

On the Off-chip Memory Latency of Real-Time Systems: Is DDR DRAM Really the Best Option?

Mohamed Hassan

Outline

- Historically, SRAMs have been the option for real-time safety-critical embedded systems
- With the increase in data demand
 → the cost became unaffordable

SRAMs

MOTIVATION

Work in Off-chip Memory

MOTIVATION

All in Double Data Rate (DDR) DRAMs

MOTIVATION

Work in Off-chip Memory

- Low cost
- Large capacity
- High BW
- What is the most important requirement for real-time/safety-critical systems?
 - Yes, Predictability
- How is DDRx for predictability?
 - DDRx Random Access Memories are not Random at all!!
 - Access latency varies notably based on many factors
 - access patterns
 - transaction type (read or write)
 - DRAM state from previous accesses

A Context about DDRs

- Multiplexed address mode:
- The address bits are split into two segments provided to the device in two stages:
 - 1. Row address \rightarrow row decoder
 - 2. Column address \rightarrow column decoder
- ✓ Low cost (less pin count)
- High latency
- Huge variability

3

- A request in general can consist of one, two, or three commands:
 - ACTIVATE (A) command:
 - Bring data row from cells into sense amplifiers

3

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE (A) command:
 - Bring data row from cells into sense amplifiers
 - Read/Write (R/W) commands:
 - To read/write from specific columns in the sense amplifiers

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:

•

- ACTIVATE (A) command:
 - Bring data row from cells into sense amplifiers
- Read/Write (R/W) commands:
 - To read/write from specific columns in the sense amplifiers
- PRECHARGE (P) command:
 - to write back a previous row in the sense amplifiers before bringing the new one

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE (A) command:
 - Bring data row from cells into sense amplifiers
 - Read/Write (R/W) commands:
 - To read/write from specific columns in the sense amplifiers
 - PRECHARGE (P) command:
 - to write back a previous row in the sense amplifiers before bringing the new one

Row Conflict: *P+ A + R/W*

Row Idle/Close: A + R/W

Row Hit: *R/W*

DRAM

- DRAM Consists of multiple banks
- The memory controller (MC) manages accesses to DRAM
- A request in general consists of:
 - ACTIVATE command
 - R/W commands
 - PRECHARGE command
- All commands have associated timing constraints that have to be satisfied by the controller (20+ timing constraints)

Work in Off-chip Memory

MOTIVATION

- Low cost
- high capacity
- High BW
- What is the most important requirement for real-time/safety-critical systems?
 - Yes, Predictability
- How is DDRx for predictability?
 - DDRx Random Access Memories are not Random at all!!
 - access latency varies notably based on many factors
 - access patterns
 - transaction type (read or write)
 - DRAM state from previous accesses
- Comprehensively study these factors

5

MOTIVAT

Assessing DDRs for Predictability

• How is DDRx for predictability?

- Predictability has different definitions in the real-time literature
- One important measure is *the relative difference between best- and worst-case execution times* (or latencies in case of memories) [Wilhelm et al, TECS08]
- We define "Variability Window" (VW) to quantitatively measure the DRAM predictability

$$VW = \frac{WCL - BCL}{WCL} \times 100$$

Assessing DDRs for Predictability

PREDICTABILITY

5)

- Targets an open row (only R command)
- (a) is best-case
- (e) arrives after a write to same rank

- Targets an open row (only R command)
- (a) is best-case
- (e) arrives after a write to same rank

- Targets a close row (A + R command)
- (f) is best-case
- (j) arrives after a closed write to same rank

- Targets a close row (A + R command)
- (f) is best-case
- (j) arrives after a closed write to same rank

- Targets a conflict row (P + A + R command)
- (k) is best-case

10

• (o) arrives after a conflict write to same rank

20

Assessing DDRs for Predictability

30

34

08

45

- Targets a conflict row (P + A + R command)
- (k) is best-case
- (o) arrives after a conflict write to same rank

120

100

80

60

40.5

[ns]

Assessing DDRs for Predictability

PREDICTA

- 15 cases for a read request
- Another 15 for a write request

• We calculate the VW for 8 of the state-of-the-art DDRx DRAM Controllers

Assessing DDR Controllers for Predictability

• We calculate the VW for 8 of the state-of-the-art DDRx DRAM Controllers

Assessing DDR Controllers for Predictability

Assessing DDR Controllers for predictability

Even with the pessimism and complexity, 261% is still a significant variability for safety-critical systems

Assessing DDR Controllers for predictability

Even with the pessimism and complexity, 261% is still a significant variability for safety-critical systems

Exploring other types of memories that address these limitations is unavoidable towards providing more predictable memory performance with less variability and tighter bounds

Assessing DDR Controllers for predictability

PREDICTABILITY

Conservatism[.]

RLDRAM

10

- A total of 8 cases
- Variability window is 46.2% (13.4x reduction)
 WCL=28.5ns (3.79x reduction)

10

- RLDC to predictably manage accesses to RLDRAM
- Round Robin
- Support both bank sharing and bank partitioning
- Simple timing checker → good for analyzability, V&V, Certification

RLDC: A Predictable Controller for RLDRAM

• Bank Sharing Scheme:

$$WCL^{share} = (N-1) \times tRC + tCL$$

$$W = (N-1) \times tRC + tCL$$

$$W = (N-1) \times tRC + tCL$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

$$W = (N-1) \times tRC + tRL + DATA$$

N is number of processing elements

Bounding Memory Latency

RLDRAM

12

• Bank Partitioning Scheme:

Bounding Memory Latency

RLDRAM

PEs	4 Processors in-order pipeline a private 16KB L1 a shared 1MB L2 cache
DRAM	Either RLDRAM or DDRx
RLDRAM	RLDRAM3-1600 RLDC manages accesses to RLDRAM
DDRx	DDR3-1600 AMC, PMC, RTMem, DCmc, ORP, MCMC, ROC, or ReOrder manages access to DDR3
Bank Management	We experiment with both bank partitioning and bank sharing among PEs for RLDC
Benchmarks	EEMBC Automotive

Evaluation Setup

13)

1. DDRx MC has 2.5x to 6.46x 14 worse analytical WCL than RLDC \rightarrow Very similar numbers for exp. 2. Relatively low WCL of MCMC, ROC, ReOrder is due to 4 ranks! 3. For RLDC: bank partitioning provide tighter WCL than sharing \rightarrow at the expense of flexibility 4. Gap between exp. vs analytical

WCL is much higher for DDR

 \rightarrow again due to inherent variability

Worst-Case Latency

RESULTS

Already discussed analytical VW
 Exp. VW for DDRx MCS:

- >400% for 4 MCs,
- 300%-400% for 3 MCs and
- ~200% for 1 MC.
- 3. for RLDC:
 - 76.9% for partitioned banks
 - 84.6% for shared banks

Variability Window

1. The WCL latency gap between RLDC and majority of DDRx MCs increases drastically

Scalability: # Processors

16

 The WCL latency gap between RLDC and majority of DDRx MCs increases drastically
 DDRx MCs can be categorized into three categories

Scalability: # Processors

- 1. The WCL latency gap between RLDC and majority of DDRx MCs increases drastically
- 2. DDRx MCs can be categorized into three categories
- 3. RLDC's WCL is less than all categories for all #PEs
 → for both part and sharing
 → without complex arbitration/ reorderings (better analyzability and composability)

Scalability: # Processors

1. How mature is RLDRAM?

- Has been there since 1999
- Long-term Supported by Micron
- The main off-chip memory in networking and other low-latency needs

2. Can I buy RLDRAM off-the-shelf?

- Definitely
- They are sold as discrete components (which is the norm for embedded systems anyway)
- There are also specialized DDR-compatible sockets for RLDRAM

3. Are there any platforms/boards/test-beds?

intel

Intel Arria 10

Zynq UltraScale/+ MPSoC NORTHWEST Arria10 SoC LOGIC

ATCA-9305-NSP Processing blade

ICONDUCTOR

LATTICE

Ecosystem

Partner

Micron is reinforcing and expanding current relationships with Preferred Partners and key enablers in the networking industry.

Achronix
Altera
Applied Micro
Broadcom
Cavium
Dolphin
Freescale
LSI Logic

. Marvell Open Silicon Northwest Logic PMC-Sierra Tabula Tilera Xilinx

RESULTS

17)

4. If it is that good, why it did not take off then?

- Take off = replaces DDR? \rightarrow It is not meant to be!
- It is a specialized type of memory for low-latency guarantees
- Commodity general-purpose market is looking for high BW, capacity, cost
- We should ask ourselves, what are we looking for?
- An analogy: FPGAs have been there for long-time, why are they taking off now? → they satisfy a "new" need in the AI market
 - Will they replace CPUs then?
 - It is not an either-or decision

- No
- Use-case dependent
- A heterogenous memory system?
- Mixed Criticality with different requirements?

6. As a scheduling researcher, why should I care?

- Taking the shared resources interference into account is unavoidable to provide more accurate numbers
- DDR DRAM is very complex to account for its details (rd vs wr, conf vs hit, ..etc) → explodes the analysis

RESULTS

• RLDRAM alleviates this complexity..which can make the analysis more feasible

11× less timing variability 6.4× less WCL

Main Lessons:

- DDR DRAM is not designed for predictability, RLDRAM is.
- 2. Looking for solns that address our needs instead of starting from the mainstream soln?
- 3. Not either-or:

A heterogenous memory to address conflicting needs of MCS

Main Lessons:

- DDR DRAM is not designed for predictability, RLDRAM is.
- 2. Looking for solns that address our needs instead of starting from the mainstream soln?
- 3. Not either-or:
 A heterogenous memory
 to address conflicting
 needs of MCS