tWL + tB + tWR) + tRP)

- tRCD WL <tWR___ tRP
& W 8. T ®
(DATA)
. tRC o
tRAS R T

Memory Delay Building Blocks METHODOLOGY



* Let's assume we know # of interfering requests @
(Ns), how to compute the latency components

(Ls)? « Configuration-
- Ls only depend on Ns and JEDEC “known” timing indepgendent DRAM
constraints
delay components
> L as example Y P ©

LEOM (NCOY = NCON x (MAX(tRAS,tRCD + tWL + tB + tWR) + tRP)

<« tRCD tWL

-

= <tWR___ tRP
Ay Wy B D) A
’-DATA
. tRC o
tRAS R =

Memory Delay Building Blocks METHODOLOGY



* Let's assume we know # of interfering requests @
(Ns), how to compute the latency components
(Ls)? « Configuration-
= Ls only depend on Ns and JEDEC "known"” timing indepgendent DRAM

constraints delay components ©

* Now: It only remains to compute the Ns.

Memory Delay Building Blocks METHODOLOGY




« Now: It only remains to compute the Ns. - Config. dependent

# of Interfering Requests METHODOLOGY




confg3:

* Now: It only remains to compute the Ns. - Config. dependent
 Take confg3 as an example: * nho WB

* FR-FCFS thr
* noFP

* Inter-bank reorder among
different types only
(breorder=0)

e All PEs are OO0

* no partitioning

# of Interfering Requests METHODOLOGY




confg3:

« Now: It only remains to compute the Ns. - Config. dependent
« Take confg3 as an example: * ho WB

1. Conflicts (N¢°):
= OOO-AIll = each PE has PR pending reqgs FR-FCFS thr

= No FP = critical and non-critical scheduled similarly no FP

= Then N¢°" = (P — 1) x PR requests can conflict with r_, Inter-bank reorder among

different types only
(breorder=0)

All PEs are OO0

no partitioning

# of Interfering Requests METHODOLOGY



Now: It only remains to compute the Ns. - Config. dependent
Take confg3 as an example: .

Conflicts (N¢°):

= OOO-AIll = each PE has PR pending reqgs

= No FP = critical and non-critical scheduled similarly

= Then N¢°" = (P — 1) x PR requests can conflict with r_,
2. Reorder (NReorder).

= FR-FCFS thr & max of NReorder — . requests can be
reordered beforer,

-—
.

# of Interfering Requests

confg3:

no WB
FR-FCFS thr
no FP

Inter-bank reorder among
different types only
(breorder=0)

All PEs are OO0

no partitioning

METHODOLOGY



Now: It only remains to compute the Ns. - Config. dependent

1. Conflicts (N¢°):

= OOO-AIll = each PE has PR pending reqgs

= No FP = critical and non-critical scheduled similarly

= Then N¢°" = (P — 1) x PR requests can conflict with r_,
2. Reorder (NReorder).

= FR-FCFS thr & max of NReorder — . requests can be
reordered beforer,

3. Inter-bank (N"te7B).

= RR arbiter and no FP=> max of NI™¢"™B = Ny — 1 reqgs from
other banks can be reordered before r,

# of Interfering Requests

confg3:

Take confg3 as an example: * nho WB

FR-FCFS thr
no FP

Inter-bank reorder among

different types only
(breorder=0)

All PEs are OO0

no partitioning

METHODOLOGY



confg3:

Now: It only remains to compute the Ns. - Config. dependent
Take confg3 as an example: * ho WB
Conflicts (N¢°):
= OOO-AIll = each PE has PR pending reqgs FR-FCFS thr
= No FP = critical and non-critical scheduled similarly no FP
= Then N¢°" = (P — 1) x PR requests can conflict with r_,
Reorder (NReorder).
= FR-FCFS thr & max of NReorder — . requests can be different types only

reordered before r, (breorder=0)
Inter-bank (N"te7B).

= RR arbiter and no FP-> max of N/mt¢™B = Ny — 1 reqs from SEANLSSCI(=N0]0]6)
other banks can be reordered before r,

Write Batch (N"B)
= No WB > NWEB=(

Inter-bank reorder among

no partitioning

# of Interfering Requests METHODOLOGY



* Follow Same approach for all configurations

Configuration | i reoTRey NInwerS
(‘.t}n.fy] 0 0 J\'YH -1
con fga 0 0 Nper
con fgs (P-1)- PR Nihr Np —1
confgy Pper * PR 4 Pey - 1 Niny Ng -1
confgs P-1 Nins Np -1
confge (Per —1)- PR+ 1 Nin, Ngp — 1
(!(Jn-fy‘? P,-,- .'\",- b .'\'TH -1
con fgs 1 0 Ng —1
con fqa Pper + PIR Nins Np -1
f-'U“fylt'i PH(.‘J' JI\I'.HH -'\rﬂ -1

# of Interfering Requests

METHODOLOGY




A private 16KB L1 and a shared 1MB L2 cache

An in-order PE has a maximum of one pending request to the DRAM

An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4)
Four-processor system unless otherwise specified

Through the virtual-to-physical address mapping component at MacSim’s frontend
Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)

OS Mapping

DRAM DDR3-1333H with single channel, single rank, and 8 banks

. The two critical PEs execute a2time and rspeed
Benchmarks | EEMBC Automotive The two non-critical PEs execute matrix and aifftr
. Each of the critical PEs execute one instance of the latency benchmark Each of the
Synthetic . . :
non-critical PEs execute one instance of the Bandwidth benchmark
Evaluati Set RESULTS




igg . | EEMBC & Synth EAnIytiaI | i 4500 ’ ®m EEMBC @ Synth S Analytical ‘
140 H WE OF 4000
120 | _confg, & _ confaq, 3500
00 B PP g g = 3000
s B A 25 e wE e E el 2500 —
e ME WE o2 WE WE wiE e W :
SEEeERe PRl = 7
o WA W WE WE WE NE WE e W 1500 confg, =
T 6 F § &6 3 F 6 3 3 6 %F 1000 =
© @ © © 9 © o 9 o o 9 o 500 =
- o - o - o - o =
S S S S . | O ([ZE
noPr or noPr or 10-All lO-Cr  0O0O-All
noThr thr noPr pr
500 4000
’ B EEMBC F Synth E Analytical ‘ ’ m EEMBC FiSynth @Analytical‘
400 — = = 3000
300 | confg, | confg,
2000
200
- l l o % l % I
0 0 .
10-All l0-Cr 000-All 10-All lO-Cr 000-All

WCD of Critical Processors  [RESULTS




180 | WM EEMBC #Synth EAnaIyt1cal|

140 = SIS JE
120 _ ) conftb
100 5 VB VE =
0 £ G gE B OEE
O wE Ve VE o Ve WE o
AL fs 78 = | = I |
o NE NE NE g2 WE Wes , ,
5 3 9% 9 3% 39
c /Q 9 9 © o o 9 g o o
(@] @] (@]
noPr noPr pr
noThr thr

No bank sharing (Part-All)

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

WCD of Critical Processors  RESULTS




160 = o= A=
SR (= =
140 = W= AS
120 E =
100 ST~ R = —
20 E 221 7 B oE
oo = 0E Ve E WE WE b o
40 I ZE I g = I2 = 2. For same priority setting: pipeline
20 ME WE N 7 = =
o Nee BPE N VE 2 W= WS = ~2 has no effect on WCD
9% 39333833383
@) ©) o @) ®) @) (®) ©) @] ®) ©) @)
- O - - (@) - @)
(@) O (@] O
noPr noPr pr
noThr thr

No bank sharing (Part-All)

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

WCD of Critical Processors  RESULTS




160 = o= A=
5 ME e
140 = M= A
120 E _
100 = rE VE = =
20 = U5 mH Y = £
= ad BE U p 5 =
60 = BE RS A ’ = = .. . . .
40 I EE EE I I I g - 2. For same prlorlty settlng: plpellne
20 WE W &2 1 N e W2 WA has no effect on WCD
$ 5% 3433 383
o o o O ®) o @] o o
@) (@) @)
noPr noPr pr

noThr

No bank sharing (Part-All) 3. Part-All + FP gives lowest WCD

1. Intra-bank reorder (FRFCFS) has across all configurations
no effect on WCD

WCD of Critical Processors  RESULTS



4500 . m EEMBC Synth = Analytical
4000

3500
3000

2500

4. With priority: the pipeline of non-
critical processors is irrelevant

T

10 - % I ﬂ g; Z
1000 g VA %%
500  confg, |
. |7 2= O Lz
10-All 000-All  10-All I0-Cr  0O0O0-All

noPr pr

Bank Sharing among all Processors (No-Part), thr=1

WCD of Critical Processors  RESULTS




4. With priority: the pipeline of non-
critical processors is irrelevant

5. No-Part + No-FP gives highest

WCD across all configurations

WCD of Critical Processors

4500 — m EEMBC Synth = Analytical

4000
3500
3000

2500

T

...... é
1000 g s lﬁ!
500 I ﬁ
0 Z=
10-All I0-Cr  OO0O-All

noPr pr

Bank Sharing among all Processors (No-Part), thr=1

RESULTS




4500 ’ B EEMBC @A Synth @Analytical‘

[O-All 10-Cr OO0O0-All [0-All

No bank sharing among Critical Processors (Part-Cr), FP >Pr

500

400

300

200

100

0

WCD of Critical Processors

’ m EEMBC FSynth EAnaIytical‘

WCD

= = =
{ confgg
B l% l%
10-All I0-Cr O0O0-All

RESULTS




3000
2500
2000
1500
1000

500

(o)
0
-
@)
@)
O
)
O
Q
S
©
o
=
@)
O

=
-
O
&
e
Z

!@

P T P ™

confg,
M E¥

/o
|
n W
N |
A
v
7V
5;
‘A
noPr

uod =

i T T R N Y T N

:

B T R N T R R R e R R N TR

il

B T, T e, T, e T e N T

'l ]E
confg,

FEEE

L/

;
4

m PEO # PE1
AL
confg,

0

s
)
=

C
0
i)

©
O

()

| -

e]0]

Q
©
o
X
)
o)

|

= 0
<O
=2
©

a A
(m
N

g%
20 ©
cC O
(@ N
@
o

[IV-000
43-0l
[IV-Ol
[IV-O000
43-0l
[IV-Ol
[IV-O00
13-0l
V-0l
[IV-O00
13-0l
V-0l
[IV-O00
13-0l
[IV-Ol
[IV-000
43-0l
[IV-Ol
[IV-000
43-0l
[IV-Ol
[IV-O000
43-0l
V-0l

* Confg 8 (Part-Cr + FP):

pr

pr noPr pr noPr pr

noPr

= 89% less WCD
= 0.85% BW

thr

thr

thr

noThr

partCr

noPart

partAll

degradation

RESULTS

Bandwidth



100 M noWb-expr £ WB-analytical

* Normalized to WB-expr

oo TS AN AR AR FAREY

: 1 1 | | | | | )
* WB improves avg case |
e noWb-expr is 2.84x on R

T3IIPIIFIIPITIIITIPIIILIIVR
average as compared O900Q200Q200Q200Q9009009 0090
- o — o — o — o — o — o — o — @
to Wb-expr o o o o o o o o
* even reaches 10x noPr pr noPr pr noPr pr noPr pr
thr noThr thr thr
noPart partAll partCr

Write Batching Effect RESULTS



150

‘ —--confgl —confg2 —confg8 ‘

)
< 100

50

* Confg. 1 &2 & 8 offers Prcr

complete isolation 200
150

\ —-confgl —~-confg2 —~ confg8 \

o
<100

O o= o= = e = e e = = = = e = == ——— -0

Sensitivity to # Processors RESULTS



150

a ‘ —-confgl —~confg2 —confg8 ‘

* Confg.1and 2: Part- $100
All 0
. 0

 Confg. 8: Part-Cr with 0 7 4 6

* Confg. 1 &2 & 8 offers fixed priority
complete isolation

O o= o= = e = e e = = = = e = == ——— -0

Sensitivity to # Processors RESULTS



* Confg. 6 & 7: deploy
fixed priority

5000 ——confg3 - confgd —-confgh
—<confgb -+confg7 --confg9
4000 -= confgl0

—ag
 —
—

* Confg 6 & 7 offers isolation from
non-cr PEs

Sensitivity to # Processors RESULTS



5000

4000

& 3000

()

= 2000
1000

* Confg 3,4,9 are more vulnerable
to WCDT when Pnch

Sensitivity to # Processors

——confg3 - confgd —-confgh
—<confgb -+confg7 --confg9
-= confgl0

Pncr

Confg. 6 & 7: deploy
fixed priority

Confg. 3&4&9: non-cr
PEs are OO0

Confg. 5&10: non-cr
PEs are in-order

RESULTS



Confg. 6 & 7: deploy fixed
priority

5000 —confg3 - confgd ——confgs
4000 —-confg9 -=confglo

T —

T — =

Confg. 3&4&9: non-cr PEs
6 are OO0

Confg. 5&10: non-cr PEs

* Confg 3,4,9 are more vulnerable are in-order

to WCDT when Pnch

In fact, slope is 4x, why -> #pending reqs is 4

Sensitivity to # Processors RESULTS



e Confg 3,6 are more vulnerable
to WCDT when Pcr T

2000 ‘—confg3 - confgd —confg5
4000 —~confgb —~confg7 —confg9
A 3000 -= confgl0
Q % )
L |

Sensitivity to # Processors RESULTS



150

A ‘ —confgl —--confg2 — confg8 ‘
Q 100

=
50 v cim e ===
0
0 50 100 150
thr

20000

——confg3 - confgd
15000 ~+-confg5 =-confgb
—-confg7 -=-confg9

Sensitivity to FR-FCFS thr. RESULTS



» Heterogeneous MPSoCs are important for Mixed Criticality Systems @

Summary & Conclusions




» Heterogeneous MPSoCs are important for Mixed Criticality Systems @

« We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

Summary & Conclusions




» Heterogeneous MPSoCs are important for Mixed Criticality Systems @

« We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

-
2 Memory Behavuﬂ

Depends on?:

OS Configuration

PE Architecture

MC Policies

Summary & Conclusions



« We derived a generalized analysis that bounds the per-request DRAM @
interference delay in MPSoCs

R/W Reorder

. 1: write batching
0: no write
batching

Inter-bank Reorder
1: Reorc

types

MPSoC
Platform
Instances

FR-FCFS Threshold Pipeline
1: FR-FCFS is 10-All: All PEs ai order
10-Cr: Critical PEs are in-

capped

° . order
‘:'c:;’ cap on FR 000-All: Al PES are 000
Priority Partitioning
. 1: Critical PEs are higher No-Part: No Partitioning
priority Part-Cr: Partition among critical

0: no priority

144 different platform
instances!

Applications I

Memory Behavi(h
0sS
Depends on?:

apps
Part-All: Partition among all
apps

OS Configuration

PE Architecture

Shared cache(s) . e
oy MC Policies

Off-chip
Memory/ies

Summary & Conclusions



« We derived a generalized analysis that bounds the per-request DRAM @
interference dela

144 instances

Inter-bank Reorder
1: Reorder across all
commands

0: Reorder commands of diff
types

R/W Reorder

. 1: write batching
0: no write
batching

MPSoC

FR-FCFS Threshold Pipeline
. 1: FR-FCFS is Platform 10-Al: All PEs are In-order
capped 10-Cr: Critical PEs are in-
oo eap o FR. Instances order
F.CFS (000-All: All PEs are 000
o wh=0,breorder=0 wha breorder=1 wbeLbreorder=0 wb=1 breorder=1
Priority Partitioning L i 000 10-Cr 10-All 000 10-Cr I0-Al 000 10Cr  [0-All 000 10-Cr 10-All
. 1: Critical PEs are higher No-Part: No Partitioning o o
priority Part-Cr: Partition among critical I o 1
0: no priori ) £
roprienty 144 different platform Part-All: Partition amonagpglsl £ . ¢
instances! apps 2 5
0 0
=
E o s
2 1 (1
1 1
= o
5 s z o 1
Applications . | T
Memory Behavior s

0S
Depends on?:

Shared 10

OS Configuration

PE Architecture

Shared cache(s) . e
oy MC Policies

Off-chip
Memory/ies

Summary & Conclusions



« We derived a generalized analysis that bounds the per-request DRAM
interference dela

144 instances 28 configurations

Inter-bank Reorder

R/W Reorder
. 1: write batching 1: Reorder across all
10-Cr 10-All 000 10-Cr 10-All 10-Cr
0: no write commands General :
batching 0: Reorder commands of diff ob i
types servations
MPSoC
FR-FCFS Threshold Pipeline
1: FR-FCFS is Platform 10-Al: All PEs are In-order
capped 10-Cr: Critical PEs are in-
oo eap o FR. Instances ord
Fé:FS (000-All: All PEs are 000
ol o wh=0,breorder=0 w0 breorder=1 whe1,breorder=0 wh=1breorder=1
Priority Partitioning L i 000 10-Cr  10-Al 000 10Cr I0-Al 000 10Cr  1Q-AI 000 I0-Cr  IO-ANl Lo}
. 1: Critical PEs are higher No-Part: No Partitioning [} 0 €
priority Part-Cr: Partition among critical I 0 1 e
0: no priorit ) 5
roprienty 144 different platform Part-All: Partition amonagpglsl £ . ¢
instances! apps 2 5
0 o
£
E oo 1
2 i 0
1 1
oy = 0
. . i o 1
Applicatio - | T
Memory Behavior i

0S
Depends on?:

Shared 10

OS Configuration

PE Architecture

Shared cache(s) -
oy MC Policies

Off-chip
Memory/ies

Summary & Conclusions



« We derived a generalized analysis that bounds the per-request DRAM
interference dela

144 instances 28 configurations

Inter-bank Reorder

R/W Reorder
. 1: write batching 1: Reorder across all G . > v
0: no write commands General 10-Cr 10-All 000 10-Cr 10-All
batching 0: Reorder commands of diff ;
types Observations
MPSoC
FR-FCFS Threshold Pipeline
. 1: FR-FCFS is Platform 10-Al: All PEs are In-order
capped 10-Cr: Critical PEs are in-
oo on FR- Instances ord
ol P 000-All: All PEs are 000
i e wh=0,breorder=0 w0 breorder=1 whe1,breorder=0 wh=1breorder=1
Priority Partitioning L i 000 10-Cr  10-Al 000 10Cr I0-Al 000 10Cr  1Q-AI 000 I0-Cr  IO-ANl Lo}
. 1: Critical PEs are highcr No-Part: No Partitioning [} 0 5
pr\'or\'!y} ) Part-Cr: Partition among critical 2 0 1 e
0o prorty 144 different platform Part-All: Partition amonagpglsl £ . ¢
instances! apps 2 5
0 o
£
E oo 1
2 i 0
1 1
= ) 0 Compute the number
o
3 g 7 o 1 . .
Applicati . SN of interfering requests
Memory Behavior i NCont, Reorder, e,

0S
Depends on?:

Shared 10

OS Configuration

PE Architecture

Shared cache(s)
oy MC Policies

Off-chip
Memory/ies

ummary & Conclusions



« We derived a generalized analysis that bounds the per-request DRAM
interference dela

144 instances 28 configurations

Inter-bank Reorder

R/W Reorder
. 1: write batching . 1: Reorder across all G . > v
. 0: no write commands General 10-Cr 10-All 000 10-Cr 10-All
batching 0: Reorder commands of diff ;
types Observations
MPSoC
FR-FCFS Threshold Pipeline
. 1: FR-FCFS is Platform 10-Al: All PEs are In-order
capped 10-Cr: Critical PEs are in-
o on R Instances ord
ol P 000-All: All PEs are 000
i e wh=0,breorder=0 w0 breorder=1 whe1,breorder=0 wh=1breorder=1
Priority Partitioning L i 000 10-Cr  10-Al 000 10Cr I0-Al 000 10Cr  1Q-AI 000 I0-Cr  IO-ANl Lo}
. 1: Critical PEs are higher . No-Part: No Partitioning [} 0 €
priority Part-Cr: Partition among critical I 0 1 e
. oty z
0o prorty 144 different platform Part-All: Partition amonagpglsl £ . ¢
instances! apps 2 5
0 o
£
E oo 1
2 i 0
1 1
= ) 0 Compute the number
o
| o 1 . .
Applicatio N == ofclnfteerer;mg lr?unei;tBs
onf N\Reorder ||Inter
Memory Behavior A NCon, Reorder, rtr

0S
Depends on?:

Shared 10

Write Batching Intra-bank Reorder

Delay incurred by a read waiting
for a write batch to finish

OS Configuration

NWB [\Reorder

Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open

Applies only for configurations Delay Basic row in the bank
with write batching o
Building Blocks Inter-bank

PE Architecture

Shared cache(s) " . Requests targeting different
Memory MC Policies Row Conflict NConf \inter8 banks and are serviced before
eI Requests arrived before the one the one under analysis because
Off-chip under analysis and are targeting of the RR policy

Memory/ies different rows

Summary & Conclusions



Main lessons:

* We derived a ge 1. DRAM’s WCD significantly depends on MPSoC features
interference dela

batching

FFFFFFFFFFFFFFFF

Priority
priority

instances!

ssssssssssssss

MMMMMM

eeeeeeee

Summary & Conclusions




. Main lessons:
We SEUELEIE | DRAM’s WCD significantly depends on MPSoC features
WERECUECEE ) | jeontified features that lead to unbounded WCD

MPSoC
Platform
Instances

ightt
priority
0: no priority

nnnnnnnnnn

ssssssssssssss

MMMMMM

eeeeeeee

Summary & Conclusions




. Main lessons:

MEELIERERN | DRAM’s WCD significantly depends on MPSoC features

WCUEENIENEEE ) | jontified features that lead to unbounded WCD

3. leveraging existing features such as PE prioritization can allow
- the designer to better trade-off the maximum delay for

‘dal  critical applications and the bandwidth for non-critical ones.

ooooo

Es are higher

nnnnnnnnnn

ssssssssssssss

MMMMMM

eeeeeeee

Summary & Conclusions




. Main lessons:
We derived a gergia -YNVERVVel> significantly depends on MPSoC features
WCREIEIEICEE ) | gentified features that lead to unbounded WCD
- 3. leveraging existing features such as PE prioritization can allow
e the designer to better trade-off the maximum delay for
witilly  critical applications and the bandwidth for non-critical ones.
roeme 14 4. There is interdependency among the effects of the features
= on both the delay and the bandwidth. Existence of some
features can countermand the effect of other features
Depe

. oS
=

Applications

(O

ssssssssssssss

MMMMMM

eeeeeeee

Summary & Conclusions




150
A ‘ —confgl —--confg2 — confg8 ‘
Q 100
* Confg. 1and 2: Part- =
All 1 S A
0
* Confg 1 &2 &8 offers complete * Confg. 8: Part-Cr with 0 50 100 150

: o th
isolation from FR-FCFS fixed priority r

reordering

Sensitivity to FR-FCFS thr. RESULTS



e Configs 3-7 & 10 scales
linearly with FR-FCFS
threshold

Sensitivity to FR-FCFS thr.

Slope is the same for
these configs

LReorder component
depends only on thr
and JEDEC constraints

20000
Reordering has huge 15000
impact on WCD S 10000

——confg3 -+ confgd
——confgh ~-confgb
—-confg7 --confg9
-= confgl0

RESULTS



* We derived a gerf}
interference dela 2.

3.

batching
FFFFFFFFFFFFFFFF

Instances

rrrrrr

instances!

Applications

(O

. oS
=

ssssssssssssss

MMMMMM

eeeeeeee

Main lessons:

. FR-
Priority
. 1: Cri are higher

i .
. rity

Mem
Depe 5

DRAM’s WCD significantly depends on MPSoC features
Identified features that lead to unbounded WCD

leveraging existing features such as PE prioritization can allow
the designer to better trade-off the maximum delay for
critical applications and the bandwidth for non-critical ones.
There is interdependency among the effects of the features
on both the delay and the bandwidth. Existence of some
features can countermand the effect of other features
Although write batching mechanism works well in the
average case, it unfortunately induces pathological cases that
result in high bounds on per-request delay

Summary & Conclusions




Main lessons:

1. DRAM’s WCD significantly depends on MPSoC features

2. ldentified features that lead to unbounded WCD

3. leveraging existing features such as PE prioritization can allow
the designer to better trade-off the maximum delay for
critical applications and the bandwidth for non-critical ones.

4. There is interdependency among the effects of the features
on both the delay and the bandwidth. Existence of some
features can countermand the effect of other features

5. Although write batching mechanism works well in the
average case, it unfortunately induces pathological cases that
result in high bounds on per-request delay

Summary & Conclusions




