Bounding DRAM Interference in COTS Heterogeneous
MPSoCs for Mixed Criticality Systems

Mohamed Hassan and Rodolfo Pellizzoni

EMBEDDED

SYSTEMS
WEEK

2 WATERLOO




Methodology 04

Outline




+ Emerging Systems No longer solely hosting @
isolated safety-critical tasks

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed
Criticality Systems

Mixed Criticality Systems




+ Emerging Systems No longer solely hosting @
isolated safety-critical tasks
» Execute tasks with different criticalities
 Criticality @ consequences of failure to meet
requirements

Mixed Criticality Systems




+ Emerging Systems No longer solely hosting @
isolated safety-critical tasks
» Execute tasks with different criticalities
 Criticality @ consequences of failure to meet
requirements

o~

Mixed Criticality Systems




Challenges Facing Autonomous Vehicles Key Requirements of Automotive-Grade IP

Reduce Risk and Accelerate Qualification for Automotive SoCs m
P

Accelerate ISO 26262 functional safety assessments to help
ensure designers reach target ASIL lg

Exploding Performance
Requirements

Real-Time Processing
of Sensors

Functional Safety

Reliability

High performance compute

Infotainment
Cluster
Driver assist

Synops)

Vehicle interface
Compute, Control, Sense

Real-time control
Safe
Secure

User experience

Responsive
Reliable
Fast boot

Cost  Quality Ecosystem Temperature
18 ©ARM 2016 ARM

ixed Criticality Systems




Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed
Criticality Systems

MPSoCs



Shared 10

Low cost

High performance

Energy Efficiency

Low time-to-market (3" party IPs)

MPSoCs MOTIVATION




Heterogenous MPSoCs

» Variety of processing capabilities
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« DRAM Consists of multiple banks @
* The memory controller (MC) manages accesses to DRAM
* A request in general consists of:
* ACTIVATE command:
* Bring data row from cells into sense amplifiers
 RD/WR commands:

» To read/write from specific columns in
~tRCD tWL tWR tRP
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* PRECHARGE command:
 to write back a previous row in the sense = fRAS : ")

amplifiers before bringing the new one
» All commands have associated timing constraints that have
to be satisfied by the controller
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P processing elements
= P critical + P non-critical
LLC is write-back write-allocate
* Writes to DRAM are only cache
evictions

Single-channel single-rank DRAM
subsystem

Nz DRAM banks

Goal:

Derive an upper bound on the
delay incurred by any memory
request of a critical PE

System Overview
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/ . \ PEs can be given priorities

Applications Memory BEhaV|0r COTS platforms support different priority
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OS Configuration FR-FCFS
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PE Architecture
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Serve in batches, where reads have higher
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Inter-bank Reorder
* 1: Reorder across all commands
* 0: Reorder commands of diff types

R/W Reorder

* 1: write batching
* 0: no write batching
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Pipeline

* JO-All: All PEs are In-order

* JO-Cr: Critical PEs are in-order
* OOO-AIl: All PEs are 000

Priority
e 1: Critical PEs are higher priorit
* 0: no priority

Partitioning

* No-Part: No Partitioning
Part-Cr: Partition among critical apps
* Part-All: Partition among all apps
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other PEs serviced between the times when r, arrives and finishes
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« We classify interfering requests (aka delay WCD = @

sources) into four types - causing four basic LInterB(InterB ), h)
interferences: +wb x LVE(NWE)
1. Inter-bank interference (requests to other banks) +LEOM (NComT)
2. Write batch Interference (only for R/W reordering) +N¢" x LMe™5 (NeT5 wh)
3. Conflict interference (requests to same bank + LReorder (NReorder, wh)
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« We classify interfering requests (aka delay WCeCD =

sources) into four types - causing four basic LInterB(InterB ), h)
interferences: +wb x LWB(NWB)

1. Inter-bank interference (requests to other banks) +LEOM (NComT)

2. Write batch Interference (only for R/W reordering) +N¢" x LMe™5 (NeT5 wh)
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* Let's assume we know # of interfering requests WCD = @

(Ns), how to compute the latency components LInterB(InterB ), h)
(LS)? +wh x LWB (NWB)
> s only depend on Ns and JEDEC “known” timing +LEOM (N CoT)
constraints _|_NConf % LInterB(NInterB,Wb)

+ LReorder (NReorder’ Wb)
_|_NReorder % LICrfqtgrB (NlnterB, Wb)
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* Let's assume we know # of interfering requests @

(Ns), how to compute the latency components
(Ls)?

—> Ls only depend on Ns and JEDEC “"known” timing
constraints

> L as example

LEOM (NCOY = NCON x (MAX(tRAS,tRCD + tWL + tB + tWR) + tRP)

- tRCD WL <tWR___ tRP
& W 8. T ®
(DATA)
. tRC o
tRAS R T
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* Let's assume we know # of interfering requests @
(Ns), how to compute the latency components

(Ls)? « Configuration-
- Ls only depend on Ns and JEDEC “known” timing indepgendent DRAM
constraints
delay components
> L as example Y P ©

LEOM (NCOY = NCON x (MAX(tRAS,tRCD + tWL + tB + tWR) + tRP)

<« tRCD tWL

-

= <tWR___ tRP
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* Let's assume we know # of interfering requests @
(Ns), how to compute the latency components
(Ls)? « Configuration-
= Ls only depend on Ns and JEDEC "known"” timing indepgendent DRAM

constraints delay components ©

* Now: It only remains to compute the Ns.

Memory Delay Building Blocks METHODOLOGY




« Now: It only remains to compute the Ns. - Config. dependent
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confg3:

* Now: It only remains to compute the Ns. - Config. dependent
 Take confg3 as an example: * nho WB

* FR-FCFS thr
* noFP

* Inter-bank reorder among
different types only
(breorder=0)

e All PEs are OO0

* no partitioning
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confg3:

« Now: It only remains to compute the Ns. - Config. dependent
« Take confg3 as an example: * ho WB

1. Conflicts (N¢°):
= OOO-AIll = each PE has PR pending reqgs FR-FCFS thr

= No FP = critical and non-critical scheduled similarly no FP

= Then N¢°" = (P — 1) x PR requests can conflict with r_, Inter-bank reorder among

different types only
(breorder=0)

All PEs are OO0

no partitioning
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Now: It only remains to compute the Ns. - Config. dependent
Take confg3 as an example: .

Conflicts (N¢°):

= OOO-AIll = each PE has PR pending reqgs

= No FP = critical and non-critical scheduled similarly

= Then N¢°" = (P — 1) x PR requests can conflict with r_,
2. Reorder (NReorder).

= FR-FCFS thr & max of NReorder — . requests can be
reordered beforer,

-—
.

# of Interfering Requests

confg3:

no WB
FR-FCFS thr
no FP

Inter-bank reorder among
different types only
(breorder=0)

All PEs are OO0

no partitioning
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Now: It only remains to compute the Ns. - Config. dependent

1. Conflicts (N¢°):

= OOO-AIll = each PE has PR pending reqgs

= No FP = critical and non-critical scheduled similarly

= Then N¢°" = (P — 1) x PR requests can conflict with r_,
2. Reorder (NReorder).

= FR-FCFS thr & max of NReorder — . requests can be
reordered beforer,

3. Inter-bank (N"te7B).

= RR arbiter and no FP=> max of NI™¢"™B = Ny — 1 reqgs from
other banks can be reordered before r,

# of Interfering Requests

confg3:

Take confg3 as an example: * nho WB

FR-FCFS thr
no FP

Inter-bank reorder among

different types only
(breorder=0)

All PEs are OO0

no partitioning
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confg3:

Now: It only remains to compute the Ns. - Config. dependent
Take confg3 as an example: * ho WB
Conflicts (N¢°):
= OOO-AIll = each PE has PR pending reqgs FR-FCFS thr
= No FP = critical and non-critical scheduled similarly no FP
= Then N¢°" = (P — 1) x PR requests can conflict with r_,
Reorder (NReorder).
= FR-FCFS thr & max of NReorder — . requests can be different types only

reordered before r, (breorder=0)
Inter-bank (N"te7B).

= RR arbiter and no FP-> max of N/mt¢™B = Ny — 1 reqs from SEANLSSCI(=N0]0]6)
other banks can be reordered before r,

Write Batch (N"B)
= No WB > NWEB=(

Inter-bank reorder among

no partitioning
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* Follow Same approach for all configurations

Configuration | i reoTRey NInwerS
(‘.t}n.fy] 0 0 J\'YH -1
con fga 0 0 Nper
con fgs (P-1)- PR Nihr Np —1
confgy Pper * PR 4 Pey - 1 Niny Ng -1
confgs P-1 Nins Np -1
confge (Per —1)- PR+ 1 Nin, Ngp — 1
(!(Jn-fy‘? P,-,- .'\",- b .'\'TH -1
con fgs 1 0 Ng —1
con fqa Pper + PIR Nins Np -1
f-'U“fylt'i PH(.‘J' JI\I'.HH -'\rﬂ -1

# of Interfering Requests
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A private 16KB L1 and a shared 1MB L2 cache

An in-order PE has a maximum of one pending request to the DRAM

An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4)
Four-processor system unless otherwise specified

Through the virtual-to-physical address mapping component at MacSim’s frontend
Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)

OS Mapping

DRAM DDR3-1333H with single channel, single rank, and 8 banks

. The two critical PEs execute a2time and rspeed
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