
Bounding DRAM Interference in COTS Heterogeneous
MPSoCs for Mixed Criticality Systems

Mohamed Hassan and Rodolfo Pellizzoni

Outline

01 02 0403 05Motivation DRAMs Model Methodology Results

1

Mixed Criticality Systems MOTIVATION

• Emerging Systems No longer solely hosting
isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet

requirements

• High-criticality tasks
• Airbag Control Unit (ACU)
• Anti-lock Braking System

(ABS)
• Engine Control Unit (ECU)

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed

Criticality Systems

2

Mixed Criticality Systems MOTIVATION

• Emerging Systems No longer solely hosting
isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet

requirements

• High-criticality tasks
• Airbag Control Unit (ACU)
• Anti-lock Braking System

(ABS)
• Engine Control Unit (ECU)

2

Mixed Criticality Systems MOTIVATION

• Emerging Systems No longer solely hosting
isolated safety-critical tasks
• Execute tasks with different criticalities
• Criticality consequences of failure to meet

requirements

• Low-criticality tasks
• Air Conditioning Unit
• Connectivity Box
• Infotainment Unit

2

Mixed Criticality Systems MOTIVATION

3

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed

Criticality Systems

4

MPSoCs MOTIVATION

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why MPSoCs?
• Low cost
• High performance
• Energy Efficiency
• Low time-to-market (3rd party IPs)

4

Heterogenous MPSoCs MOTIVATION

MPSoCs

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO Heterogenous MPSoCs

GPU

DSP

ASIC2

CPU

FPGA

ASIC1

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Why Heterogenous
MPSoCs?
• Variety of processing capabilities
Best-suits MCS conflicting

requirements

5

Heterogenous MPSoCs with Real-time
Processors MOTIVATION

5

Heterogenous MPSoCs with Real-time
Processors MOTIVATION

5

DRAM

6• DRAM Consists of multiple banks

Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed

Criticality Systems

Background

DRAM

6• DRAM Consists of multiple banks

Background

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM

6

Background

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

6

Background

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers

6

Background

DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

6

Background

Background DRAM

• DRAM Consists of multiple banks
• The memory controller (MC) manages accesses to DRAM
• A request in general consists of:

• ACTIVATE command:
• Bring data row from cells into sense amplifiers

• RD/WR commands:
• To read/write from specific columns in

the sense amplifiers
• PRECHARGE command:

• to write back a previous row in the sense
amplifiers before bringing the new one

• All commands have associated timing constraints that have
to be satisfied by the controller

6

System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only cache

evictions
• Single-channel single-rank DRAM

subsystem
• NB DRAM banks

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO
7

System Overview MODEL

• P processing elements
 Pcr critical + Pncr non-critical

• LLC is write-back write-allocate
• Writes to DRAM are only cache

evictions
• Single-channel single-rank DRAM

subsystem
• NB DRAM banks

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

Goal:
Derive an upper bound on the
delay incurred by any memory
request of a critical PE

7

System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

8

System Details MODEL

PE2

PEP

PE4

PE1

PE…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications Memory Behavior

Depends on?:

• Priority:
• PEs can be given priorities
• COTS platforms support different priority

levels
• Existing analysis does not account for this

• Intra-bank scheduling
• FR-FCFS
• COTS also supports a threshold on

reordering to prevent starvation
• Inter-bank scheduling

• RR across banks
• Two flavors:

• Always schedule ready commands of any
type (high performance)

• Reorder only commands of different type
(prevent starvation)

• Read/Write arbitration, two flavors:
• Reads and writes have same priority
• Serve in batches, where reads have higher

priority

OS Configuration

PE Architecture

MC Policies

Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-order
• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical apps
• Part-All: Partition among all apps

Platform Instances MODEL

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write batching

FR-FCFS Threshold
• 1: FR-FCFS is capped
• 0: no cap on FR-FCFS

Priority
• 1: Critical PEs are higher priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all commands

• 0: Reorder commands of diff types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-order
• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical apps
• Part-All: Partition among all apps144 different platform

instances!

General Observations METHODOLOGY

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0
0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

144 Platform
Instances

10

144

General Observations METHODOLOGY

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0
0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

Observation 1:
Unboundedness of inter-bank RR with reordering

If RR reorders across all commands (breorder=1) and no
write batching is deployed (wb=0)  unbounded WCD

10

144

General Observations METHODOLOGY

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

10

108

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

Observation 2:
Write batching effect

Write batching cancels the effect of RR breorder:
If wb=1  breorder=x

10

METHODOLOGY

108

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=0 wb=1,breorder=1

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All
Pa

rt
-A

ll

0 0

UNBOUNDED Same as
wb=1,breorder=0

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

10

METHODOLOGY

72

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

10

METHODOLOGY

72

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
0 1
1 0
1 1

Pa
rt

-C
r

0 0
0 1
1 0
1 1

Observation 3:
Unboundedness of FR-FCFS without threshold
If thr=0 & ((No-Part) || ((Part-Cr) & pr=0) Unbounded WCD

10

METHODOLOGY

72

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

10

METHODOLOGY

54

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0

UNBOUNDED

0 1
1 0
1 1

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

Observation 4:
Part-All effect
If Part-All  rua does not suffer Intra-bank reordering or conflict interferences:
• thr=x
• If wb=0  pipe=x

10

METHODOLOGY

54

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

10

METHODOLOGY

38

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1
1 0
1 1

Observation 5:
Part-Cr effect when wb=0
If Part-Cr & wb=0  rua does not suffer Intra-bank reordering nor
conflict interferences from critical PEs:
• IO-Cr and OOO-All have same effect on WCD

10

METHODOLOGY

38

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

10

METHODOLOGY

35

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

Observation 6:
Priority effect when wb=0
If pr=1 & wb=0  pipeline architecture of non-critical PEs has no effect
on WCD:
• IO-Cr and IO-All have same effect on WCD

10

METHODOLOGY

35

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1 Confg7

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

10

METHODOLOGY

34

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1 Confg7

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8
1 0 confg9
1 1 confg10

Observation 7:
Priority with Part-Cr effect
• thr=x
• If wb=0  pipe=x

Same as Part-All effect!!

10

METHODOLOGY

34

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0
1 1 Confg7

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 confg8 confg23 confg24 confg25
1 0 confg9
1 1 confg8 confg23 confg24 confg25

10

METHODOLOGY

28

General Observations

144 different platform
instances!

OS HW setup

part thr pr
wb=0,breorder=0 wb=0,breorder=1 wb=1,breorder=x

OOO IO-Cr IO-All OOO IO-Cr IO-All OOO IO-Cr IO-All

Pa
rt

-A
ll

0 0 confg1

UNBOUNDED

confg11 confg12 confg13
0 1 confg2 confg14 confg15 confg16
1 0 confg1 confg11 confg12 confg13
1 1 confg2 confg14 confg15 confg16

N
o-

Pa
rt

0 0
UNBOUNDED UNBOUNDED

0 1
1 0 confg3 confg4 Confg5 confg17 confg18 confg19
1 1 Confg6 Confg7 confg20 confg21 confg22

Pa
rt

-C
r

0 0 UNBOUNDED UNBOUNDED
0 1 Confg8 confg23 confg24 confg25
1 0 confg9 confg10 confg26 confg27 confg28
1 1 confg8 confg23 confg24 confg25

144 Instances  28 Configurations

10

METHODOLOGY

28

Memory Delay Building Blocks

144 different platform
instances!

rua
finishes

rua
arrives

WCD

• Consider all timing constraints generated by commands of interfering requests of
other PEs serviced between the times when rua arrives and finishes

• + Delays due to command bus contention

• Compute WCD for each configuration?

11

METHODOLOGY

Memory Delay Building Blocks

144 different platform
instances!

rua
finishes

rua
arrives

WCD

• Consider all timing constraints generated by commands of interfering requests of
other PEs serviced between the times when rua arrives and finishes

• + Delays due to command bus contention

• Compute WCD for each configuration?
• Still too much
• Not general enough



11

METHODOLOGY

Memory Delay Building Blocks

144 different platform
instances!

rua
finishes

rua
arrives

WCD

• Consider all timing constraints generated by commands of interfering requests of
other PEs serviced between the times when rua arrives and finishes

• + Delays due to command bus contention

• Compute WCD for each configuration?
• Still too much
• Not general enough

 • Configuration-
independent DRAM
delay components 

11

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

rua
finishes

WCDrua
arrives

12

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

1. Inter-bank interference (requests to other banks)

rua
finishes

𝐿ூ௡௧௘௥஻

NnterB

WCDrua
arrives

ூ௡௧௘௥஻ ூ௡௧௘௥஻

12

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

1. Inter-bank interference (requests to other banks)
2. Write batch Interference (only for R/W reordering)

rua
finishes

𝐿ௐ஻ 𝐿ூ௡௧௘௥஻

NWB NnterB

WCDrua
arrives

ூ௡௧௘௥஻ ூ௡௧௘௥஻

ௐ஻ ௐ஻

12

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

1. Inter-bank interference (requests to other banks)
2. Write batch Interference (only for R/W reordering)
3. Conflict interference (requests to same bank

different rows arrived before rua)

rua
finishes

𝐿ௐ஻ 𝐿஼௢௡௙ 𝐿ூ௡௧௘௥஻

NConfNWB NnterB

WCDrua
arrives

ூ௡௧௘௥஻ ூ௡௧௘௥஻

ௐ஻ ௐ஻

஼௢௡௙ ஼௢௡௙

12

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

1. Inter-bank interference (requests to other banks)
2. Write batch Interference (only for R/W reordering)
3. Conflict interference (requests to same bank

different rows arrived before rua)

rua
finishes

𝐿ௐ஻ 𝐿஼௢௡௙ 𝐿ூ௡௧௘௥஻𝑁஼௢௡௙ × 𝐿ூ௡௧௘௥஻

NConfNWB NnterB

WCDrua
arrives

ூ௡௧௘௥஻ ூ௡௧௘௥஻

ௐ஻ ௐ஻

஼௢௡௙ ஼௢௡௙

஼௢௡௙ ூ௡௧௘௥஻ ூ௡௧௘௥஻

12

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

1. Inter-bank interference (requests to other banks)
2. Write batch Interference (only for R/W reordering)
3. Conflict interference (requests to same bank

different rows arrived before rua)
4. Intra-bank Reorder interference (FR-FCFS)

rua
finishes

𝐿ௐ஻ 𝐿஼௢௡௙ 𝐿ோ௘௢௥ௗ௘௥ 𝐿ூ௡௧௘௥஻𝑁஼௢௡௙ × 𝐿ூ௡௧௘௥஻

NConfNWB NReorder NnterB

WCDrua
arrives

ூ௡௧௘௥஻ ூ௡௧௘௥஻

ௐ஻ ௐ஻

஼௢௡௙ ஼௢௡௙

஼௢௡௙ ூ௡௧௘௥஻ ூ௡௧௘௥஻

ோ௘௢௥ௗ௘௥ ோ௘௢௥ௗ௘௥

12

METHODOLOGY

Memory Delay Building Blocks

• We classify interfering requests (aka delay
sources) into four types  causing four basic
interferences:

1. Inter-bank interference (requests to other banks)
2. Write batch Interference (only for R/W reordering)
3. Conflict interference (requests to same bank

different rows arrived before rua)
4. Intra-bank Reorder interference (FR-FCFS)

rua
finishes

𝐿ௐ஻ 𝐿஼௢௡௙ 𝐿ோ௘௢௥ௗ௘௥ 𝐿ூ௡௧௘௥஻𝑁஼௢௡௙ × 𝐿ூ௡௧௘௥஻

NConfNWB NReorder NnterB

WCDrua
arrives

𝐿ோ௘௢௥ௗ௘௥ × 𝐿஼஺ௌ
ூ௡௧௘௥஻

ூ௡௧௘௥஻ ூ௡௧௘௥஻

ௐ஻ ௐ஻

஼௢௡௙ ஼௢௡௙

஼௢௡௙ ூ௡௧௘௥஻ ூ௡௧௘௥஻

ோ௘௢௥ௗ௘௥ ோ௘௢௥ௗ௘௥

ோ௘௢௥ௗ௘௥
஼஺ௌ
ூ௡௧௘௥஻ ூ௡௧௘௥஻

12

METHODOLOGY

Memory Delay Building Blocks

• Let’s assume we know # of interfering requests
(Ns), how to compute the latency components
(Ls)?
 Ls only depend on Ns and JEDEC “known” timing

constraints

ூ௡௧௘௥஻ ூ௡௧௘௥஻

ௐ஻ ௐ஻

஼௢௡௙ ஼௢௡௙

஼௢௡௙ ூ௡௧௘௥஻ ூ௡௧௘௥஻

ோ௘௢௥ௗ௘௥ ோ௘௢௥ௗ௘௥

ோ௘௢௥ௗ௘௥
஼஺ௌ
ூ௡௧௘௥஻ ூ௡௧௘௥஻

13

METHODOLOGY

Memory Delay Building Blocks

• Let’s assume we know # of interfering requests
(Ns), how to compute the latency components
(Ls)?
 Ls only depend on Ns and JEDEC “known” timing

constraints
 ஼௢௡௙ as example

஼௢௡௙ ஼௢௡௙ ஼௢௡௙

13

METHODOLOGY

Memory Delay Building Blocks

• Let’s assume we know # of interfering requests
(Ns), how to compute the latency components
(Ls)?
 Ls only depend on Ns and JEDEC “known” timing

constraints
 ஼௢௡௙ as example

஼௢௡௙ ஼௢௡௙ ஼௢௡௙

• Configuration-
independent DRAM
delay components 

13

METHODOLOGY

Memory Delay Building Blocks

• Let’s assume we know # of interfering requests
(Ns), how to compute the latency components
(Ls)?
 Ls only depend on Ns and JEDEC “known” timing

constraints

• Now: It only remains to compute the Ns.

• Configuration-
independent DRAM
delay components 

13

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent 14

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent
• Take confg3 as an example:

confg3:

• no WB

• FR-FCFS thr

• no FP

• Inter-bank reorder among
different types only
(breorder=0)

• All PEs are OOO

• no partitioning

14

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent
• Take confg3 as an example:
1. Conflicts (𝑵𝑪𝒐𝒏𝒇):

 OOO-All  each PE has PR pending reqs
 No FP  critical and non-critical scheduled similarly
 Then 𝑵𝑪𝒐𝒏𝒇 = (𝑷 − 𝟏) × 𝑷𝑹 requests can conflict with rua

confg3:

• no WB

• FR-FCFS thr

• no FP

• Inter-bank reorder among
different types only
(breorder=0)

• All PEs are OOO

• no partitioning

14

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent
• Take confg3 as an example:
1. Conflicts (𝑵𝑪𝒐𝒏𝒇):

 OOO-All  each PE has PR pending reqs
 No FP  critical and non-critical scheduled similarly
 Then 𝑵𝑪𝒐𝒏𝒇 = (𝑷 − 𝟏) × 𝑷𝑹 requests can conflict with rua

2. Reorder (𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓):
 FR-FCFS thr  max of 𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓 = 𝑵𝒕𝒉𝒓 requests can be

reordered before rua

confg3:

• no WB

• FR-FCFS thr

• no FP

• Inter-bank reorder among
different types only
(breorder=0)

• All PEs are OOO

• no partitioning

14

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent
• Take confg3 as an example:
1. Conflicts (𝑵𝑪𝒐𝒏𝒇):

 OOO-All  each PE has PR pending reqs
 No FP  critical and non-critical scheduled similarly
 Then 𝑵𝑪𝒐𝒏𝒇 = (𝑷 − 𝟏) × 𝑷𝑹 requests can conflict with rua

2. Reorder (𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓):
 FR-FCFS thr  max of 𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓 = 𝑵𝒕𝒉𝒓 requests can be

reordered before rua

3. Inter-bank (𝑵𝑰𝒏𝒕𝒆𝒓𝑩):
 RR arbiter and no FP max of 𝑵𝑰𝒏𝒕𝒆𝒓𝑩 = 𝑵𝑩 − 𝟏 reqs from

other banks can be reordered before rua

confg3:

• no WB

• FR-FCFS thr

• no FP

• Inter-bank reorder among
different types only
(breorder=0)

• All PEs are OOO

• no partitioning

14

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent
• Take confg3 as an example:
1. Conflicts (𝑵𝑪𝒐𝒏𝒇):

 OOO-All  each PE has PR pending reqs
 No FP  critical and non-critical scheduled similarly
 Then 𝑵𝑪𝒐𝒏𝒇 = (𝑷 − 𝟏) × 𝑷𝑹 requests can conflict with rua

2. Reorder (𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓):
 FR-FCFS thr  max of 𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓 = 𝑵𝒕𝒉𝒓 requests can be

reordered before rua

3. Inter-bank (𝑵𝑰𝒏𝒕𝒆𝒓𝑩):
 RR arbiter and no FP max of 𝑵𝑰𝒏𝒕𝒆𝒓𝑩 = 𝑵𝑩 − 𝟏 reqs from

other banks can be reordered before rua

4. Write Batch (𝑵𝑾𝑩)
 No WB  𝑵𝑾𝑩=0

confg3:

• no WB

• FR-FCFS thr

• no FP

• Inter-bank reorder among
different types only
(breorder=0)

• All PEs are OOO

• no partitioning

14

METHODOLOGY

of Interfering Requests

144 different platform
instances!

• Now: It only remains to compute the Ns.  Config. dependent
• Take confg3 as an example:
1. Conflicts (𝑵𝑪𝒐𝒏𝒇):

 OOO-All  each PE has PR pending reqs
 No FP  critical and non-critical scheduled similarly
 Then 𝑵𝑪𝒐𝒏𝒇 = (𝑷 − 𝟏) × 𝑷𝑹 requests can conflict with rua

2. Reorder (𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓):
 FR-FCFS thr  max of 𝑵𝑹𝒆𝒐𝒓𝒅𝒆𝒓 = 𝑵𝒕𝒉𝒓 requests can be

reordered before rua

3. Inter-bank (𝑵𝑰𝒏𝒕𝒆𝒓𝑩):
 RR arbiter and no FP max of 𝑵𝑰𝒏𝒕𝒆𝒓𝑩 = 𝑵𝑩 − 𝟏 reqs from

other banks can be reordered before rua

4. Write Batch (𝑵𝑾𝑩)
 No WB  𝑵𝑾𝑩=0

confg3:

• no WB

• FR-FCFS thr

• no FP

• Inter-bank reorder among
different types only
(breorder=0)

• All PEs are OOO

• no partitioning

• Follow Same approach for all configurations
14

METHODOLOGY

Evaluation Setup RESULTS

PEs

• A private 16KB L1 and a shared 1MB L2 cache
• An in-order PE has a maximum of one pending request to the DRAM
• An OOO PE has a maximum of 4 pending requests to the DRAM (PR = 4)
• Four-processor system unless otherwise specified

OS Mapping • Through the virtual-to-physical address mapping component at MacSim’s frontend
• Based on the configuration, we enable the corresponding partitioning (Part-All, Part-Cr, or No-Part)

DRAM DDR3-1333H with single channel, single rank, and 8 banks

MC

• Based on the configuration,
• Per-bank queues with RR among banks and FR-FCFS arbitration within each bank
• Based on the configuration:

• critical PEs can be assigned higher priority than non-critical PEs
• enable or disable the threshold for FR-FCFS
• For enabled threshold:𝑁௧௛௥ = 8, unless otherwise specified
• enable or disable write batching

Benchmarks EEMBC Automotive • The two critical PEs execute a2time and rspeed
• The two non-critical PEs execute matrix and aifftr

Synthetic • Each of the critical PEs execute one instance of the latency benchmark Each of the
non-critical PEs execute one instance of the Bandwidth benchmark

15

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

Captures the interrelation amongst
memory requests

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

No bank sharing (Part-All)

16

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

Captures the interrelation amongst
memory requests

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

2. For same priority setting: pipeline
has no effect on WCD

2. For same priority setting: pipeline
has no effect on WCD

No bank sharing (Part-All)

16

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

Captures the interrelation amongst
memory requests

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

1. Intra-bank reorder (FRFCFS) has
no effect on WCD

2. For same priority setting: pipeline
has no effect on WCD

2. For same priority setting: pipeline
has no effect on WCD

2. For same priority setting: pipeline
has no effect on WCD

3. Part-All + FP gives lowest WCD
across all configurations

No bank sharing (Part-All)

16

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

Captures the interrelation amongst
memory requests

4. With priority: the pipeline of non-
critical processors is irrelevant

Bank Sharing among all Processors (No-Part), thr=1

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

Captures the interrelation amongst
memory requests

4. With priority: the pipeline of non-
critical processors is irrelevant

5. No-Part + No-FP gives highest
WCD across all configurations

Bank Sharing among all Processors (No-Part), thr=1

WCD of Critical Processors RESULTS

0
20
40
60
80

100
120
140
160
180

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

IO
-A

ll

IO
-C

r

O
O

O
-A

ll

noPr pr noPr pr

noThr thr

EEMBC Synth Analytical

confg2confg1 confg2 confg1

0

1000

2000

3000

4000

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg9confg10

0

100

200

300

400

500

IO-All IO-Cr OOO-All

EEMBC Synth Analytical

confg8

0
500

1000
1500
2000
2500
3000
3500
4000
4500

IO-All IO-Cr OOO-All IO-All IO-Cr OOO-All

noPr pr

EEMBC Synth Analytical

confg7

confg5

confg4

confg3

confg6

Part-Cr + FP significantly reduces
WCD

Bank sharing among all Processors (No-Part), thr=1
No bank sharing among Critical Processors (Part-Cr), FP

Bandwidth

Compared to Confg 6
(No-Part):
• Confg 2 (Part-All):
 96% less WCD
 60% BW degradation

• Confg 8 (Part-Cr + FP):
 89% less WCD
 0.85% BW

degradation

RESULTS

0
500

1000
1500
2000
2500
3000

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

noPr pr noPr pr noPr pr noPr pr

noThr thr thr thr

partAll noPart partCr

M
B/

s

PE0 PE1

confg2 confg2

co
nf

g 6

confg8

17

Write Batching Effect

0.1

1

10

100

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

IO
-A

ll
IO

-C
r

O
O

O
-A

ll
IO

-A
ll

IO
-C

r
O

O
O

-A
ll

noPr pr noPr pr noPr pr noPr pr

thr noThr thr thr

noPart partAll partCr

noWb-expr WB-analytical
• Normalized to WB-expr
• WB-analytical is very

pessimistic
• WB improves avg case

• noWb-expr is 2.84x on
average as compared
to Wb-expr

• even reaches 10x

RESULTS

18

Sensitivity to # Processors

• Confg. 1 &2 & 8 offers
complete isolation

RESULTS

0

50

100

150

200

0 2 4 6

W
CD

Pncr

confg1 confg2 confg8

0

50

100

150

200

0 2 4 6

W
CD

Pcr

confg1 confg2 confg8

19

Sensitivity to # Processors

• Confg. 1 &2 & 8 offers
complete isolation

RESULTS

0

50

100

150

200

0 2 4 6

W
CD

Pncr

confg1 confg2 confg8

0

50

100

150

200

0 2 4 6

W
CD

Pcr

confg1 confg2 confg8

• Confg. 1 and 2: Part-
All

• Confg. 8: Part-Cr with
fixed priority

19

Sensitivity to # Processors

• Confg 1 &2 & 8 offers complete
isolation

• Confg 6 & 7 offers isolation from
non-cr PEs

RESULTS

0

50

100

150

200

0 2 4 6

W
CD

Pncr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pncr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

0

50

100

150

200

0 2 4 6

W
CD

Pcr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pcr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

• Confg. 6 & 7: deploy
fixed priority

19

Sensitivity to # Processors

• Confg 1 &2 & 8 offers complete
isolation

• Confg 6 & 7 offers isolation from
non-cr PEs

• Confg 3,4,9 are more vulnerable
to WCD when Pncr

RESULTS

0

50

100

150

200

0 2 4 6

W
CD

Pncr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pncr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

0

50

100

150

200

0 2 4 6

W
CD

Pcr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pcr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

• Confg. 6 & 7: deploy
fixed priority

• Confg. 3&4&9: non-cr
PEs are OOO

• Confg. 5&10: non-cr
PEs are in-order

19

Sensitivity to # Processors

• Confg 1 &2 & 8 offers complete
isolation

• Confg 6 & 7 offers isolation from
non-cr PEs

• Confg 3,4,9 are more vulnerable
to WCD when Pncr

RESULTS

0

50

100

150

200

0 2 4 6

W
CD

Pncr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pncr

confg3 confg4 confg5

confg9 confg10

0

50

100

150

200

0 2 4 6

W
CD

Pcr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pcr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

Confg. 6 & 7: deploy fixed
priority

Confg. 3&4&9: non-cr PEs
are OOO

Confg. 5&10: non-cr PEs
are in-order

In fact, slope is 4x, why -> #pending reqs is 4

19

Sensitivity to # Processors

• Confg 1 &2 & 8 offers complete
isolation

• Confg 6 & 7 offers isolation from
non-cr PEs

• Confg 9 & 10 offers isolation
from cr PEs

• Confg 3,4,9 are more vulnerable
to WCD when Pncr

• Confg 3,6 are more vulnerable
to WCD when Pcr

RESULTS

0

50

100

150

200

0 2 4 6

W
CD

Pncr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pncr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

0

50

100

150

200

0 2 4 6

W
CD

Pcr

confg1 confg2 confg8

0

1000

2000

3000

4000

5000

0 2 4 6

W
CD

Pcr

confg3 confg4 confg5
confg6 confg7 confg9
confg10

19

Sensitivity to FR-FCFS thr. RESULTS

0

5000

10000

15000

20000

0 50 100 150

W
CD

thr

confg3 confg4
confg5 confg6
confg7 confg9

0

50

100

150

200

0 50 100 150

W
CD

thr

confg1 confg2 confg8

20

Summary & Conclusions

• Heterogeneous MPSoCs are important for Mixed Criticality Systems 21

Summary & Conclusions

• Heterogeneous MPSoCs are important for Mixed Criticality Systems
• We derived a generalized analysis that bounds the per-request DRAM

interference delay in MPSoCs

21

Summary & Conclusions

• Heterogeneous MPSoCs are important for Mixed Criticality Systems
• We derived a generalized analysis that bounds the per-request DRAM

interference delay in MPSoCs

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

84

144 different platform
instances!

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

85

144 different platform
instances!

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

86

144 different platform
instances!

28 configurations

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

87

144 different platform
instances!

28 configurations

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

88

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

89

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Main lessons:
1. DRAM’s WCD significantly depends on MPSoC features

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

90

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Main lessons:
1. DRAM’s WCD significantly depends on MPSoC features
2. Identified features that lead to unbounded WCD

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

91

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Main lessons:
1. DRAM’s WCD significantly depends on MPSoC features
2. Identified features that lead to unbounded WCD
3. leveraging existing features such as PE prioritization can allow

the designer to better trade-off the maximum delay for
critical applications and the bandwidth for non-critical ones.

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

92

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Main lessons:
1. DRAM’s WCD significantly depends on MPSoC features
2. Identified features that lead to unbounded WCD
3. leveraging existing features such as PE prioritization can allow

the designer to better trade-off the maximum delay for
critical applications and the bandwidth for non-critical ones.

4. There is interdependency among the effects of the features
on both the delay and the bandwidth. Existence of some
features can countermand the effect of other features

21

Sensitivity to FR-FCFS thr.

• Confg 1 &2 &8 offers complete
isolation from FR-FCFS
reordering

RESULTS

0

5000

10000

15000

20000

0 50 100 150

W
CD

thr

confg3 confg4
confg5 confg6
confg7 confg9

0

50

100

150

200

0 50 100 150

W
CD

thr

confg1 confg2 confg8

• Confg. 1 and 2: Part-
All

• Confg. 8: Part-Cr with
fixed priority

20

Sensitivity to FR-FCFS thr.

• Confg 1 &2 &8 offers
complete isolation from
FR-FCFS threshold

• Configs 3-7 & 10 scales
linearly with FR-FCFS
threshold

RESULTS

0

5000

10000

15000

20000

0 50 100 150

W
CD

thr

confg3 confg4
confg5 confg6
confg7 confg9
confg10

0

50

100

150

200

0 50 100 150

W
CD

thr

confg1 confg2 confg8

• Slope is the same for
these configs

• 𝐿ோ௘௢௥ௗ௘௥ component
depends only on thr
and JEDEC constraints

• Reordering has huge
impact on WCD

20

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

95

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Main lessons:
1. DRAM’s WCD significantly depends on MPSoC features
2. Identified features that lead to unbounded WCD
3. leveraging existing features such as PE prioritization can allow

the designer to better trade-off the maximum delay for
critical applications and the bandwidth for non-critical ones.

4. There is interdependency among the effects of the features
on both the delay and the bandwidth. Existence of some
features can countermand the effect of other features

5. Although write batching mechanism works well in the
average case, it unfortunately induces pathological cases that
result in high bounds on per-request delay

21

Summary & Conclusions

• We derived a generalized analysis that bounds the per-request DRAM
interference delay in MPSoCs

MPSoC
Platform
Instances

R/W Reorder
• 1: write batching
• 0: no write

batching

FR-FCFS Threshold
• 1: FR-FCFS is

capped
• 0: no cap on FR-

FCFS

Priority
• 1: Critical PEs are higher

priority
• 0: no priority

Inter-bank Reorder
• 1: Reorder across all

commands
• 0: Reorder commands of diff

types

Pipeline
• IO-All: All PEs are In-order

• IO-Cr: Critical PEs are in-
order

• OOO-All: All PEs are OOO

Partitioning
• No-Part: No Partitioning

• Part-Cr: Partition among critical
apps

• Part-All: Partition among all
apps

96

144 different platform
instances!

28 configurations

Inter-bank
Requests targeting different
banks and are serviced before
the one under analysis because
of the RR policy

Row Conflict
Requests arrived before the one
under analysis and are targeting
different rows

Intra-bank Reorder
Requests serviced before the
one under analysis because they
are ready, i.e. targeting the open
row in the bank

Write Batching
• Delay incurred by a read waiting

for a write batch to finish

• Applies only for configurations
with write batching

Delay Basic
Building Blocks

NWB NReorder

NInterBNConf

Worst Case Delay
(WCD)

Compute the number
of interfering requests
NConf, NReorder, NInterB, NWB

General
Observations

PE2

PEP

PE4

PE1

PE
…

PE3

Shared cache(s)

Memory
Controller

Off-chip
Memory/ies

Shared IO

OS
Applications

144 instances

OS Configuration

PE Architecture

MC Policies

Memory Behavior
Depends on?:

Main lessons:
1. DRAM’s WCD significantly depends on MPSoC features
2. Identified features that lead to unbounded WCD
3. leveraging existing features such as PE prioritization can allow

the designer to better trade-off the maximum delay for
critical applications and the bandwidth for non-critical ones.

4. There is interdependency among the effects of the features
on both the delay and the bandwidth. Existence of some
features can countermand the effect of other features

5. Although write batching mechanism works well in the
average case, it unfortunately induces pathological cases that
result in high bounds on per-request delay

21

