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Mixed Criticality Systems MOTIVATION

• Emerging Systems No longer solely hosting 
isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet 

requirements

• High-criticality tasks
• Airbag Control Unit (ACU)
• Anti-lock Braking System 

(ABS)
• Engine Control Unit (ECU)
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Mixed Criticality Systems MOTIVATION

• Emerging Systems No longer solely hosting 
isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet 

requirements

• Low-criticality tasks
• Air Conditioning Unit
• Connectivity Box
• Infotainment Unit
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Mixed Criticality Systems MOTIVATION
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MPSoCs MOTIVATION
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Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)
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Heterogenous MPSoCs MOTIVATION
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Heterogenous MPSoCs with Real-time 
Processors MOTIVATION
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DRAM

6• DRAM Consists of multiple banks
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Background DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

• All commands have associated timing constraints that have 
to be satisfied by the controller
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System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only cache 

evictions
• Single-channel single-rank DRAM 

subsystem
• NB DRAM banks
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System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only cache 

evictions
• Single-channel single-rank DRAM 

subsystem
• NB DRAM banks
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Goal:
Derive an upper bound on the 
delay incurred by any memory 
request of a critical PE
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System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

OS
Applications

OS Configuration

PE Architecture

MC Policies

Memory Behavior 
Depends on?:

8



System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory 
Controller

Off-chip 
Memory/ies

Shared IO

OS
Applications Memory Behavior 

Depends on?:

• Priority:
• PEs can be given priorities 
• COTS platforms support different priority 

levels
• Existing analysis does not account for this

• Intra-bank scheduling
• FR-FCFS
• COTS also supports a threshold on 

reordering to prevent starvation
• Inter-bank scheduling

• RR across banks
• Two flavors: 

• Always schedule ready commands of any 
type (high performance)

• Reorder only commands of different type 
(prevent starvation)

• Read/Write arbitration, two flavors:
• Reads and writes have same priority
• Serve in batches, where reads have higher 

priority

OS Configuration

PE Architecture

MC Policies



Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher priority
• 0: no priority  

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-order
• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical apps
• Part-All: Partition among all apps
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General Observations METHODOLOGY

144 different platform
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Observation 1:
Unboundedness of inter-bank RR with reordering
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Observation 3:
Unboundedness of FR-FCFS without threshold
If thr=0 & ((No-Part) || ((Part-Cr) & pr=0) Unbounded WCD
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Observation 4:
Part-All effect
If Part-All  rua does not suffer Intra-bank reordering or conflict interferences:
• thr=x
• If wb=0  pipe=x
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Observation 5:
Part-Cr effect when wb=0
If Part-Cr & wb=0  rua does not suffer Intra-bank reordering nor 
conflict interferences from critical PEs:
• IO-Cr and OOO-All have same effect on WCD
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Observation 6:
Priority effect when wb=0
If pr=1 & wb=0  pipeline architecture of non-critical PEs has no effect 
on WCD:
• IO-Cr and IO-All have same effect on WCD
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Observation 7:
Priority with Part-Cr effect
• thr=x
• If wb=0  pipe=x

Same as Part-All effect!!
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144 different platform
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• Consider all timing constraints generated by commands of interfering requests of 
other PEs serviced between the times when rua arrives and finishes

• + Delays due to command bus contention

• Compute WCD for each configuration? 
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other PEs serviced between the times when rua arrives and finishes
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• Compute WCD for each configuration? 
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 • Configuration-
independent DRAM 
delay components 
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Evaluation Setup RESULTS

PEs

• A private 16KB L1 and a shared 1MB L2 cache
• An in-order PE has a maximum of one pending request to the DRAM
• An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4)
• Four-processor system unless otherwise specified

OS Mapping • Through the virtual-to-physical address mapping component at MacSim’s frontend 
• Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)

DRAM DDR3-1333H with single channel, single rank, and 8 banks

MC

• Based on the configuration, 
• Per-bank queues with RR among banks and FR-FCFS arbitration within each bank
• Based on the configuration: 

• critical PEs can be assigned higher priority than non-critical PEs
• enable or disable the threshold for FR-FCFS
• For enabled threshold:𝑁௧௛௥ = 8, unless otherwise specified
• enable or disable write batching

Benchmarks EEMBC Automotive • The two critical PEs execute a2time and rspeed
• The two non-critical PEs execute matrix and aifftr

Synthetic • Each of the critical PEs execute one instance of the latency benchmark Each of the 
non-critical PEs execute one instance of the Bandwidth benchmark

15



WCD of Critical Processors RESULTS
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Bandwidth 

Compared to Confg 6 
(No-Part):
• Confg 2 (Part-All):
 96% less WCD
 60% BW degradation

• Confg 8 (Part-Cr + FP):
 89% less WCD
 0.85% BW 

degradation
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Write Batching Effect
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• Normalized to WB-expr
• WB-analytical is very 

pessimistic 
• WB improves avg case 
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• even reaches 10x

RESULTS
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Sensitivity to # Processors

• Confg. 1 &2 & 8 offers 
complete isolation
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• Confg 3,4,9 are more vulnerable 
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