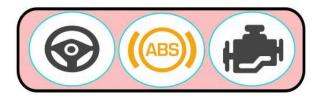

Bounding DRAM Interference in COTS Heterogeneous MPSoCs for Mixed Criticality Systems

Mohamed Hassan and Rodolfo Pellizzoni

FERLOO

 $\begin{pmatrix} 1 \end{pmatrix}$

Outline

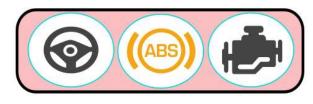

 Emerging Systems No longer solely hosting isolated safety-critical tasks
 Bounding DRAM Interference in COTS Heterogeneous MPSoCs for Mixed Criticality Systems

(ABS)

Engine Control Unit (ECU)

Mixed Criticality Systems

- Emerging Systems No longer solely hosting isolated safety-critical tasks
 - Execute tasks with different criticalities
 - Criticality *α* consequences of failure to meet requirements

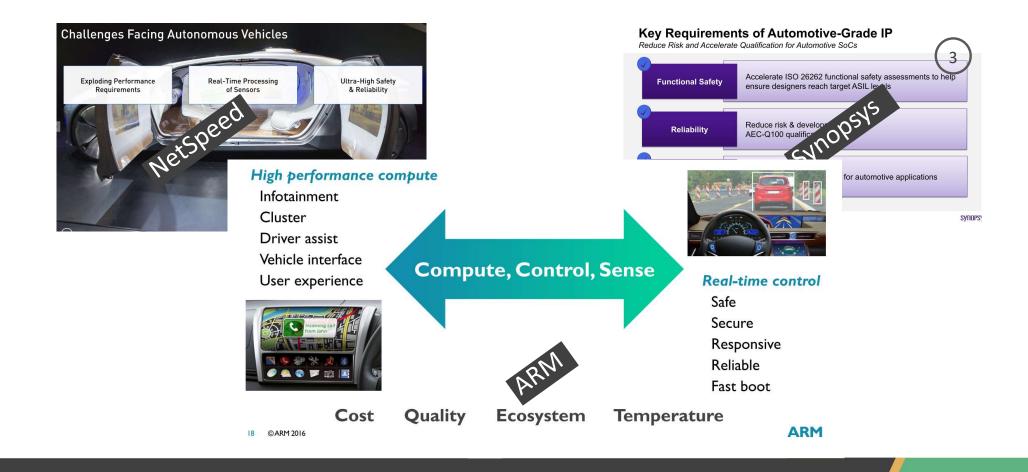

High-criticality tasks

- Airbag Control Unit (ACU)
- Anti-lock Braking System (ABS)
- Engine Control Unit (ECU)

Mixed Criticality Systems

MOTIVATION

- Emerging Systems No longer solely hosting isolated safety-critical tasks
 - Execute tasks with different criticalities
 - Criticality α consequences of failure to meet requirements



Low-criticality tasks

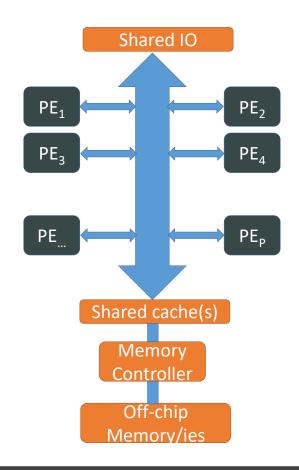
- Air Conditioning Unit
- Connectivity Box
- Infotainment Unit

Mixed Criticality Systems

MOTIVATION

Mixed Criticality Systems

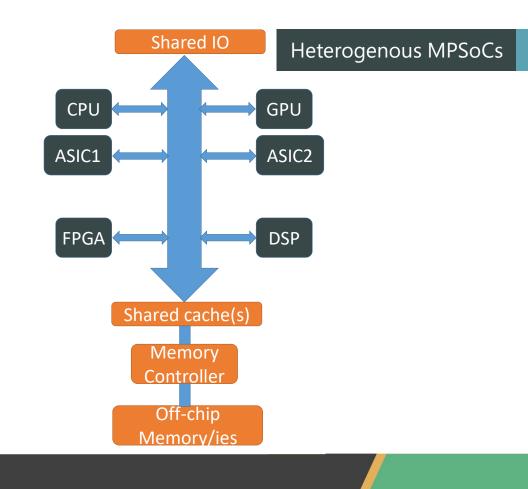
MOTIVATION


Bounding DRAM Interference in COTS Heterogeneous MPSoCs for Mixed Criticality Systems

Shared IO

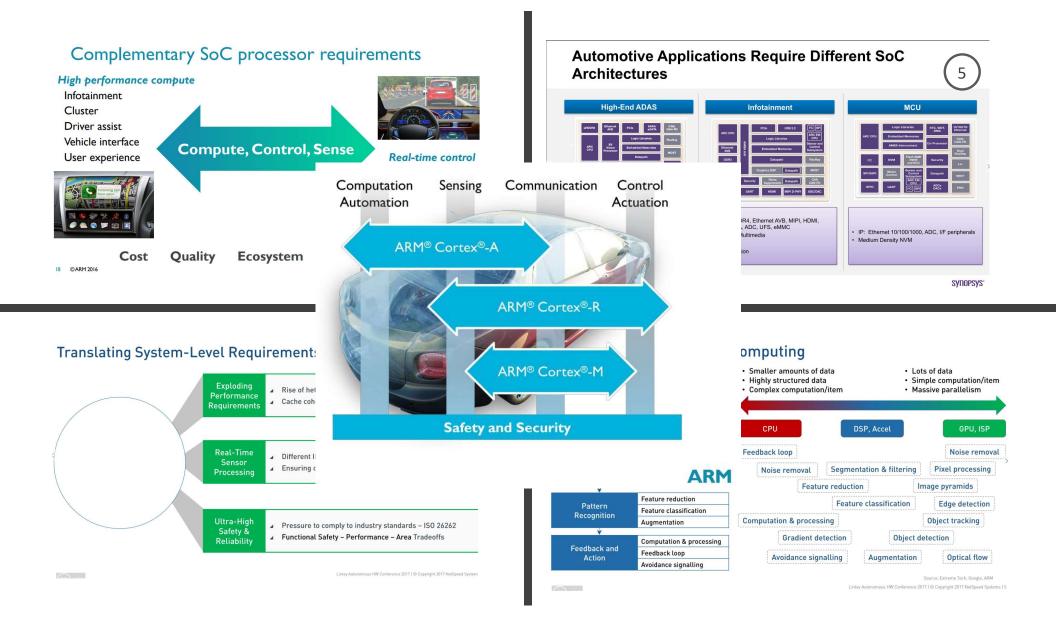
Why MPSoCs?

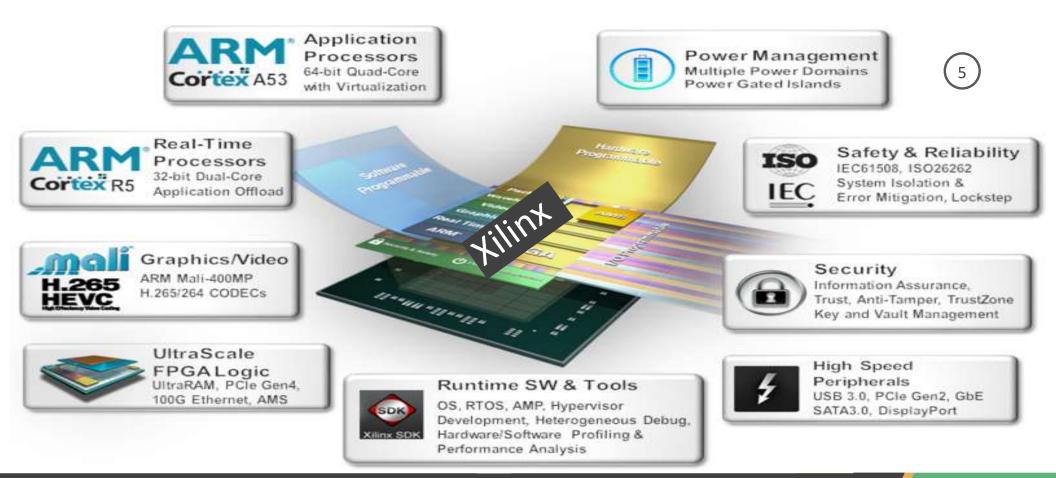
- Low cost
- High performance
- Energy Efficiency
- Low time-to-market (3rd party IPs)


4

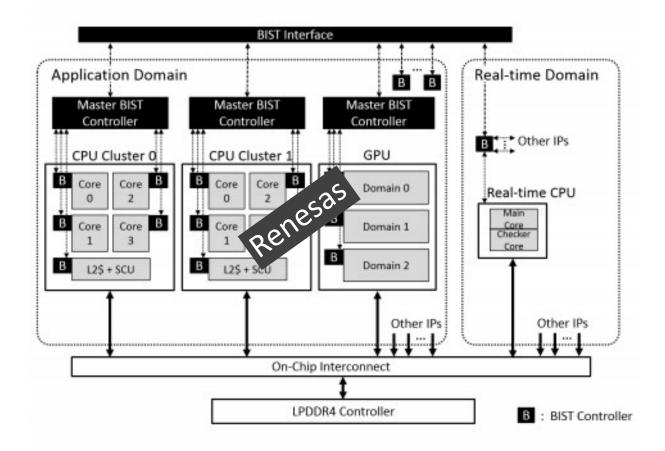
MOTIVATION

MPSoCs


Why Heterogenous MPSoCs?


 Variety of processing capabilities
 → Best-suits MCS conflicting requirements

Heterogenous MPSoCs

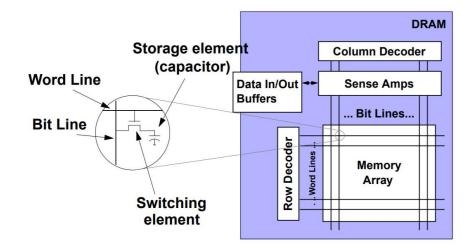

MOTIVATION

Heterogenous MPSoCs with Real-time Processors

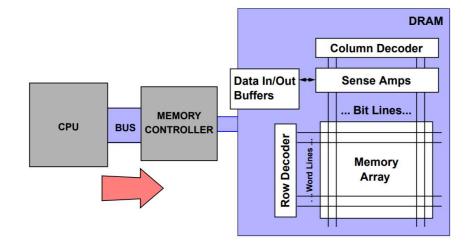
MOTIVATION

Heterogenous MPSoCs with Real-time Processors

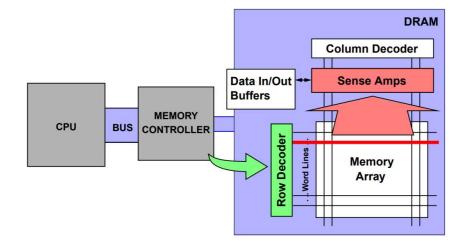
MOTIVATION


• DRAM Consists of multiple banks

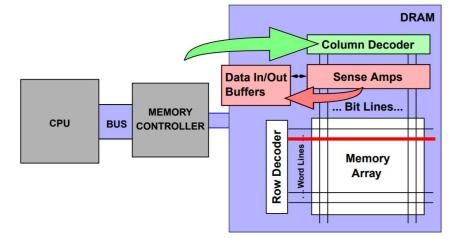
Bounding DRAM Interference in COTS Heterogeneous MPSoCs for Mixed Criticality Systems


• DRAM Consists of multiple banks

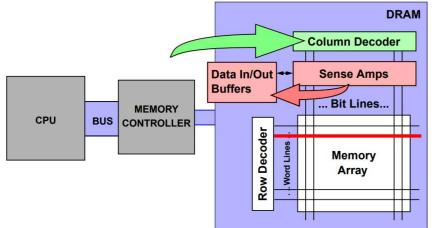
Background



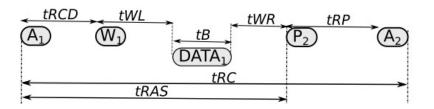
- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM



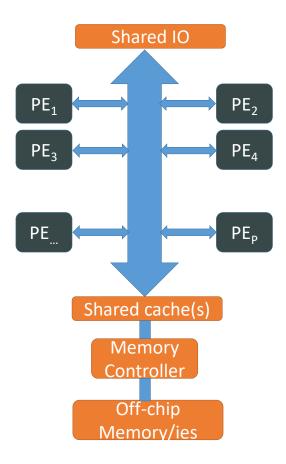
- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers



- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers
 - RD/WR commands:
 - To read/write from specific columns in the sense amplifiers



- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers
 - RD/WR commands:
 - To read/write from specific columns in the sense amplifiers
 - PRECHARGE command:
 - to write back a previous row in the sense amplifiers before bringing the new one

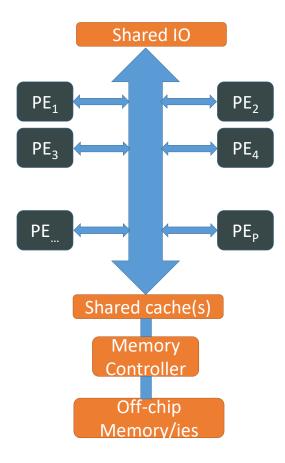


- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command:
 - Bring data row from cells into sense amplifiers
 - RD/WR commands:
 - To read/write from specific columns in the sense amplifiers
 - PRECHARGE command:
 - to write back a previous row in the sense amplifiers before bringing the new one
- All commands have associated timing constraints that have to be satisfied by the controller

6

DRAM

• P processing elements


- P_{cr} critical + P_{ncr} non-critical
- LLC is write-back write-allocate
 - Writes to DRAM are only cache evictions

7

- Single-channel single-rank DRAM subsystem
- N_B DRAM banks

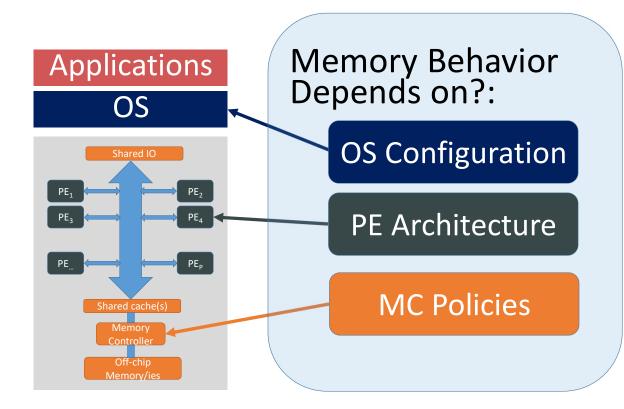
System Overview

MODEL

P processing elements

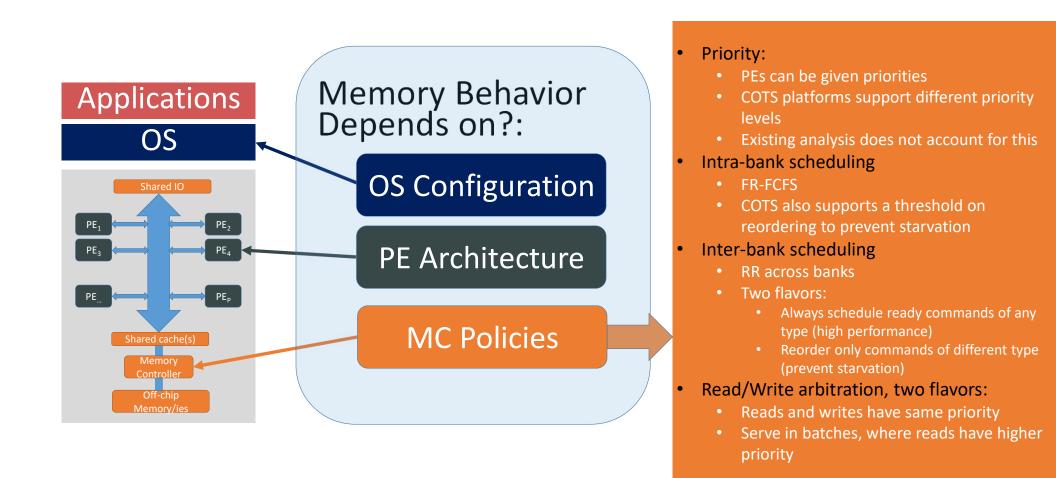
- P_{cr} critical + P_{ncr} non-critical
- LLC is write-back write-allocate
 - Writes to DRAM are only cache evictions

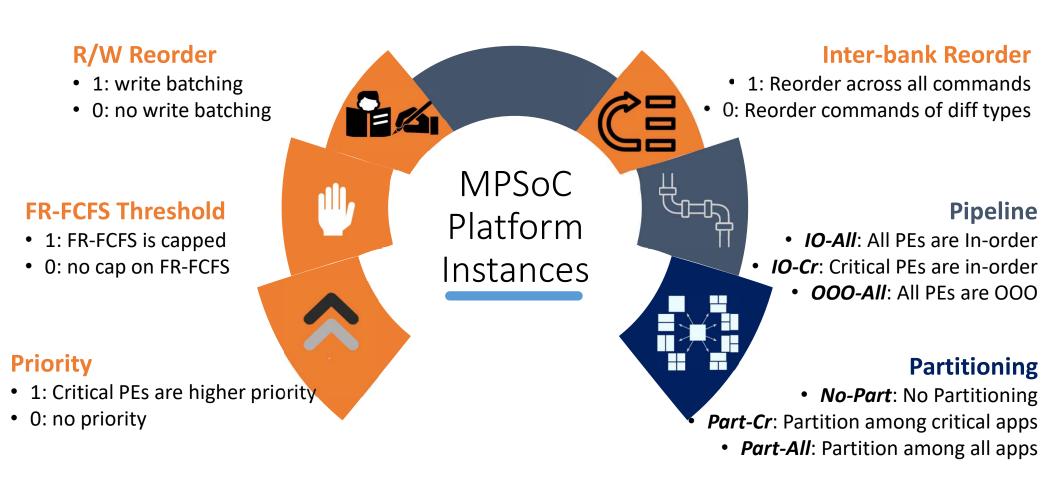
7


- Single-channel single-rank DRAM subsystem
- N_B DRAM banks

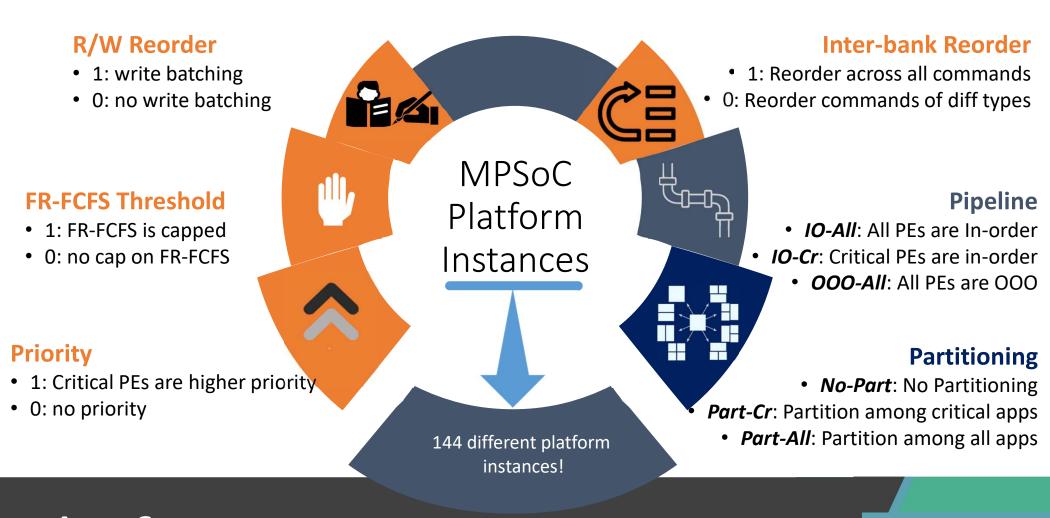
Goal:

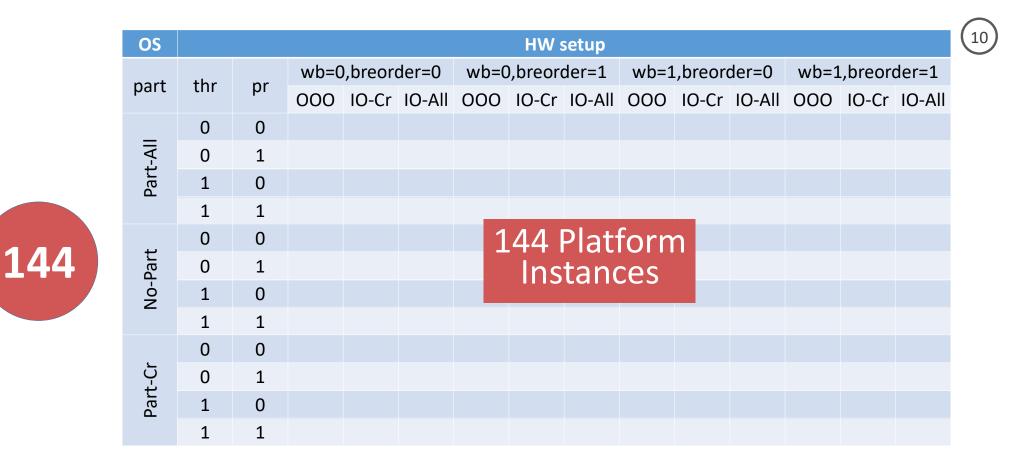
Derive an upper bound on the delay incurred by any memory request of a critical PE


System Overview

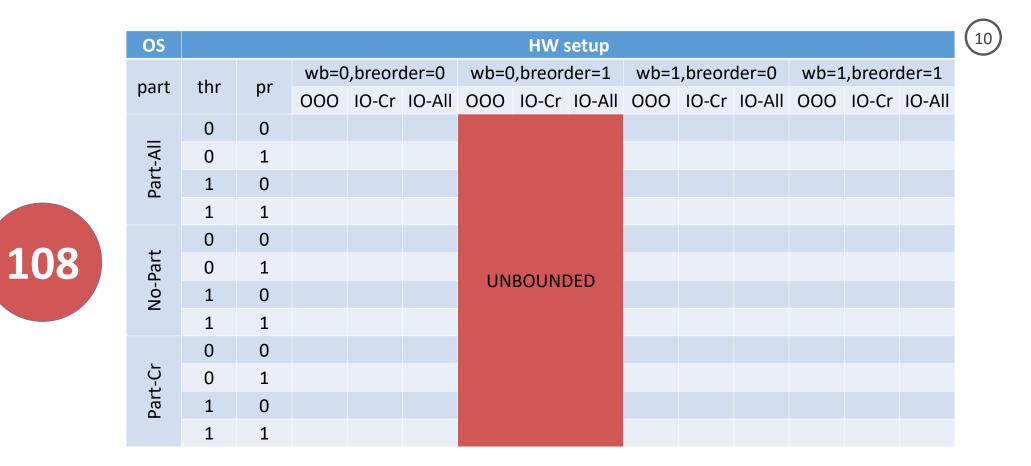

System Details

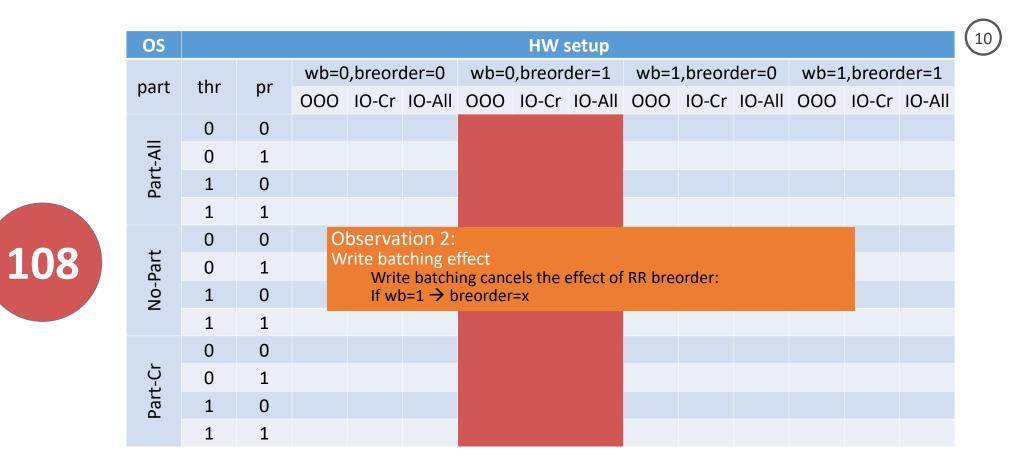
MODEL

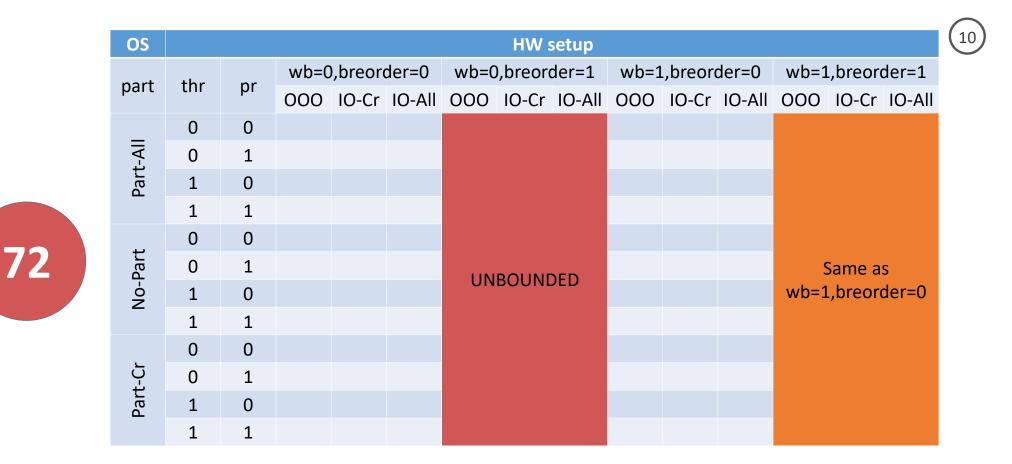

System Details


Platform Instances

MODEL


Platform Instances


MODEL



OS	HW setup													
part	thr	r nr	wb=0,breorder=0			wb=0,breorder=1			wb=1,breorder=0			wb=1,breorder=1		
part	un	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
_	0	0												
t-All	0	1												
Part-All	1	0												
	1	1		Ob	servat	tion 1								
ىد	0	0		Un				er-bank				1) and		
No-Part	0	1			write	batchi	ng is d	ss all co eployed	omman d (wb=(ias (bre)) > ur	oraer= hbound	led WC	no D	
No-	1	0												
	1	1												
	0	0												
Part-Cr	0	1												
Par	1	0												
	1	1												

144

OS	HW setup												
part	thr	pr	wb=C),breor	der=0	wb=0),breor	der=1	wb=1,breorder=>				
ματι	un	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-Al		
_	0	0											
t-Al	0	1											
Part-All	1	0											
	1	1											
ш	0	0											
No-Part	0	1				UNBOUNDED							
⁵ No	1	0				UN	BOONL						
_	1	1											
	0	0											
Part-Cr	0	1											
Pari	1	0											
	1	1											

72

OS		HW setup											
nart	thr	nr	wb=0	,breor	der=0	wb=0),breor	der=1	wb=1,breorder=x				
part	un	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-Al		
_	0	0											
Part-All	0	1											
Part	1	0											
	1	1											
ц		Obser											
No-Part		Unbou											
Νo	1	If thr=C		D-Part)	((Par	1-01) 8	<i>t</i> pr=0) [.]		Junaed				
	1	1											
	0	0											
Part-Cr	0	1											
Par	1	0											
	1	1											

72

METHODOLOGY

OS					Н	W setu	р						
nart	thr	nr	wb=0	,breor	der=0	wb=0,breorder=1			wb=1,breorder=x				
part	UIII	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-Al		
	0	0											
-All	0	1											
Part-All	1	0											
	1	1											
ىر	0	0	UNBOUNDED							UNBOUNDED			
Part	0	1	UN	BOONL		LINI	BOUNE		UN	BOONL			
No-Part	1	0				UN	BOONL	JED					
_	1	1											
	0	0	UN	BOUNE	DED				UNBOUNDED				
Part-Cr	0	1											
Pari	1	0											
	1	1											

54

OS	HW setup											
part	thr	pr	wb=0,breorder=0 wb=0,breorder=1				wb=1,breorder=x					
part	un	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	
	0	0										
t-All	0	1										
Part-All	1	0										
	1	1 Observation 4:										
	L O	bservat	tion 4:									
ب	0 P	art-All e	effect	oc pot cu	ffor latro	bankra	ordoring	or confli	at interf		D	
Part	0 P	art-All e Part-All thr=x	effect → r _{ua} do		iffer Intra	-bank re	ordering	or confli	ct interf	erences:	D	
No-Part	0 P	art-All e Part-All thr=x	effect → r _{ua} do		iffer Intra	-bank re	ordering	or confli	ct interf	erences:	D	
No-Part	0 P 0 If	art-All e Part-All thr=x	effect → r _{ua} do		iffer Intra	-bank re	ordering	or confli	ict interf	erences:	D	
	0 P 0 If 1	art-All e Part-All thr=x If wb=	effect → r _{ua} doo =0 → pip			-bank re	ordering	or confli		erences: BOUNI		
	0 P 0 If 1 1	art-All e Part-All thr=x If wb= 1	effect → r _{ua} doo =0 → pip	e=x		-bank re	ordering	or confli				
Part-Cr No-Part	0 P 0 If 1 1 0	art-All e Part-All f thr=x If wb= 1 0	effect → r _{ua} doo =0 → pip	e=x		-bank re	ordering	or confli				

54

OS						HW setup)					
port	thr	pr	wb=0,breorder=0			wb	=0,breorde	er=1	wb=1,breorder=x			
part	un	þi	000 IO-Cr IO-All			000	IO-Cr	IO-All	000	IO-Cr	IO-All	
	0	0	confg1							confg12	confg13	
t-All	0	1		confg2					confg14	confg15	confg10	
Part-All	1	0		confg1					confg11	confg12	confg13	
	1	1		confg2					confg14	confg15	confg1	
	0	0							UNBOUNDED			
No-Part	0	1		UNBOUNDED			NBOUNDE		0		U	
νο	1	0					NBOONDE					
	1	1										
	0	0	UI	NBOUNDE	D					UNBOUNDED		
Part-Cr	0	1										
Part	1	0										
	1	1										

METHODOLOGY

OS			HW setup											
nort	thr	-	wb=0,breorder=0			wb	=0,breorde	er=1	wb=1,breorder=x					
part	unr	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All			
	0	0		confg1					confg11	confg12	confg13			
Part-All	0	1		confg2					confg14	confg15	confg1			
Part	1	0		confg1					confg11	confg12	confg1			
	1		ervatio											
	0				en wb=									
No-Part	0	If Par	If Part-Cr & wb=0 → r _{µa} does not suffer Intra-bank reordering nor conflict interferences from critical PEs:											
1-07	1		 IO-Cr and OOO-All have same effect on WCD 											
-	1	• 10	J-Cr and	1000- <i>i</i>	All nave	same er	tect on	WCD						
	0	0	U	NBOUND	ED				UNBOUNDED					
ې ۲	0	1												
Part-Cr	1	0												
	1	1												

38

METHODOLOGY

OS	HW setup											
part	thr	thr pr	wb=0,breorder=0			wb	wb=0,breorder=1			wb=1,breorder=x		
part		000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All		
	0	0		confg1						confg12	confg13	
t-All	0	1 confg2						confg14	confg15	confg10		
Part-All	1	0		confg1						confg12	confg13	
	1	1	confg2						confg14	confg15	confg10	
	0	0	UNBOUNDED							UNBOUNDED		
No-Part	0	1				UNBOUNDED			0	NBOONDL	.0	
- No-	1	0				U		10				
	1	1										
	0	0	U	NBOUNDE	D				U	NBOUNDE	D	
Part-Cr	0	1	confg8									
Pari	L Part		con	ıfg9								
	1	1	conf	fg10								

OS			HW setup										
nort	thr		wb=0,breorder=0			wb	=0,breorde	er=1	wb=1,breorder=x				
part	art th	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All		
	0	0		confg1					confg11	confg12	confg1		
Part-All	0	1		confg2					confg14	confg15	confg1		
Part	1	0		confg1					confg11	confg12	confg1		
	1		Observation 6:										
	0		rity effe										
No-Part	0	If pr=	If pr=1 & wb=0 \rightarrow pipeline architecture of non-critical PEs has no effect										
1-0N	1	_	on WCD: IO-Cr and IO-All have same effect on WCD										
-	1	• 10	0-Cr and		nave sai	ne effec		_D					
	0	0	U	NBOUNDE	D				U	NBOUNDE	D		
ې ب	0	1	con	ıfg8									
Part-Cr	1	0	con	ıfg9									
	1	1	cont	fg10									

35

OS	HW setup											
part	thr	pr	wb=0,breorder=0			wb	wb=0,breorder=1			wb=1,breorder=x		
part	part thr pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All		
	0	0		confg1						confg12	confg13	
Part-All	0	1		confg2					confg14	confg15	confg16	
Part	눈 1 0 confg1 1 1 confg2						confg12	confg13				
			confg2						confg14	confg15	confg1	
	0 0		UNBOUNDED			UNBOUNDED						
Part	0	1	UNBOUNDED						0	NBOONDE	.0	
No-Part	1	0				UNBOUNDED						
	1	1		Confg7								
	0	0	U	NBOUNDE	D				U	NBOUNDE	D	
Part-Cr	0	1	confg8									
Par	1	0	con	confg9								
	1	1	conf	fg10								

METHODOLOGY

10

OS		HW setup										
part	thr	pr	wb=0,breord	wb=	=0,breorde	er=1	wb=1,breorder=x					
part	un	pr	000 IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All		
	0	0	confg1					confg11	confg12	confg13		
Part-All	0	1	confg2				confg14	confg15	confg16			
Part	1	0	confg1					confg11	confg12	confg13		
	1											
	0		rity with Part	-Cr effe	ect							
No-Part	0	_	 thr=x If wb=0 → pipe=x Same as Part-All effect!! 									
No-	1	• 11										
	1			Sallie		t-All el	iectii					
	0	0	UNBOUNDI	ED				U	NBOUNDE	D		
Part-Cr	0	1	confg8									
Par	1	0	confg9									
	1	1	confg10									

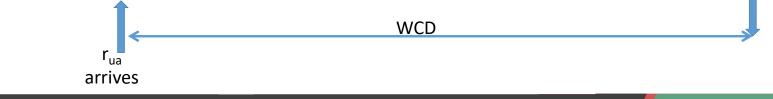
34

OS						HW setup					
part	thr	thr pr	wb=0,breorder=0			wb=0,breorder=1			wb=1,breorder=x		
part	un	pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All
	0	0		confg1						confg12	confg13
Part-All				confg2						confg15	confg16
Part	1	0	confg1						confg11	confg12	confg13
	1	1	confg2						confg14	confg15	confg16
	0 0		UNBOUNDED						UNBOUNDED		
Part	0	1	UNBOUNDED			UNBOUNDED			0		.0
No-Part	1	0				U	NECONDE	.0			
	1	1		Confg7							
	0	0	U	NBOUNDE	D				U	NBOUNDE	D
Part-Cr	0	1		confg8						confg24	confg25
Pari	1	0	cor	nfg9							
	1	1		confg8					confg23	confg24	confg25

28

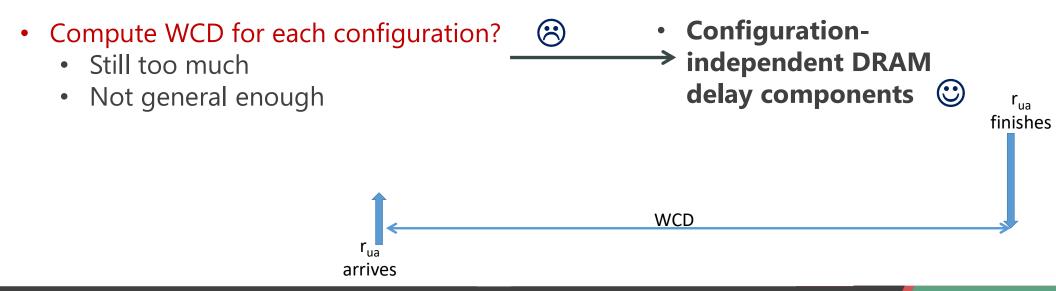
OS						HW setup)					
part	thr	pr	wb=0,breorder=0			wb	=0,breorde	er=1	wb	wb=1,breorder=x		
part		pr	000	IO-Cr	IO-All	000	IO-Cr	IO-All	000	IO-Cr	IO-All	
	0	0	confg1						confg11	confg12	confg13	
t-All	0	1		confg2 confg1						confg15	confg16	
Part-All	1	0								confg12	confg13	
	1	1		confg2					confg14	confg15	confg16	
	0	0		UNBOUNDED					UNBOUNDED			
No-Part	0	1	UNDOUNDED			UNBOUNDED			0	NBOONDL	.0	
νο	1	0	confg3	confg4	Confg5	U		0	confg17	confg18	confg19	
	1	1	Confg6	Cor	nfg7			confg20	confg21	confg22		
	0	0	U	NBOUNDE	D				U	NBOUNDE	D	
Part-Cr	0	1		Confg8				confg23	confg24	confg25		
Par	1 0 confg9 confg10		confg10				confg26	confg27	confg28			
	1	1		confg8					confg23	confg24	confg2	

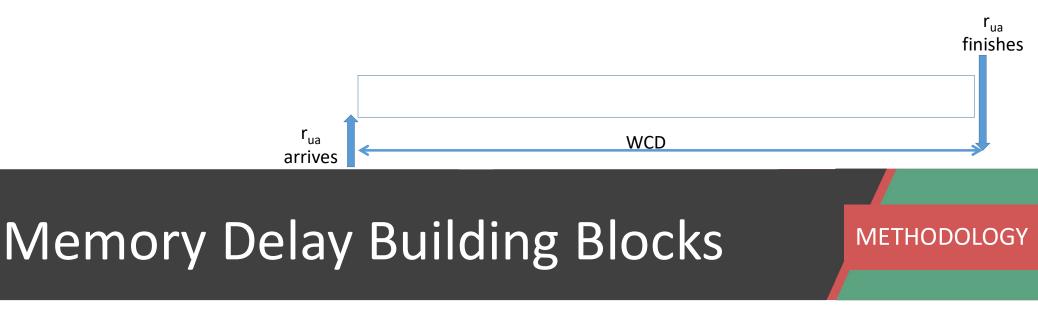
144 Instances \rightarrow 28 Configurations


General Observations

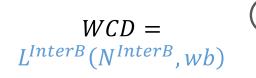
28

- Consider all timing constraints generated by commands of interfering requests of other PEs serviced between the times when r_{ua} arrives and finishes
- + Delays due to command bus contention
- Compute WCD for each configuration?

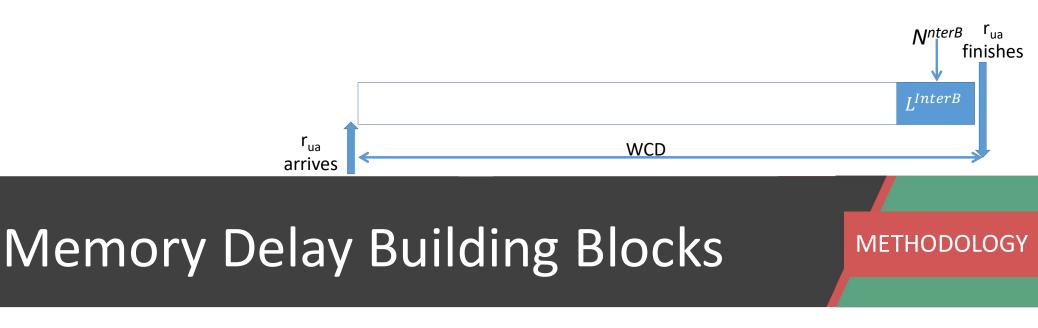

- Consider all timing constraints generated by commands of interfering requests of other PEs serviced between the times when r_{ua} arrives and finishes
- + Delays due to command bus contention
- Compute WCD for each configuration?
 - Still too much
 - Not general enough


METHODOLOGY

r_{ua} finishes


- Consider all timing constraints generated by commands of interfering requests of other PEs serviced between the times when r_{ua} arrives and finishes
- + Delays due to command bus contention

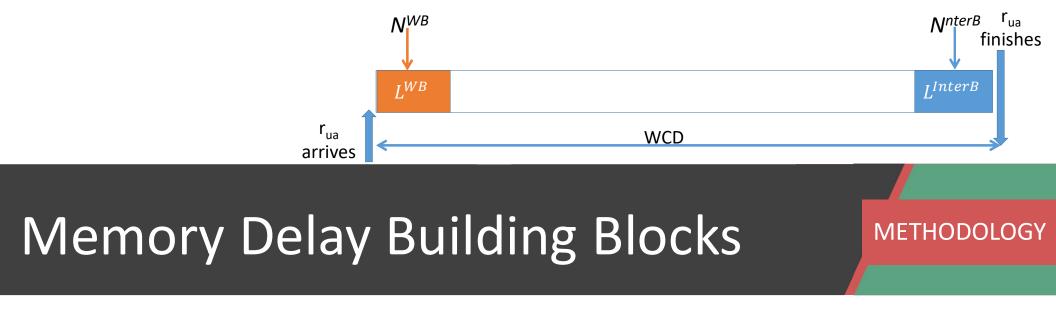
 We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>



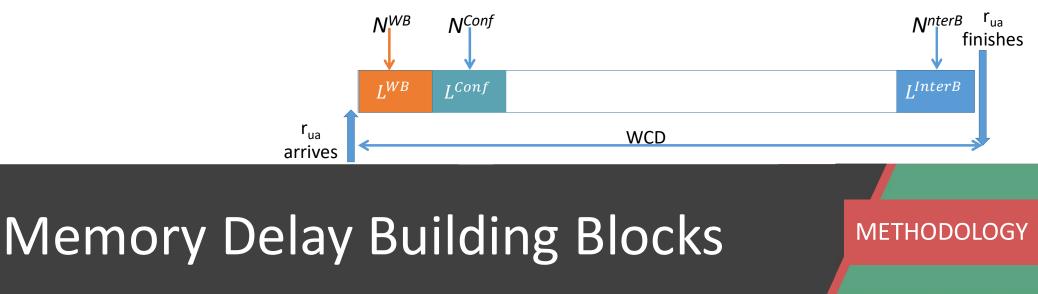
 We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>

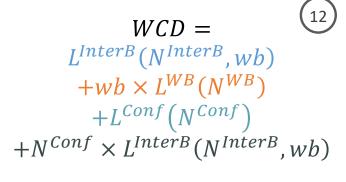


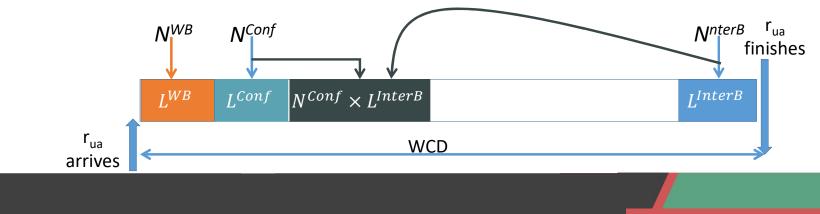
12


1. Inter-bank interference (requests to other banks)

- We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>
 - 1. Inter-bank interference (requests to other banks)
 - 2. Write batch Interference (only for R/W reordering)

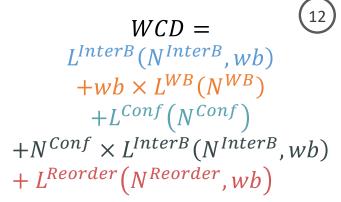

12


- We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>
 - 1. Inter-bank interference (requests to other banks)
 - 2. Write batch Interference (only for R/W reordering)
 - 3. Conflict interference (requests to same bank different rows arrived before r_{ua})


WCD = $L^{InterB}(N^{InterB}, wb)$ $+wb \times L^{WB}(N^{WB})$ $+L^{Conf}(N^{Conf})$

12

- We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>
 - 1. Inter-bank interference (requests to other banks)
 - 2. Write batch Interference (only for R/W reordering)
 - 3. Conflict interference (requests to same bank different rows arrived before r_{ua})



- We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>
 - 1. Inter-bank interference (requests to other banks)
 - 2. Write batch Interference (only for R/W reordering)
 - 3. Conflict interference (requests to same bank different rows arrived before r_{ua})
 - 4. Intra-bank Reorder interference (FR-FCFS)

r_{ua}

arrives

N^Reorder

 $N^{Conf} \times L^{InterB}$

WCD

Memory Delay Building Blocks

N^{WB}

 L^{WB}

N^{Conf}

METHODOLOGY

IInterB

N^{nterB} r_{ua}

finishes

- We classify interfering requests (aka delay sources) into four types → <u>causing four basic</u> <u>interferences:</u>
 - 1. Inter-bank interference (requests to other banks)
 - 2. Write batch Interference (only for R/W reordering)
 - 3. Conflict interference (requests to same bank different rows arrived before r_{ua})
 - 4. Intra-bank Reorder interference (FR-FCFS)

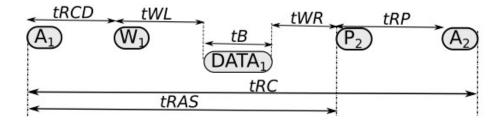
12 WCD = $L^{InterB}(N^{InterB}, wb)$ $+wb \times L^{WB}(N^{WB})$ $+L^{Conf}(N^{Conf})$ $+N^{Conf} \times L^{InterB}(N^{InterB}, wb)$ $+ L^{Reorder}(N^{Reorder}, wb)$ $+N^{Reorder} \times L^{InterB}_{CAS}(N^{InterB}, wb)$

Memory Delay Building Blocks

 Let's assume we know # of interfering requests (Ns), how to compute the latency components (Ls)?

→ Ls only depend on Ns and JEDEC "known" timing constraints

WCD = (13) $L^{InterB}(N^{InterB}, wb)$ $+wb \times L^{WB}(N^{WB})$ $+L^{Conf}(N^{Conf})$ $+N^{Conf} \times L^{InterB}(N^{InterB}, wb)$ $+L^{Reorder}(N^{Reorder}, wb)$ $+N^{Reorder} \times L^{InterB}_{CAS}(N^{InterB}, wb)$

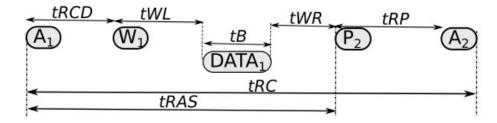

Memory Delay Building Blocks

 Let's assume we know # of interfering requests (Ns), how to compute the latency components (Ls)?

→ Ls only depend on Ns and JEDEC "known" timing constraints

 $\rightarrow L^{Conf}$ as example

 $L^{Conf}(N^{Conf}) = N^{Conf} \times (MAX(tRAS, tRCD + tWL + tB + tWR) + tRP)$



Memory Delay Building Blocks

- Let's assume we know # of interfering requests (*Ns*), how to compute the latency components (*Ls*)?
 - → Ls only depend on Ns and JEDEC "known" timing constraints
 - $\rightarrow L^{Conf}$ as example

 Configurationindependent DRAM delay components ^(C)

 $L^{Conf}(N^{Conf}) = N^{Conf} \times (MAX(tRAS, tRCD + tWL + tB + tWR) + tRP)$

Memory Delay Building Blocks

METHODOLOGY

13

- Let's assume we know # of interfering requests (Ns), how to compute the latency components (Ls)?
 - → Ls only depend on Ns and JEDEC "known" timing constraints
- Now: It only remains to compute the Ns.

 Configurationindependent DRAM delay components ^(C)

Memory Delay Building Blocks

• Now: It only remains to compute the Ns. \rightarrow Config. dependent

of Interfering Requests

METHODOLOGY

14

- Now: It only remains to compute the Ns. \rightarrow Config. dependent
- Take confg3 as an example:

- no WB
- FR-FCFS thr

• no FP

- Inter-bank reorder among different types only (breorder=0)
- All PEs are OOO
- no partitioning

of Interfering Requests

METHODOLOGY

14

- Now: It only remains to compute the Ns. \rightarrow Config. dependent
- Take confg3 as an example:
- 1. Conflicts (N^{Conf}) :
 - OOO-All \rightarrow each PE has PR pending reqs
 - No FP \rightarrow critical and non-critical scheduled similarly
 - Then $N^{Conf} = (P 1) \times PR$ requests can conflict with r_{ua}

- no WB
- FR-FCFS thr
- no FP
- Inter-bank reorder among different types only (breorder=0)
- All PEs are OOO
- no partitioning

of Interfering Requests

- Now: It only remains to compute the Ns. \rightarrow Config. dependent
- Take confg3 as an example:
- 1. Conflicts (N^{Conf}) :
 - OOO-All \rightarrow each PE has PR pending reqs
 - No FP \rightarrow critical and non-critical scheduled similarly
 - Then $N^{Conf} = (P 1) \times PR$ requests can conflict with r_{ua}
- 2. Reorder (N^{Reorder}):
 - FR-FCFS thr \rightarrow max of $N^{Reorder} = N_{thr}$ requests can be reordered before r_{ua}

- no WB
- FR-FCFS thr
- no FP
- Inter-bank reorder among different types only (breorder=0)
- All PEs are OOO
- no partitioning

of Interfering Requests

- Now: It only remains to compute the Ns. \rightarrow Config. dependent
- Take confg3 as an example:
- 1. Conflicts (N^{Conf}) :
 - OOO-All \rightarrow each PE has PR pending reqs
 - No FP \rightarrow critical and non-critical scheduled similarly
 - Then $N^{Conf} = (P 1) \times PR$ requests can conflict with r_{ua}
- 2. Reorder (N^{Reorder}):
 - FR-FCFS thr → max of $N^{Reorder} = N_{thr}$ requests can be reordered before r_{ua}
- 3. Inter-bank (N^{InterB}):
 - RR arbiter and no FP \rightarrow max of $N^{InterB} = N_B 1$ reqs from other banks can be reordered before r_{ua}

- no WB
- FR-FCFS thr
- no FP
- Inter-bank reorder among different types only (breorder=0)
- All PEs are OOO
- no partitioning

of Interfering Requests

- Now: It only remains to compute the Ns. \rightarrow Config. dependent
- Take confg3 as an example:
- 1. Conflicts (N^{Conf}) :
 - OOO-All \rightarrow each PE has PR pending reqs
 - No FP \rightarrow critical and non-critical scheduled similarly
 - Then $N^{Conf} = (P 1) \times PR$ requests can conflict with r_{ua}
- 2. Reorder (N^{Reorder}):
 - FR-FCFS thr → max of $N^{Reorder} = N_{thr}$ requests can be reordered before r_{ua}
- 3. Inter-bank (N^{InterB}):
 - RR arbiter and no FP \rightarrow max of $N^{InterB} = N_B 1$ reqs from other banks can be reordered before r_{ua}
- 4. Write Batch (N^{WB})
 - No WB $\rightarrow N^{WB} = 0$

of Interfering Requests

METHODOLOGY

confg3:

- no WB
- FR-FCFS thr
- no FP
- Inter-bank reorder among different types only (breorder=0)
- All PEs are OOO
- no partitioning

- **Follow Same approach for all configurations**

 $confg_7$

 $confg_8$

 $confg_9$

- OOO-All → each NReorder NConf N^{InterB} Configuration ■ No FP \rightarrow critical $confg_1$ $N_B - 1$ 0 0 • Then $N^{Conf} =$ $confg_2$ 0 0 N_{Bcr} $(P-1) \cdot PR$ Nthr $N_B - 1$ $confg_3$ $P_{ncr} \cdot PR + P_{cr} - 1$ Nthr $N_B - 1$ $confg_4$ $N_B - 1$ $confg_5$ P-1Nthr $(P_{cr}-1) \cdot PR + 1$ $confg_6$ Nthr $N_{B} - 1$

 P_{cr}

 $P_{ncr} \cdot PR$

- - P_{ncr} $confg_{10}$ RR arbiter and
- - No WB $\rightarrow N^{WB} = 0$

of Interfering Requests

METHODOLOGY

14

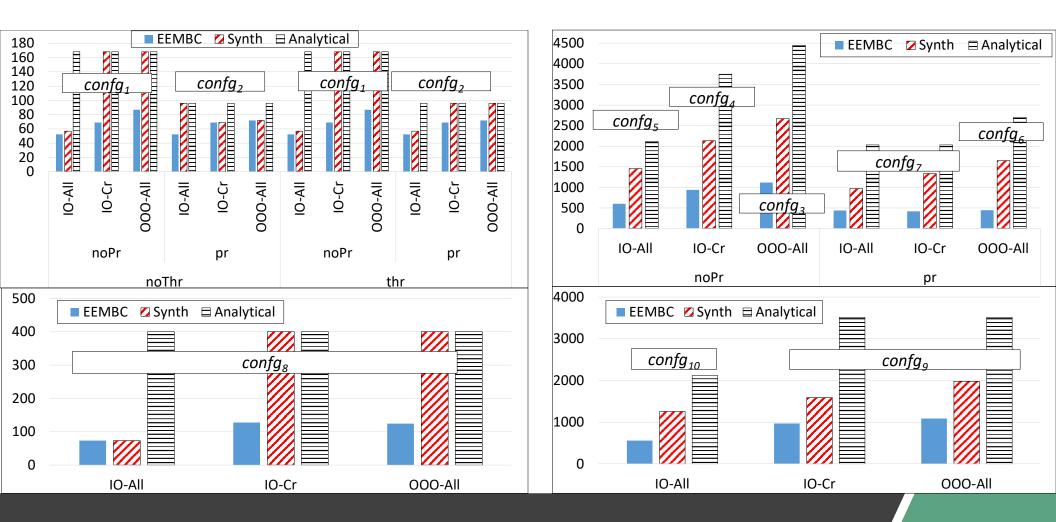
 $N_B - 1$

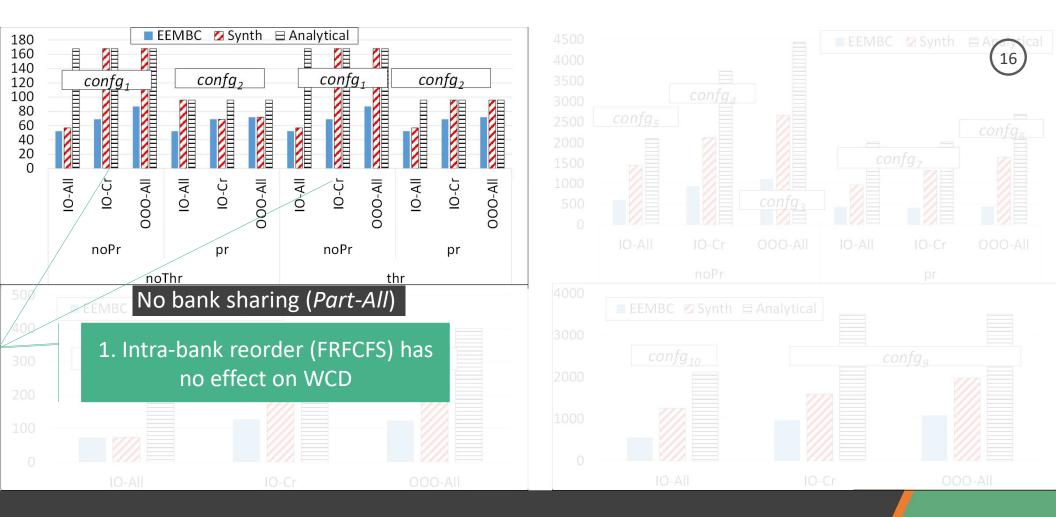
 $N_B - 1$

 $N_B - 1$

 $N_B - 1$

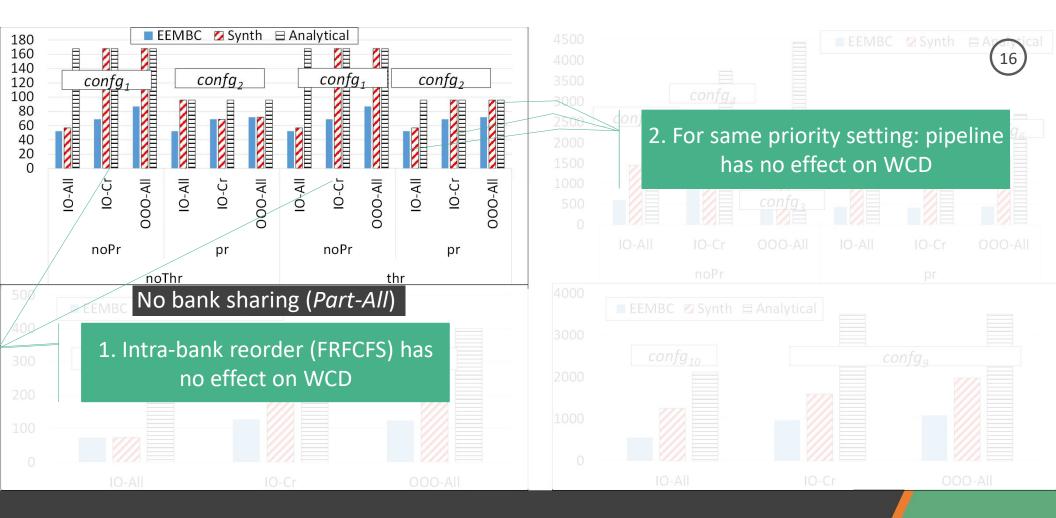
Nthr

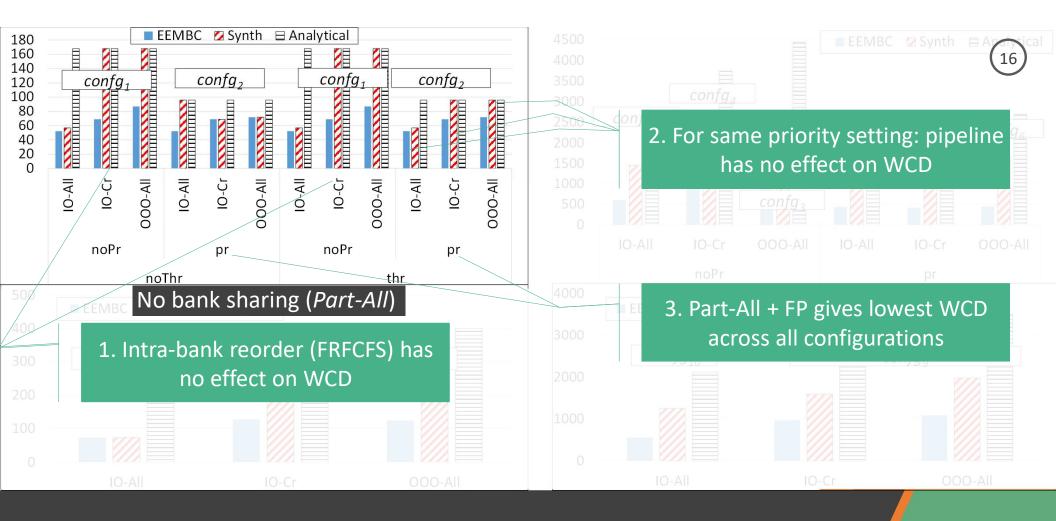

0

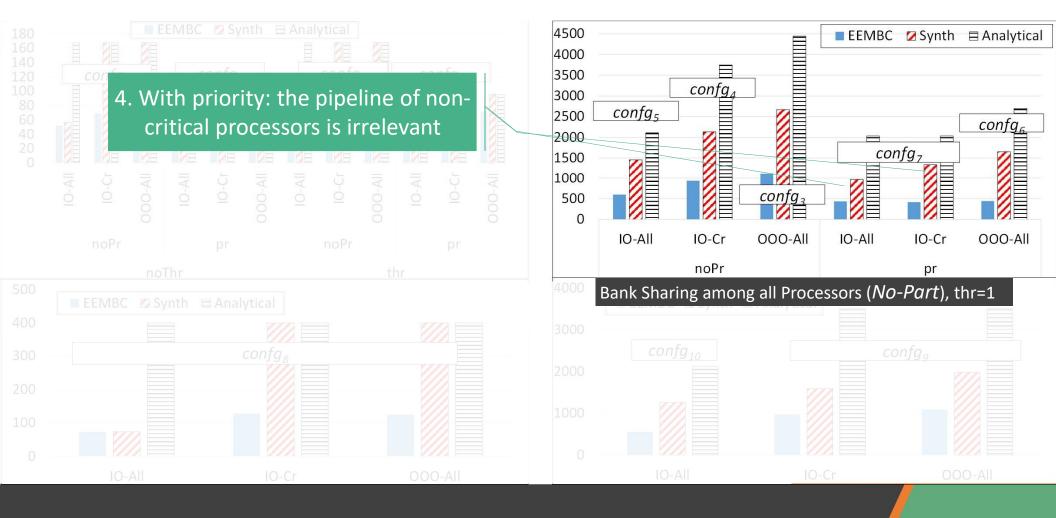

Nthr

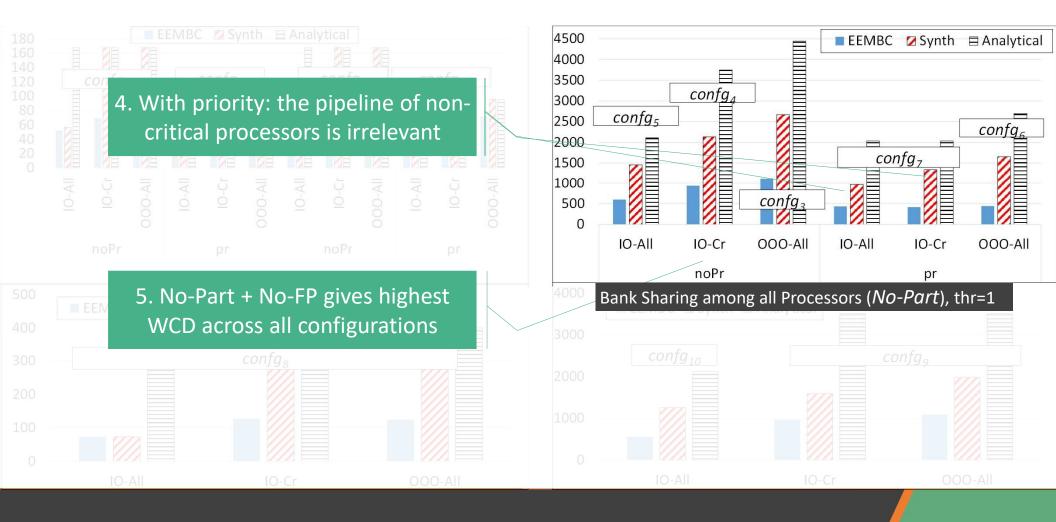
 N_{thr}

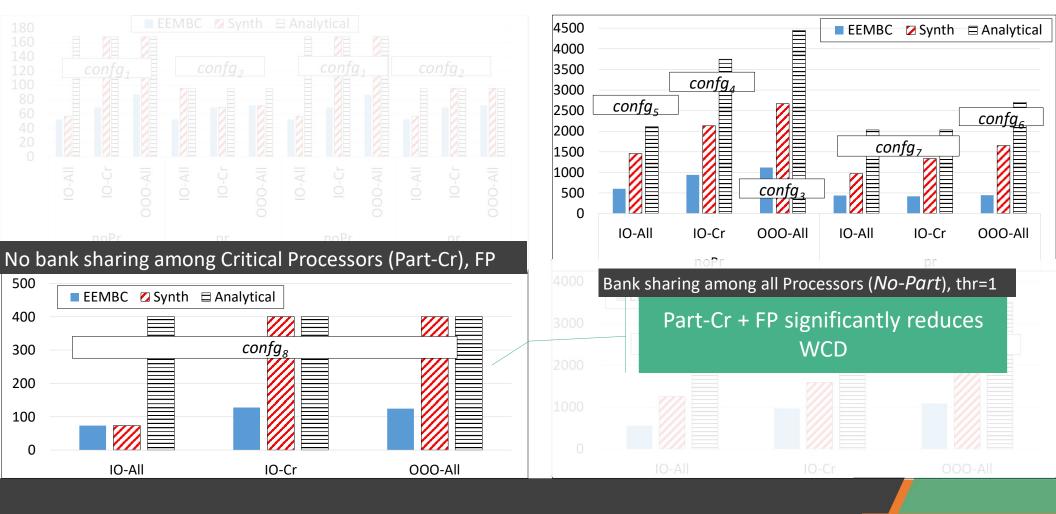
PEs	A private 16KB L1 and a shared 1MB L2 cache An in-order PE has a maximum of one pending request to the DRAM An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4) Four-processor system unless otherwise specified									
OS Mapping	Through the virtual-to-physical address mapping component at MacSim's frontend Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)									
DRAM	DDR3-1333H with single channel, single rank, and 8 banks									
MC	 Based on the configuration, Per-bank queues with RR among banks and FR-FCFS arbitration within each bank Based on the configuration: critical PEs can be assigned higher priority than non-critical PEs enable or disable the threshold for FR-FCFS For enabled threshold:N_{thr} = 8, unless otherwise specified enable or disable write batching 									
Benchmarks	EEMBC Automotive • The two critical PEs execute a2time and rspeed • The two non-critical PEs execute matrix and aifftr									
	Synthetic• Each of the critical PEs execute one instance of the latency benchmark Each of the non-critical PEs execute one instance of the Bandwidth benchmark									


Evaluation Setup


WCD of Critical Processors


RESULTS



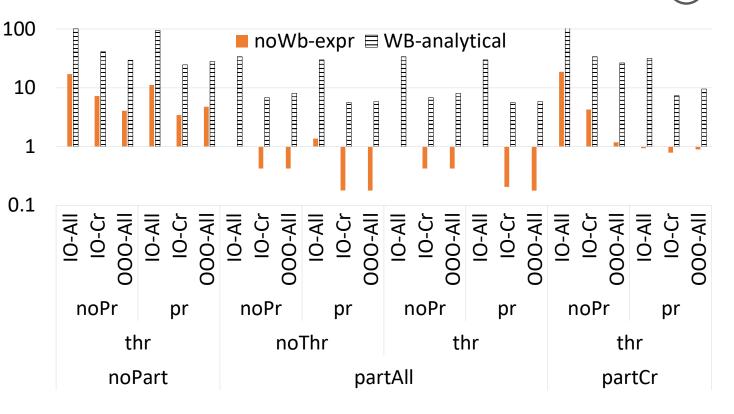

WCD of Critical Processors

RESULTS

Compared to Confg 6 (No-Part):

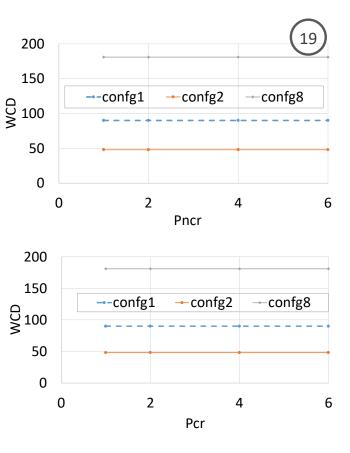
- Confg 2 (Part-All):
 - 96% less WCD
 - 60% BW degradation
- Confg 8 (Part-Cr + FP):
 - 89% less WCD
 - 0.85% BW degradation

3000 2500 2000 1500 1000 500		O Ø PE1		confg ₂		e confg ₆ xx		confg ₈
0	IO-All IO-Cr 000-All	10-All 10-Cr 000-All	10-All 10-Cr 000-All	10-All 10-Cr 000-All	10-All 10-Cr 000-All	IO-All IO-Cr 000-All	IO-All IO-Cr 000-All	10-All 10-Cr 000-All
	noPr	pr	noPr	pr	noPr	pr	noPr	pr
	no	Thr	tł	٦r	tl	nr	thr	
		par	tAll		nol	Part	partCr	


Bandwidth

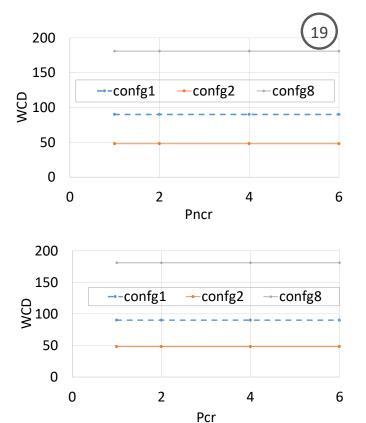
17

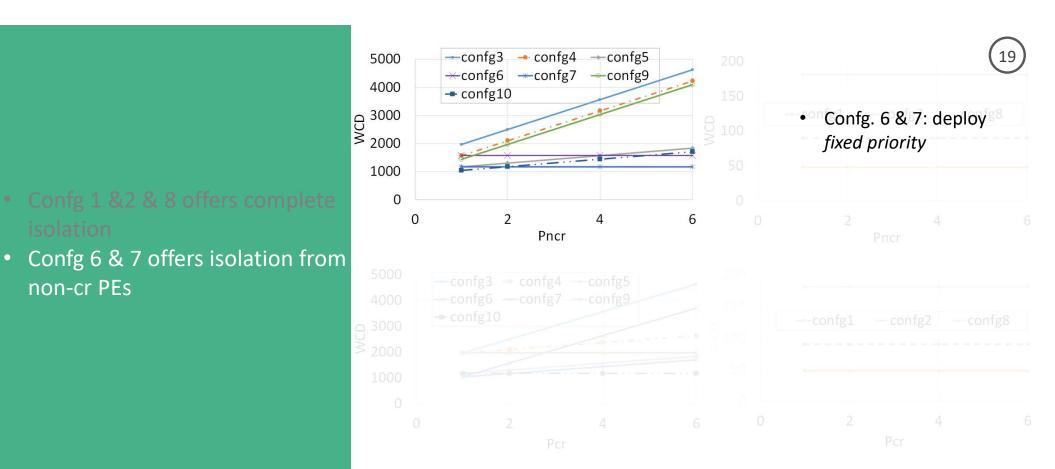
18


- Normalized to WB-expr
- WB-analytical is very pessimistic
- WB improves avg case
 - noWb-expr is 2.84x on average as compared to Wb-expr
 - even reaches 10x

Write Batching Effect

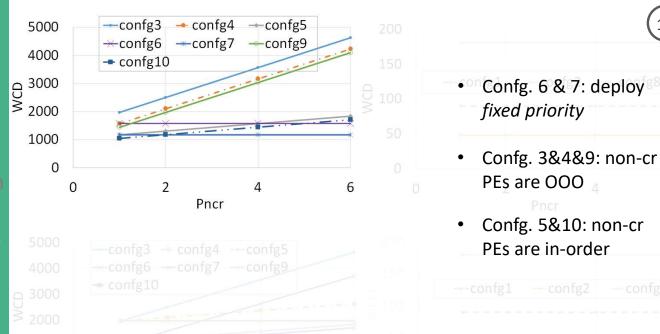
RESULTS



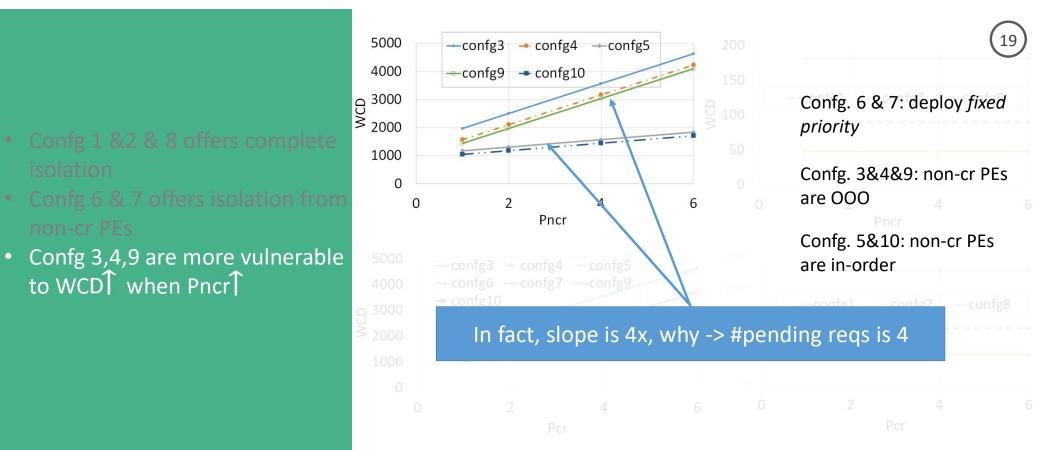

RESULTS

• Confg. 1 & 2 & 8 offers complete isolation

- Confg. 1 and 2: Part-All
- Confg. 8: Part-Cr with fixed priority

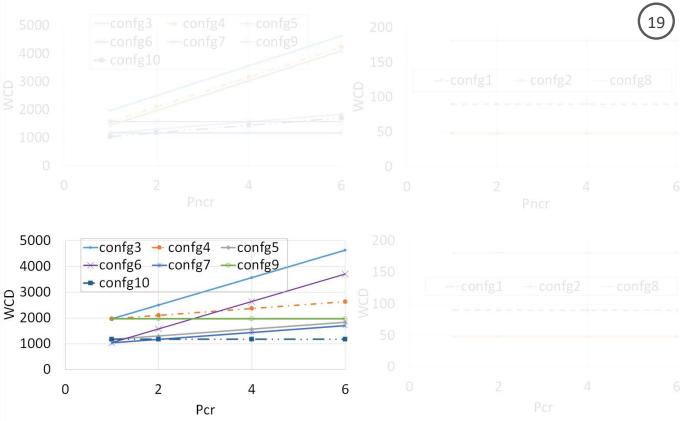

RESULTS

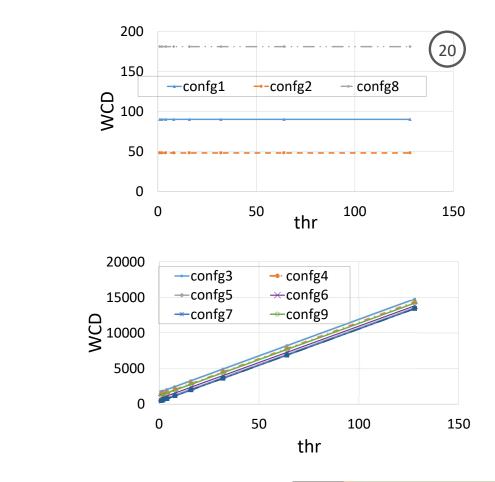
RESULTS


- Confg 6 & 7 offers isolation from non-cr PEs
- Confg 3,4,9 are more vulnerable to WCD when Pncr

Sensitivity to # Processors

RESULTS


19

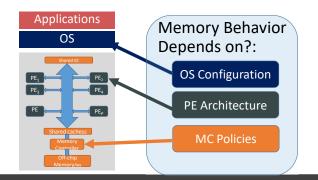

Sensitivity to # Processors

RESULTS

- Confg 1 & 2 & 8 offers complete isolation
- Confg 6 & 7 offers isolation from non-cr PEs
- Confg 9 & 10 offers isolation from cr PEs
- Confg 3,4,9 are more vulnerable to WCD¹ when Pncr¹
- Confg 3,6 are more vulnerable to WCDT when Pcr T

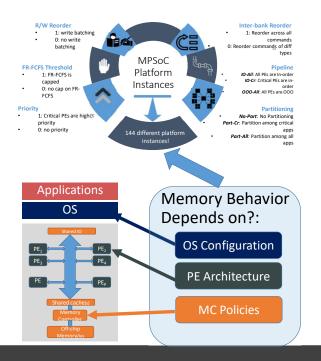
RESULTS

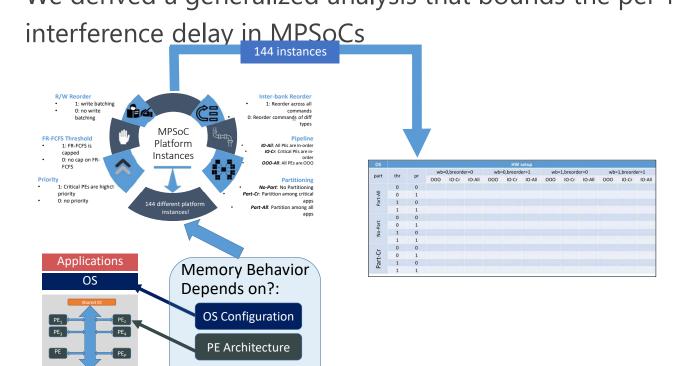
Sensitivity to FR-FCFS thr.


RESULTS

• Heterogeneous MPSoCs are important for Mixed Criticality Systems

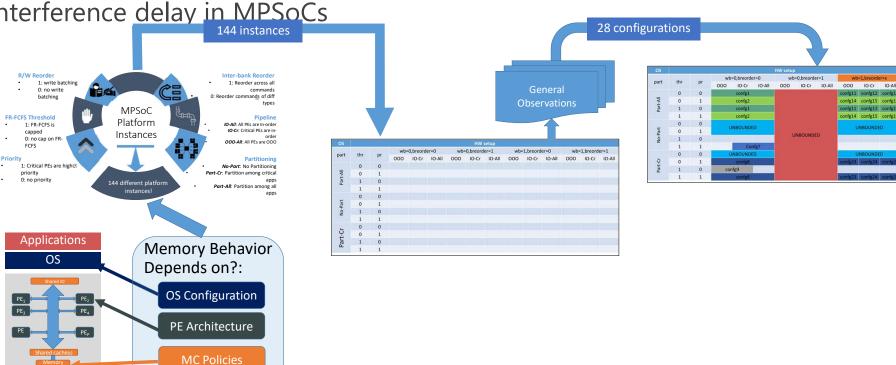
21

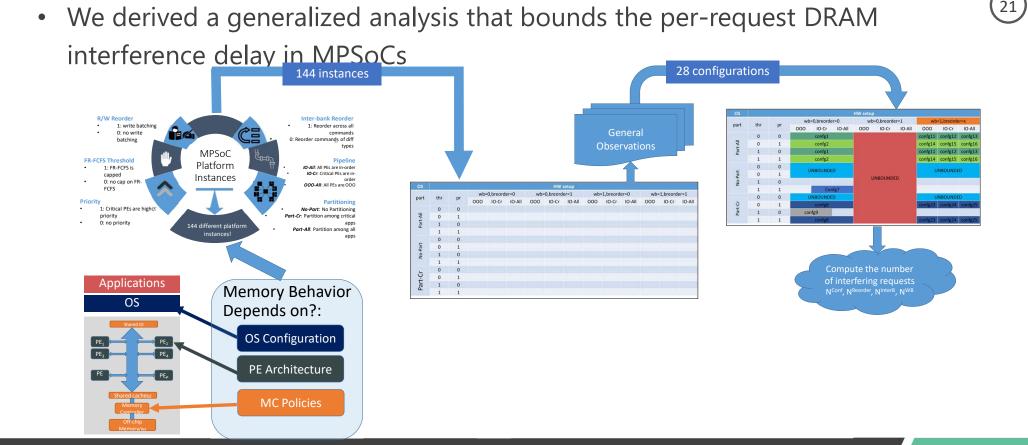

- Heterogeneous MPSoCs are important for Mixed Criticality Systems
- We derived a generalized analysis that bounds the per-request DRAM interference delay in MPSoCs

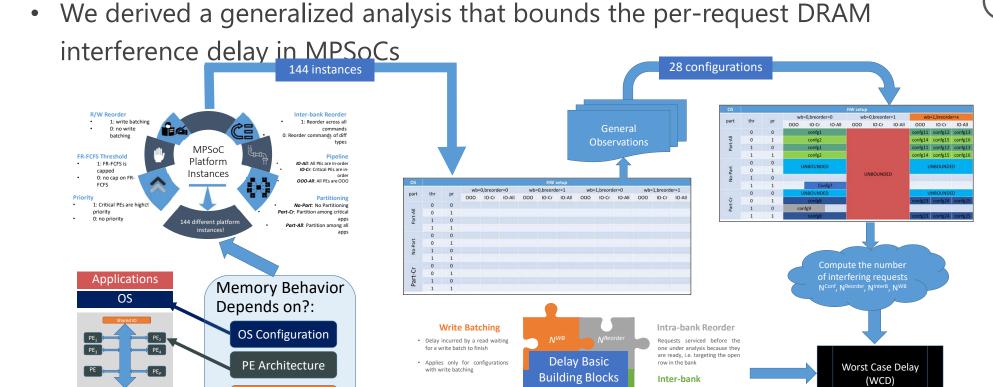

- Heterogeneous MPSoCs are important for Mixed Criticality Systems
- We derived a generalized analysis that bounds the per-request DRAM interference delay in MPSoCs

• We derived a generalized analysis that bounds the per-request DRAM interference delay in MPSoCs

21


• We derived a generalized analysis that bounds the per-request DRAM


Summary & Conclusions


MC Policies

 We derived a generalized analysis that bounds the per-request DRAM interference delay in MPSoCs
 28 configurations

Row Conflict

Requests arrived before the one

under analysis and are targeting different rows

∧*i*Conf

Requests targeting different

banks and are serviced before the one under analysis because

of the RR policy

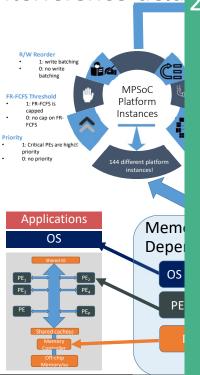
Summary & Conclusions

MC Policies

interference dela R/W Reorder 1: write batching 0: no write batching MPSoC **FR-FCFS** Threshold Platform 1: FR-FCFS is capped Instances 0: no cap on Fl FCFS 1: Critical PEs are priority 0: no priority 144 different platfo Applications Mem OS Depe OS

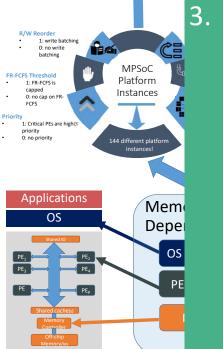
• We derived a ger 1. DRAM's WCD significantly depends on MPSoC features

21


Main lessons:

 We derived a ger

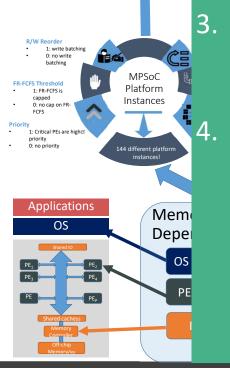
 DRAM's WCD significantly depends on MPSoC features


 interference dela 2. Identified features that lead to unbounded WCD

21

Main lessons:

• We derived a ger 1. interference dela 2.

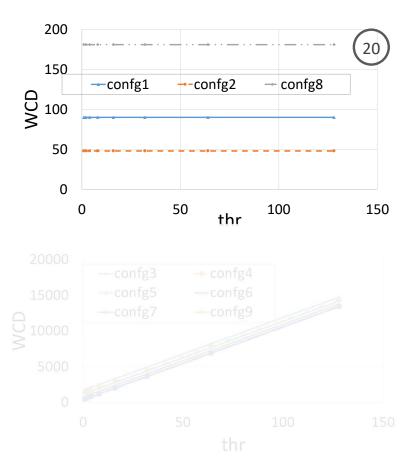


DRAM's WCD significantly depends on MPSoC features
 Identified features that lead to unbounded WCD
 leveraging existing features such as PE prioritization can allow

the designer to better trade-off the maximum delay for critical applications and the bandwidth for non-critical ones.

21

We derived a ger interference dela 2.

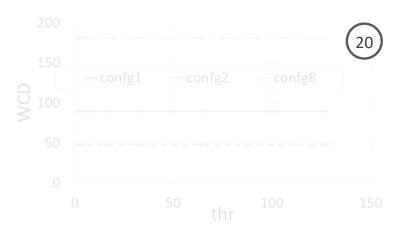


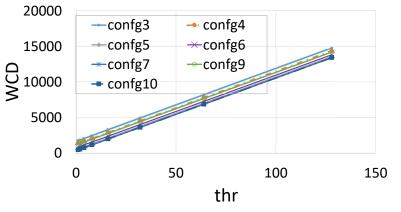
Main lessons:

DRAM's WCD significantly depends on MPSoC features Identified features that lead to unbounded WCD leveraging existing features such as PE prioritization can allow the designer to better trade-off the maximum delay for critical applications and the bandwidth for non-critical ones. There is interdependency among the effects of the features on both the delay and the bandwidth. Existence of some features can countermand the effect of other features

21

- Confg 1 &2 &8 offers complete isolation from FR-FCFS reordering
- Confg. 1 and 2: Part-All
- Confg. 8: Part-Cr with fixed priority




Sensitivity to FR-FCFS thr.

RESULTS

- Confg 1 &2 &8 offers complete isolation from FR-FCFS threshold
- Configs 3-7 & 10 scales linearly with FR-FCFS threshold

- Slope is the same for these configs
- L^{Reorder} component depends only on thr and JEDEC constraints
- Reordering has huge impact on WCD



RESULTS

Sensitivity to FR-FCFS thr.

We derived a ger 1. DR

Main lessons:

DRAM's WCD significantly depends on MPSoC features
Identified features that lead to unbounded WCD
leveraging existing features such as PE prioritization can allow the designer to better trade-off the maximum delay for critical applications and the bandwidth for non-critical ones.
There is interdependency among the effects of the features on both the delay and the bandwidth. Existence of some features can countermand the effect of other features
Although write batching mechanism works well in the average case, it unfortunately induces pathological cases that result in high bounds on per-request delay

21

Main lessons:

- 1. DRAM's WCD significantly depends on MPSoC features
- 2. Identified features that lead to unbounded WCD
- 3. leveraging existing features such as PE prioritization can allow the designer to better trade-off the maximum delay for critical applications and the bandwidth for non-critical ones.
- 4. There is interdependency among the effects of the features on both the delay and the bandwidth. Existence of some features can countermand the effect of other features
- 5. Although write batching mechanism works well in the average case, it unfortunately induces pathological cases that result in high bounds on per-request delay