
1

Exposing Implementation Details of Embedded DRAM
Memory Controllers through Latency-based Analysis

MOHAMED HASSAN, ANIRUDH M. KAUSHIK, and HIREN PATEL, University of Waterloo,

CANADA

We explore techniques to reverse-engineer DRAM embedded memory controllers (MCs) including page

policies, address mapping and command arbitration. There are several benefits to knowing this information:

they allow tightening worst-case bounds of embedded systems, and platform-aware optimizations at the

operating system, source-code, and compiler levels. We develop a latency-based analysis, which we use to

devise algorithms and C programs to extract MC properties. We show the effectiveness of the proposed

approach by reverse-engineering the MC details in the XUPV5-LX110T Xilinx platform. Furthermore, in order

to cover a breadth of policies, we use a simulation framework and document our findings.

Additional Key Words and Phrases: DRAM, memory controllers, reverse engineering, inference, analysis

ACM Reference Format:
Mohamed Hassan, Anirudh M. Kaushik, and Hiren Patel. 2017. Exposing Implementation Details of Embedded

DRAMMemory Controllers through Latency-based Analysis. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1

(January 2017), 25 pages. https://doi.org/10.1145/3158208

1 INTRODUCTION

Modern computing systems implement a memory hierarchy with a combination of on-chip scratch-

pads, caches, and off-chip dynamic random-access memories (DRAMs) [31]. This hierarchy is a

critical component of all computing systems, employed in server, embedded, desktop, and mobile

systems [30]. Realizing sufficient information about the implementation details of this hierarchy

has several implications on various areas of research. Researchers have already utilized knowledge

about these details to assist compilers to provide platform-aware optimizations [6, 44], modify

operating systems to allocate memory in a certain way to provide high performance [33] or task

isolation [42], and identify existing vulnerabilities in the memory system, which can lead to covert-

and side-channel attacks [37, 38]. Additionally, and utmost importance to real-time embedded

systems, information about the memory hierarchy is necessary to allow worst-case execution time

(WCET) analysis techniques to account for latencies incurred during memory accesses [1, 22].

All these efforts requires some information about the memory system components such as the

DRAM address mapping, page policy, and arbitration. Unfortunately, manufacturers consider the

implementation details of the memory hierarchy as intellectual property; hence, this information is

not publicly available neither for caches [1] nor for DRAMs [42].

Authors’ address: Mohamed Hassan; Anirudh M. Kaushik; Hiren Patel, University of Waterloo, Electrical and Computer

Engineering, ON, CANADA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

1539-9087/2017/1-ART1 $15.00

https://doi.org/10.1145/3158208

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/3158208
https://doi.org/10.1145/3158208

1:2 M. Hassan et al.

Rank Banks

2-D arrangement
of rows and

columns

Row-buffer

Activate row
into row buffer

Precharge row
into array

DRAM
device

Fig. 1. DRAM architecture.

There are several research efforts that reverse-engineer cache properties [1, 4, 21, 39], but, there is

limited work that does the same for main memories [33, 34, 42]. Therefore, there is a need to devise

approaches to expose implementation details of the main memory system; thereby, it is the focus

of this work. The main memory system composes of one or more DRAM channels and a memory

controller (MC) managing accesses to the DRAM. A MC comprises three main components: address

mapping, page policy, and arbitration scheme. Prior efforts [33, 34, 42] partially reverse-engineer

properties of the MC. In particular, they discover the address mapping schemes. However, they do

not discover page policies or command arbitration schemes that can provide further opportunities

for research in all of the aforementioned aspects. For instance, authors in [15, 22, 43] assume that

all properties of the MC including the page policy and arbitration are known a priori. They use

this information to provide bounds on memory interferences in multi-core systems. This provides

an evidence of the advantages of knowing properties of the MCs. However, the techniques to

reverse-engineer important properties of MCs remains an unexplored challenge.

In response to this challenge, we develop a latency-based analysis to reverse-engineer essential

properties of the MC. We discover commonly used page policies, address mapping schemes, and

command arbitration schemes. Our technique relies on deriving best- and worst-case latency

equations for memory accesses to the MC (Section 4). We use this analysis to develop algorithms for

micro-benchmarks that can elicit properties of the MC (Section 5). We show the effectiveness of the

proposed approach by reverse-engineering the implementation details of the MC embedded in the

XUPV5-LX110T platform from Xilinx. Moreover, since hardware platforms typically have a fixed

set of MC policies, we deliberately experiment with a micro-architectural simulation framework

MacSim [23] interfaced with a comprehensive DRAM simulator called DRAMSim2 [36] to enable a

thorough exploration of MC configurations. Finally, we highlight the potential exploitations that

the reverse-engineering of MC properties inspires (Section 6).

2 BACKGROUND

A dynamic random-access memory (DRAM) is an array of memory cells consisting of banks with

each bank organized by rows and columns. Figure 1 shows the architecture of a single rank DRAM.

A DRAM rank contains multiple banks, and multiple ranks form a DRAM channel. Each bank

uses a temporary buffer to access bits of data, which is called the row buffer. The row of data in

the row buffer is known as the open row. Column accesses (reads or writes) only access the open

row. Requests to different banks and/or ranks can be interleaved, which increases the bandwidth

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:3

Table 1. DRAM timing constraints for Burst Length (BL) of 8.

Symbol Description DDR3-1600 DDR2-533

tRRD Minimum time between two ACT to same device. 4 2

tCCD Minimum time between two CAS to same rank. 4 4

tRCD ACT to CAS constraint to bring data into row buffer. 10 4

tCL Minimum time between CAS and start of data transfer. 10 4

tRL Minimum time between RCAS and start of data transfer. 10 4

tWL Minimum time between WCAS and start of data transfer. 9 4

tBUS Time to transfer data on the bus. 4 4

tRTW Time to change bus direction from read to write. 6 6

tWTR Time to change bus direction from write to read. 18 2

tRTRS Time to switch from rank to rank. 1 1

tRAS ACT to PRE to access row and restore data in row. 24 12

tRC Minimum time between two ACT commands to same bank. 34 16

tRTP Minimum time between RCAS and PRE. 10 2

tRP The minimum time between PRE and the following ACT command, required to precharge the row. 10 4

tWR Minimum time between end of data writing and PRE. Required to restore written data to DRAM. 10 4

and decreases the access latency of requests. A MC manages accesses to the DRAM by honouring

low-level temporal characteristics of the DRAM by implementing a page policy, an address mapping

scheme, and a command arbitration scheme [19].

The page policy dictates the liveness of data in the row buffer. For example, open-page policy

allows requests to exploit row locality by keeping data available in the row buffer for a given period

of time. Hence, memory accesses to the most recently accessed row are faster than those to different

rows. Close-page policy, on the other hand, writes back data in the row buffer to the memory cells

after each access. Thus, ensuring that every memory access incurs the same access latency. Modern

MCs provide a combination of open-page and close-page policies known as hybrid-page policy

to exploit higher performance. Hybrid-page policy uses the access history to dynamically switch

between the page policies.

The address mapping converts the logical memory address supplied by the processor to a physical

address identifying channel, rank, bank, row and column indices to access the DRAM. Throughout

this paper, we refer the number of bits assigned to channel, rank, bank, row and column indices as

CNW, RKW, BKW, RWW, and CLW, respectively. This makes the physical address PW = CNW +
RKW + BKW + RWW + CLW bits.

The command arbitration schedules low-level DRAM commands to perform memory accesses.

These commands are ACT, CAS, CASP, and REF. ACT performs a row access. CAS performs a column

access (read or write) within the row. PRE closes the row in the row buffer and writes back the data

to the memory cells. CASP performs a read or a write with an automatic PRE command. Close-page

policy typically employs CASP. The REF command refreshes the DRAM necessary for its correct

operation. To distinguish read operations from write operations, we use WCAS and WCASP for data

write CAS commands, and RCAS and RCASP for data read CAS commands. The issuance of these

commands has to honour the timing constraints defined by the JEDEC-DDR standards [20]. Table 1

shows these timing constraints, and their description for the two models used throughout this paper:

DDR3-1600 and DDR2-533. It is worth noting that these models are used as examples; however, the

proposed technique applies to any DDR model.

We use Figure 2 to illustrate the meaning of these constraints. It shows a write access followed

by a write or read access targeting the same bank and rank for an MC implementing close-page

policy. Hence, CAS commands are issued with auto PRE commands to close the row after each access.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 M. Hassan et al.

RAS1

tRCD tWL

Command
Bus

Data Bus

pr1

pr2

WCASP1

Data1

tBUS
CASP2

PRE1

RAS2

tRCD

tRP

Data2

tCL

tWR

tRC

tRAS

Fig. 2. A write followed by a write or read access targeting the same bank and rank for close-page policy.

Notice that tWL cycles are required between the issuance of WCASP1 and the start of writing data to

the DRAM. Then, the data transfer takes tBUS cycles. tWR cycles are necessary between the end

of the data transfer, and the auto PRE1 command. These are timing constraints set by the physical

properties of the DRAM.

3 RELATEDWORK

Reverse-engineering cache properties. There are several research efforts that infer properties

of caches using measurement-based analysis [1, 4, 21, 39]. [1, 4, 21] make use of performance

counters available in current platforms to infer properties of the cache hierarchy. While [4, 21]

identify LRU replacement policies and variants of LRU such as pseudo-LRU and fill PLRU, [1] uses

block order maintained in the cache sets due to cache hits and misses to distinguish between LRU,

FIFO, and random replacement policies. Unlike those approaches that depend on performance

counters, authors in [39] infer cache properties of an NVIDIA GT200 GPU via latency analysis

because performance counters were unavailable.

Reverse-engineering DRAM properties. Recent works that infer DRAM MC properties [33,

34, 42] are limited to only the address mapping. [42] proposes a new virtual-to-physical memory

allocation scheme by first inferring the mapping between virtual address bits and physical bank

bits for the Intel Xeon processor using latency-based analysis. [33] employs similar latency based

analysis to identify channel, rank, and bank bit mapping between virtual and physical addresses.

However, we find the approach followed by [33] is suitable for mappings where all the bits assigned

to a certain group (such as bank, ranks or channels) are contiguous. This approach will not be

able to reveal details of distributed address mapping schemes. Recently, authors in [34] reverse

engineered the address mapping details of various Intel architectures. They use both physical

probing and latency-based analysis. All these approaches [33, 34, 42] do not infer other important

properties of the MC such as the page policy, and command arbitration schemes that are essential

in understanding the temporal behaviour of the MC. In this work, we propose a methodology to

reverse-engineer page policies, address mappings, and command arbitration schemes.

We presented our preliminary findings in [10]. This work builds on [10] by the following

contributions. 1) We reverse-engineer the write management policy details. This includes whether

writes are queued (i.e. assigned less priority than reads), and the queue depth (or drainingwatermark)

if exists. Modern memory controllers buffer reads and writes in separate queues and deliver different

service rates to them since reads are generally more critical than writes. 2) We extend the reverse-

engineering technique of the permutation address mapping to further distinguish bits specified as

bank bits into two distinct groups: one is for row bits, and the other is for actual bank bits. 3) We

show the effectiveness of the proposed approach by reverse-engineering the MC details of a real

platform. For this purpose, we use the XUPV5-LX110T platform from Xilinx [41].

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:5

ACT1

Command
Bus

Data Bus

pr1

pr2

WCASP1

Data1

tBUS
CASP2

PRE1

Data2

Time0

ACT2

Fig. 3. Arrival and Finish times of DRAM requests.

DRAMmemory controllers for real-time embedded systems. There are numerous efforts

that customize MCs targeted for real-time embedded systems (e.g. [2, 7, 13, 14, 32, 35, 40]), which

are surveyed by [8]. Most of these approaches require considerable hardware modifications, and

thus do not allow the reuse of existing commercial-of-the-shelf (COTS) systems. Recently, multiple

efforts provided latency analysis for COTS DRAM platforms [15, 22, 43]. These solutions rely on

the knowledge of the MC architecture details, which is not publicly available. The focus of this

work is to reverse-engineer this knowledge to enable such innovative solutions.

4 MEMORY LATENCY ANALYSIS

When the MC grants the logical memory requests (Definition 1) access to the DRAM, it converts the

logical memory requests into physical memory requests. A physical memory request (Definition 3)

consists of two components: the physical address (Definition 2), and a sequence of low-level DRAM

commands. The address mapping policy translates the logical memory address to the physical

memory address. Figure 3 illustrates two physical requests, pr1 and pr2 with their arrival times t1
and t2, latencies l1 and l2 and finish times f1 and f2.

Definition 1. A logical memory request is a 2-tuple lr = ⟨la,o⟩ where la is a LW bits wide logical

memory address la ∈ {0, 1}LW and o ∈ {R,W } designates a read or write access operation.

Definition 2. A physical address pa = ⟨cn, rnk,bnk, rw , cl⟩ is PW bits wide. It is composed of

CNW channel bits, RKW rank bits, BKW bank bits, RWW row bits and CLW column bits, respectively.

Definition 3. A physical memory request is a 2-tuple pr = ⟨pa, cs⟩ such that pa is the physical

address and cs is a sequence of DRAM commands.

Definition 4. The arrival time ti is the time-stamp at which the first DRAM command of pri
arrives at the command queue.

Definition 5. The finish time fi of a physical request pri is the time-stamp at which pri starts its

data transfer.

Definition 6. The access latency of the ith physical request pri is defined as li = fi − ti .

4.1 Key Idea

The commands issued by the MC to the DRAM adhere to certain timing constraints based on a

DRAM access protocol. These timing constraints affect the access latency of any request to the

DRAM. If the arrival time of pri is such that pri will not incur any waiting latency due to timing

constraints between commands of pri and commands of previous requests, then pri will incur the

best-case access latency. Otherwise, pri incurs an additional delay resulting from DRAM timing

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 M. Hassan et al.

Best&Worst-

latencies

Latency
Based

Analysis

MC and
DRAM

Observed
Latencies

Inference
Rules

MC Details

Test
Algorithms

Inference
Rules apply?

yes

Tune
no

Fig. 4. Proposed methodology.

constraints. In Figure 3, let the MC be initially idle and pr1 arrives at time-stamp 0 (t1=0). Hence, pr1

satisfies the timing constraints from Table 1 trivially and the MC issues ACT1 immediately. However,

pr2 does not satisfy the timing constraints as pr2 arrives before the PRE1 is issued; therefore, the

MC must delay issuing ACT2 to satisfy the timing constraints. Generally, the arrival time ti depends

on several factors that the MC cannot control. For example, delays incurred due to pipeline stalls

or the interconnect. A key observation here is that the latency incurred by pr2 depends on its

arrival time relative to pr1. Accordingly, we analyze all possible latency values of pr2 based on its

arrival time. Figure 4 highlights the methodology we propose in this work. Let pr1 = ⟨pa1, cs1⟩ and

pr2 = ⟨pa2, cs2⟩ be two successive physical requests. Our approach presents an analysis to derive

the access latency for pr2, its best- (l
BEST
2

), and worst-case access (lWORST
2

) latency bounds. We

then use these bounds to formalize inference rules that deduce certain details of the MC based on

observed DRAM latencies. These latencies are obtained by stimulating the MC under investigation

using carefully-crafted testing algorithms.

4.2 Challenges and Requirements

We discuss the necessary requirements for the proposed revers-engineering methodology, and

provide practical means to satisfy these requirements.

(1) Request ordering. The algorithms we propose rely on a specific order amongmemory requests.

This order can be violated by compiler optimizations or hardware reordering techniques. In

order to avoid any reordering of reverse-engineering requests by the requestor: 1) we create

data dependencies between the reverse-engineering requests; 2) we also compile the micro-

benchmarks with no optimization flags to ensure that the reverse-engineering requests are not

optimized in any way that might change the order of requests accessing the DRAM.

(2) DRAM bank idleness. The analysis also assumes that the DRAM banks are initially in an idle

state; hence, there are no active rows in the row buffers. We practically achieve this by issuing

a large number of NOP instructions before the test requests to ensure that DRAM is refreshed

before we issue the reverse-engineering sequences.

(3) Accurately measuring DRAM latency. We assume that the considered platform has perfor-

mance counters that can track the time-stamps of the requests when they access the MC and

when they are retired by the MC. There exist commercial tools that measure DRAM latency such

as the Memory Latency Checker tool [17] from Intel. These tools monitor memory performance

by measuring latency and bandwidth at fine granularity using architectural counters. Another

challenge is that the proposed approach requires the observed DRAM latencies to be within

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:7

certain ranges to be able to infer MC properties. To address this challenge, we tune the proposed

algorithms by inserting a variable number of NOP instructions between memory instructions.

This controls the arrival time of the memory requests, and hence changes their latency. As

Figure 4 delineates, if no inference rule applies to the observed latency, we change the number

of NOP instructions in the algorithm and rerun the program.

(4) Prefetchers Prefetchers can reorder the appearance of the memory requests at the DRAM. We

disable prefetchers, as proposed by [17] and [22] to address this challenge.

(5) Caches. We have to ensure that reverse-engineering requests access the DRAM and are not

fetched from the cache. This can be achieved by multiple ways: 1) modern architectures enables

bypassing the cache hierarchy through special instructions. For instance, the x86 ISA provides

bypass instructions for reads/writes with no temporal locality [16]; 2) cache eviction instructions;

3) for architectures that have neither cache bypassing nor eviction capabilities, we execute a

sequence of memory instructions on each iteration such that the reverse-engineering requests

are evicted from the cache. This sequence varies per architecture based on the cache structure

and replacement policy to generate the cache eviction requests.

(6) Finally, for clarity, if the access latency analysis is agnostic to the request type, then RCAS and

WCAS have the same effect on the latency. Therefore, we denote the access command simply

as CAS, and the timing constraint between the CAS and the start of the data transfer as tCL. In

addition, since tBUS constraint includes the tCCD constraint in all DDR modules, throughout

this paper we let tBUS ≥ tCCD.

4.3 Proof Strategy

We propose a systematic strategy to obtain the best- and worst-case access latencies for a request

accessing the DRAM. We then introduce an example to apply this strategy for two accesses with

same access type to two different banks in the same rank.

RAS1

RAS2

tRCD

Data1 Data2

tCL

tBUS

Command
Bus

Data Bus

pr1

pr2

CAS1

CAS2

0 Time

Fig. 5. The two conditions controlling the issuance of the first command of pr2.

Theorem 1. The best-case latency for pr2 occurs when t2 ≥ t̂2, where t̂2 = MAX(cond1, cond2),

where cond1 and cond2 are two conditions that encompass all timing constraints affecting the latency

of pr2.

Proof. Letpr1 andpr2 be successive requests to a MC in the idle state, and pr1 arrives at 0 (t1 = 0).

Hence, the first command of pr1 (ACT1) can be issued immediately. However, pr2 has to satisfy the

timing constraints between commands of pr1 and pr2 before it can get serviced. The observation we

make in this proof strategy is that these timing constraints can be combined into two conditions.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 M. Hassan et al.

RAS1

RAS2

tRCD

tRRD tBUS

Data1 Data2

tCL

tBUS

Command
Bus

Data Bus

pr1

pr2

CAS1

CAS2

0 Time

Fig. 6. Two accesses with same access type to two different banks in the same rank.

These two conditions, denoted as cond1 and cond2, must be satisfied before the first command of

pr2 can be issued. Figure 5 depicts an example of these two conditions. cond1 in Figure 5 represents

the timing constraints between ACT1 and ACT2 commands, while cond2 represents the constraints

between CAS1 and CAS2 commands.

(1) Suppose that cond1 ≥ cond2, then t̂2 = cond1. There are two cases based on pr2’s arrival time:

• Case 1a: When t2 ≥ t̂2, then cond1 is satisfied. Since cond1 ≥ cond2, cond2 is also satisfied.

Therefore, commands of pr2 will not incur any latency due to commands of pr1. Let the

latency of pr2 in this case be l1a
2
.

• Case 2a:When t2 < hatt2, then cond1 is not satisfied. Hence, the MC delays the issuance of

the first command of pr2 by t̂2 − t2 resulting in an access latency of l2a
2
= (t̂2 − t2) + l

1a
2
.

(2) Now, Suppose that cond1 < cond2, then t̂2 = cond2. There are again two cases:

• Case 1b: When t2 ≥ t̂2, then cond2 is satisfied. Since cond2 > cond1, cond1 is also satisfied.

Therefore, commands of pr2 will not incur any latency due to commands of pr1. Let the

latency of pr2 in this case be l1b
2
.

• Case 2b: When t2 < t̂2, then cond2 is not satisfied. Hence, the MC delays the issuance of the

first command of pr2 by t̂2 − t2 resulting in an access latency of l2b
2
= (t̂2 − t2) + l

1b
2
.

Since l1a
2
< l2a

2
and l1b

2
< l2b

2
, the arrival time for pr2 producing the best-case latency occurs when

t2 ≥ t̂2 with t̂2 = MAX(cond1, cond2). □

The following corollary uses results of Theorem 1 to compute the access latency l2.

Corollary 1. The latency of pr2 at any given arrival time t2 when t̂2 = MAX(cond1, cond2) is given

by:

l2 = MAX(t̂2 − t2, 0) + l
1a
2
.

Substituting t2 ≥ t̂2 in Corollary 1 will give the best-case latency lBEST
2

= l1a
2
, while substituting

t2 = 0 will give the worst-case latency lWORST
2

= t̂2 + l
1a
2
.

4.3.1 Example: Two accesses with same access type to two different banks in the same rank. For
two requests with the same access type, cs1 = CAS1 and cs2 = CAS2 such that CAS1 and CAS2 are of

the same type (both should be either read or write), Figure 6 shows the timing diagram for this

sequence.

Theorem 2. The best-case latency for pr2 occurs when t2 ≥ t̂2, where t̂2 = MAX(tRRD, tBUS).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:9

Table 2. Best and worst-case latencies. RR: read followed by a read, WW: write followed by a write, RW: read
followed by a write, and WR: write followed by a read.

Latency Equation Configuration Reference t̂2

lWORST
2

= t̂2 + tRCD + tCL
Different Ranks t̂2 = tBUS + tRTRS
Different Banks and RR/WW t̂2 = MAX(tRRD, tBUS)

lBEST
2

= tRCD + tCL
Different Banks and RW t̂2 = MAX(tRRD, tBUS + tRTW)
Different Banks WR t̂2 = MAX(tRRD, tWL + tBUS + tWTR)

lWORST
2

= t̂2 + tCL
OP: Different Columns and RR/WW t̂2 = tRCD + tBUS

lBEST
2

= tCL
lWORST
2

= t̂2 + tWL
OP: Different Columns and RW t̂2 = tRCD + tBUS + tRTW

lBEST
2

= tWL
lWORST
2

= t̂2 + tRL
OP: Different Columns and WR t̂2 = tRCD + tWL + tBUS + tWTR

lBEST
2

= tRL
lWORST
2

= t̂2 + tRP + tRCD + tCL OP: Different Rows and RR/RW t̂2 = MAX(tRAS, tRCD + tRTP)
lBEST
2

= tRP + tRCD + tCL OP: Different Rows and WW/WR t̂2 = MAX(tRRD, tRCD + tWL + tBUS + tWTR)
lWORST
2

= t̂2 + tRCD + tCL CP: Same Bank and Rank and RR/RW t̂2 = MAX(tRC, tRCD + tRTP + tRP)
lBEST
2

= tRCD + tCL CP: Same Bank and Rank and WW/WR t̂2 = MAX(tRC, tRCD + tWL + tBUS + tWR + tRP)

Proof. This proof is obtained by substituting cond1 = tRRD and cond2 = tBUS in the proof

strategy in subsection 4.3. Given that the MC is initially idle, and pr1 arrives at 0 (t1 = 0), the DDR

specifications state that tRRD, tRCD, tCL and tBUS in Table 1 must be satisfied by pr2. as Figure 6

illustrates.

(1) Suppose that tRRD ≥ tBUS , then t̂2 = tRRD. There are two cases based on pr2’s arrival time:

• Case 1a: When t2 ≥ t̂2, ACT2 command can be issued immediately and after tRCD cycles the

MC issues CAS2. Then, l1a
2
= tRCD + tCL, where tCL cycles are necessary before the starting

of data transfer.

• Case 2a: When t2 < t̂2, l
2a
2
= (t̂2 − t2) + tRCD + tCL.

(2) Now, suppose that tBUS > tRRD such that t̂2 = tBUS . There are again two cases:

• Case 1b: When t2 ≥ t̂2, l
1b
2
= tRCD + tCL.

• Case 2b: When t2 < t̂2, l
2b
2
= (t̂2 − t2) + tRCD + tCL.

Since l1a
2
< l2a

2
and l1b

2
< l2b

2
, the arrival time for pr2 producing the best-case latency occurs when

t2 ≥ t̂2 with t̂2 = MAX(tRRD, tBUS). □

Corollary 2. The latency of pr2 at any given arrival time t2 when t̂2 = MAX(tRRD, tBUS) is given

by:

l2 = MAX(t̂2 − t2, 0) + tRCD + tCL.

t2 ≥ t̂2 in Corollary 2 results in the best-case latency lBEST
2

= tRCD + tCL, while substituting

t2 = 0 will give the worst-case latency lWORST
2

= t̂2 + tRCD + tCL.

Similar to the discussed case of two requests to different banks, we calculate the best and worst-

case latency suffered by any request accessing the DRAM as well as the arrival times that cause

these latencies under all possible scenarios (e.g. different ranks, rows, etc.). Table 2 tabulates these

latencies. We refer to [9] for complete proofs of all these cases.

5 REVERSE-ENGINEERING PROPERTIES OF THE MC

The best- and worst-case latency analysis presented in Section 4 allow us to reverse-engineer

properties of the MC. Using outcomes of this analysis, Figures 7a and 7b depicts the possible latency

values of a memory request for different access patterns. Figure 7a presents l2 bounds for the case

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 M. Hassan et al.

CP: same bk

OP: diff rwOP: diff cl

diff rk
diff bk

Cycles

(a) A sequence with two consecutive reads (test1).
b1 = tCL, b2 = tRCD + tCL, b3 = tRCD + tCL + tBU S ,
b4 = tRCD + tCL + tBU S + tRT RS , b5 = tRP + tRCD +
tCL, and b6 = tRC + tRCD + tCL

CP: same bk

OP: diff rwOP: diff cl

diff rk
diff bk

Cycles

(b) a sequence of two requests: write followed by read
(test2). c1 = tCL, c2 = tRCD + tCL, c3 = tRCD + tCL +
tBU S+tRT RS , c4 = tRCD+tCL+tW L+tBU S+tWTR ,
c5 = tRP + tRCD + tCL and c6 = tRCD + tW L+ tBU S +
tW R + tRP + tRCD + tCL

Fig. 7. The range of possible DRAM latencies for different cases of a two-request sequence. x-axis is the
latency in number of cycles for DDR3-1600 based on Table 1. The corresponding inference rules are depicted
above each range.

ALGORITHM 1: Reverse-engineering page policy and address mapping.

forall i in [0,PW − 1] do
Let test1 = [lr1 = ⟨la1,R⟩, insertNOPs(), lr2 = ⟨flipBit(la1, i),R⟩]

Let test2 = [lr1 = ⟨la1,W ⟩, insertNOPs(), lr2 = ⟨flipBit(la1, i),R⟩]

resetMC();
runTest(test1);
resetMC();
runTest(test2);

end

of two read requests, while Figure 7b presents the l2 bounds for a write followed by a read. bj and c j
in Figures 7a and 7b represent the best- and worst-case bounds for different sequences. We refer to

open- and close-page policies by OP and CP , respectively. We also refer to channels, ranks, banks,

rows and columns by chn, rk,bk, rw and cl , respectively. Figure 8 delineated a flowchart for the

proposed methodology. We perform a step-by-step procedure to reverse-engineer MC properties.

We first reverse-engineer the page policy. Based on the page policy, we reverse-engineer the address

mapping implemented by the MC. Finally, using knowledge about both page policy and address

mapping, we reverse-engineer the command arbitration scheme.

5.1 Reverse-engineering page policy

We use two tests to reverse-engineer both the page policy, and the address mapping. The first test

performs two consecutive reads, while the second test consists of a write request followed by a

read request. Both these tests are a sequence of two logical requests, lr1 followed by lr2 (which the

MC will translate to pr1 and pr2, respectively) as shown in Algorithm 1. The function flipBit(addr ,

bitPos) takes as input a logical/physical address (addr) and a bit position (bitPos), and returns a

logical/physical address that differs from the input logical/physical address by a single bit position

defined by bitPos. Therefore, logical address la2 differs from la1 by a single bit position (ith bit).

Recall that we use the best-case and worst-case latencies to reverse-engineer the MC properties.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:11

RR

Step3: Arbitra tion

Step 2. Address Mapping

start

Step1. Page Policy Alg. 1

PP is CP
or HP

PP is OP
or HP

Alg. 2 Alg. 2

PP is HP PP is CPPP is OP

XOR
Mapping

Alg. 3

Alg. 4

Alg. 5

Alg. 6

group bits

FR-FCFS

FR-FCFS

May be FCFS

Write Buffer Depth

threshold

i is col
or rw bit

i is bnk bit

i is rnk bit

i is ch bit

i is col bit

i is rw bit

i is bnk bit

i is rnk bit

i is ch bit

I3 I1 or I2

 i < PW-1

 i < PW-1i++ i++

i=0i=0

I4 I4

I8

I5

I6

I7 I11

I9

I10

I12

I13

I14

exposed information

inference rule

algorithm

NN

NN

N

N

N

N

N

N

N

N

N

N

N

N

Y

Y

Y
Y

Y

Y

Y

Y Y

Y

Y

Y

YY

Fig. 8. Reverse-engineering process.

In order to achieve such latencies, we manage the delay between the arrival times of the memory

requests to the MC. We achieve this management by inserting a number of NOP instructions be-

tween the requests (insertNOPs() function). We execute the tests and record the observed latencies.

We repeat this for PW number of times to record the latencies observed for each bit of the logical

address. Based on the latency analysis, we present inference rules for reverse-engineering the page

policy and address mapping.

We denote the latency of the second request with the ith bit flipped as l i
2
. Then, the following

inference rules reverse-engineer the page policy.

(I1) ∃i ∈ [0,PW − 1] : b4 < l i
2
< b5 ⇒ close-page

(I2) ∃i ∈ [0,PW − 1] : b1 ≤ l i
2
< b2 ⇒ open-page

(I3) ∀i ∈ [0,PW − 1] : l i
2
= b2 ⇒ close-page

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 M. Hassan et al.

It is clear from Figure 7a that the ranges used in I1 and I2 do not overlap with any other range.

Therefore, we can reverse-engineer the page policy. If the observed latencies do not satisfy the

conditions of I1, I2, and I3, we repeat the tests with different number of NOP instructions. One key

observation we make from Figures 7a and 7b is that the close-page policy has a fixed best-case

latency. I3 states that if the observed l2 is fixed for all bits and equal to tRCD + tCL cycles, then the

page policy is close-page. This occurs when the second request always arrives after t̂2 for all cases.

5.1.1 Hybrid-page policy. AMC implementing a hybrid-page policy dynamically adapts to either

close-page or open-page behaviour based on the access pattern in order to maintain a standard of

performance [18]. This is achieved by maintaining row hit and miss counters that keep track of

the number of requests targeting open rows and requests targeting conflicting rows, respectively.

In order to detect hybrid-page policy implementations, an additional test is necessary, which is

shown in Algorithm 2. test3 is a sequence of 3n requests; the [1,n] and [2n + 1, 3n] requests target

different rows to the same bank, while the [n + 1, 2n] requests target different columns to the same

row, and bank. n is a sufficiently large number to influence the row-hit and miss counters that

are checked by the MC to adjust the page policy. We execute Algorithm 2 after having an initial

decision on the page policy whether it is open- or close-page. If the MC implements a hybrid-page

policy, it gradually adapts to close-page policy upon executing the [1,n] requests to reduce the

DRAM access latency as they target different rows to the same bank. Afterwards, the MC adapts

from close-page policy to open-page policy on executing the next [n + 1, 2n] requests to reduce the

access latency of the requests targeting the same row. Finally, it switches back again to close-page

policy upon executing the last [2n + 1, 3n] requests as they target conflicting rows. From Figure 7a,

if the MC implements a close-page policy, the minimum access latency of a request is b2. On the

other hand, it implements open-page policy, the minimum access latency of a request targeting a

row different from the row opened in the row buffer is b5. Hence, if there exists access latencies

that are below b5 and b2, then the page-policy implemented is hybrid-page policy. Inference rule I4
is based on these observations for reverse-engineering hybrid-page policy. Furthermore, I4 also

detects the size of the hit (Nhit) and miss (Nmiss) counters that are used to decide which policy

to execute at any certain cycle. It is worth noting that I4 does not use the first [1,n] sequence of

requests. Nonetheless, the [1,n] sequence is necessary to force the MC to switch to a known policy

(close page); hence, no assumption is needed regarding which initial policy the MC starts with

upon reseting.

(I4) ∃k ∈ [n + 1, 2n],∃l ∈ [2n + 1, 3n] : (lk < b2 ∧ lk−1 > b2) ∧ (ll < b5 ∧ ll−1 > b5) ⇒

hybrid-page ∧
(
Nhit = k − (n + 1)

)
∧
(
nmiss = l − (2n + 1)

)

5.2 Reverse-engineering the address mapping

Based on the reverse-engineered page policy, we reverse-engineer the address mapping scheme as

follows.

Open-page or Hybrid-page. Assuming that the page policy inferred is open-page or hybrid-page,

the address mapping scheme is reverse-engineered in the following way.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:13

ALGORITHM 2: Reverse-engineering hybrid-page policy.

Let lr j = ⟨laj ,R⟩, j ∈ [1,n] where: (bnkl = bnkm) ∧ (rwl , rwm), ∀l ∀m ∈ [1,n]

Let lrk = ⟨lak ,R⟩, k ∈ [n + 1, 2n] where: (bnkl = bnkm) ∧ (rwl = rwm), ∀l∀m ∈ [n + 1, 2n]

Let lrl = ⟨lal ,R⟩, l ∈ [2n + 1, 3n] where: (bnkl = bnkm) ∧ (rwl = rwm), ∀l∀m ∈ [2n + 1, 3n]

Let test3 = [lr1, insertNOPs(), ..., lrn , insertNOPs(), lrn+1, insertNOPs(), ..., lr2n ,

insertNOPs(), lr2n+1, insertNOPs(), ..., lr3n]

resetMC();
runTest(test3);

(1) Column and row bits: It can be observed from Figure 7a that the access latency range on

executing test1 for column and row bits do not overlap, resulting in the following inferences.

(I5) ∀i ∈ [0,PW − 1] : b1 ≤ l i
2
< b2 ⇒ i is a column bit.

(I6) ∀i ∈ [0,PW − 1] : b5 ≤ l i
2
≤ b6 ⇒ i is a row bit.

(2) Rank, bank and channel bits: Rank and bank bits are inferred using test2 of Algorithm 1. A write

followed by a read request that target different banks to the same rank causes the MC to reverse

the direction of the shared data bus. This switching overhead distinguishes the worst-cast access

latencies of requests targeting different banks in the same rank from those targeting different

ranks. Inference rules I7 and I8 are based on this observation. The channel bits are simply the

remaining bits.

(I7) ∀i ∈ [0,PW − 1] : (i is not a column bit) ∧ (c3 < l i
2
≤ c4) ⇒ i is a bank bit.

(I8) ∀i ∈ [0,PW − 1] : (i is not a column or bank bit) ∧ (c2 < l i
2
< c3) ⇒ i is a rank bit.

Close-page. Suppose the MC implements close-page policy.

(1) Column and row bits: From Figure 7a, the access latency range between b4 and b5 is unique

to close-page policy and moreover, unique to either a row or column access under close-page

policy. Inference rule I9 uses this observation to reverse-engineer the row or column bits.

(I9) ∀i ∈ [0,PW − 1] : b4 < l i
2
< b5 ⇒ i is a row or column bit.

This inference implies that under close-page it is not possible to distinguish between row

and column bits if the address mapping scheme places them successively. For instance, the

row and column bits cannot be distinguished for the following address mapping scheme

⟨chn, rw, cl , rk,bk⟩. However, they are distinguishable for the following address mapping

scheme ⟨chn, rw, rk,bk, cl⟩.

(2) Rank, bank and channel bits: We use test2 to reverse-engineer the rank, bank and channel bits

for the reason explained in the open-page policy as depicted using inference rules I10 and I11.

The remaining bits are the channel bits.

(I10) ∀i ∈ [0,PW − 1] : (i is not a column or row bit) ∧ (c3 < l i
2
≤ c4) ⇒ i is a bank bit.

(I11) ∀i ∈ [0,PW − 1] : (i is not a column, row or bank bit) ∧ (c2 < l i
2
< c3) ⇒ i is a rank bit.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 M. Hassan et al.

ALGORITHM 3: Reverse-engineering XOR address mapping.

forall i, j in IBB do
Let test1 = [lr1 = ⟨la1,R⟩, insertNOPs(), lr2 = ⟨flipBit(flipBit(la1, i), j),R⟩]

where j , i

resetMC();
runTest(test1);
resetMC();

end

Table 3. Results of XORing different bank and row bits.

req
original XORed new

access pattern
row bank row bank

r1 101 001 101 100
Row conflictr2 100 000 101 100

r1 101 001 101 100
Different bankr2 111 000 111 111

r1 101 001 101 100
Different bankr2 101 010 101 111

5.2.1 XOR address mapping. To reduce high access latencies for requests targeting different

rows to the same bank, some modern MCs employ XOR bank interleaving [19, 26, 45] to convert

some of the requests targeting different rows to the same bank to requests targeting different banks.

XOR bank interleaving is achieved by performing an XOR operation between the bank bits and an

equivalent number of row bits. This results in more bank bits exhibiting similar access latencies on

executing test1 and test2 of Algorithm 1. Since the number of bits of each group (channel, rank,

bank, row and column) is based on the DRAM topology and size, the following inference rule

detects an XOR address mapping. Initial bank bits (IBB) refer to the bits detected by inference rule

I7 or I10 as bank bits.

For a MC with XOR address mapping between bank and row bits, it is not possible to detect

which bits of IBB actually map to the bank bits. This is because all IBB bits result in the same latency.

Nonetheless, it is possible to classify IBB into two groups. One of these groups is the bank bits and

the other one is the row bits; however, without being able to decide which group represents the

bank bits. Algorithm 3 achieves this classification by issuing two requests, lr1 and lr2. lr2 differs

from lr1 in only two bits out of IBB, i and j . As Inference I13 highlights, if the latency of the second

request, l i, j
2

is such that the two requests have a row conflict, then i and j belong to two different

groups, i.e. one of them is a bank bit and the other one is a row bit. The intuition behind this

decision is that XOR (i, j) = XOR (ī, j̄). Accordingly, flipping i and j results in mapping lr2 to the

same bank; hence, these two bits are XORed together by the MC. Table 3 further illustrates this

conclusion by showing some examples.

(I12) ∀i ∈ [0,PW − 1] : IBB ≥ BKW⇒ XOR mapping

(I13) ∀i, j ∈ IBB : l i, j
2
> b3 ⇒ (i is a bank bit ∧ j is a row bit) ∨ (i is a row bit ∧ j is a bank bit)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:15

ALGORITHM 4: Reverse-engineering arbitration schemes.

Let lr1 = ⟨la1,o1⟩, lr2 = ⟨la2,o2⟩, and lr3 = ⟨la3,o3⟩

Let test5 = [lr1, insertNOPs(), lr2, insertNOPs(), lr3]

where: (bnk1 = bnk2 = bnk3) ∧ (rw1 = rw3 , rw2)

Let test6 = [lr1, insertNOPs(), lr2, insertNOPs(), lr3]

where: (bnk1 = bnk2 , bnk3) ∧ (rw1 , rw2 , rw3)

resetMC();
runTest(test5);
resetMC();
runTest(test6);

5.3 Reverse-engineering the command arbitration scheme

Based on the page policy and address mapping scheme inferred from steps 1 and 2, we reverse-

engineer three common arbitration schemes First-In-First-Out (FIFO), Round Robin (RR) and First-

Ready-First-Come-First-Serve (FR-FCFS) using the following procedure. Algorithm 4 uses two tests

denoted as test5 and test6 to reverse-engineer the arbitration scheme. In test5, lr1 and lr3 target

the same rank, bank, and row, and lr2 targets a different row to the same rank and bank. In test6,

lr1 and lr2 target different rows to the same rank and bank, and lr3 targets the same rank, but

a different bank. These tests are designed based on the characteristics of the above mentioned

command arbitration schemes, and can be inferred based on the reordering of data returned by the

MC due to these requests. We execute the tests, and record f1, f2 and f3.

(1) FR-FCFS and RR: We use the results from the tests to define the following inference rules.

(I14) When using test5, (f3 < f2) ⇒ scheme is FR-FCFS.

(I15) When using test6, (f3 < f2) ⇒ scheme is RR.

I14 states that if the data transfer for lr3 begins before that of lr2, then the MC implements

FR-FCFS. This is because FR-FCFS favours requests accessing the open row. I15 indicates that

f3 < f2 happens when the MC selects lr3 over lr2 after servicing lr1 because the MC grants

access to a request accessing a bank that is different than that of lr1’s. This shows that the MC

implements RR between banks.

(2) FIFO: If the observed finish times are in FIFO order f1 < f2 < f3, then either the MC implements

FIFO arbitration scheme or the requests arrive to theMC command queue such that the command

for the next request arrives after the first command of the previous request is issued. Therefore,

in order to reverse-engineer FIFO command arbitration scheme correctly, the requests have to

access the MC such that request lr3 arrives to the MC before the issuance of lr2’s first command,

and no re-orderings are observed in both tests.

5.4 Advanced MC features

5.4.1 FR-FCFS threshold. FR-FCFS arbitration prioritizes ready requests (row buffer hits) over

non-ready requests (requests that target different rows). This prioritization decreases the average-

case access latency to the DRAM; nonetheless, it starves the non-ready requests. Therefore, MCs

often enforce a hardware threshold to bound the number of consecutively prioritized ready requests.

On achieving this threshold, a PRE command is sent to close the row in the row buffer. We introduce

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 M. Hassan et al.

Algorithm 5 to reverse-engineer this threshold. We issue a sequence of RDY requests that target

the same rank, bank, and row, and increment RDY until a request with latency l2 ≥ b2 is observed.

This occurs only when the row buffer is precharged by the MC due to reaching the threshold set

by the arbitration scheme on the number of row buffer hits to be serviced. Hence, the number of

requests serviced before this latency is inferred as the FR-FCFS threshold.

5.4.2 Write buffer. Since read accesses are more latency sensitive than write accesses, MCs

usually prioritize reads over writes [22]. This is deployed by queuing write accesses in a write

buffer and by designating a threshold for the maximum possible number of writes backlogged in the

buffer. If the number of writes in the buffer is less than this designated threshold, read accesses can

be serviced before write accesses given that the system’s memory ordering model is preserved. It is

important to reverse-engineer if the MC has a write buffer and the size of this buffer, if there is one,

because it will affect the worst-case latency for different request types. For example, the worst-case

access latency of a write request will increase as read requests will have higher priority. We propose

Algorithm 6 to perform this reverse-engineering. test8 is a sequence of large number (n) alternating

write and read requests. Based on the observed arrival (ti) and finish times (fi) of all requests, the

algorithm calculates how many requests are buffered in the write queue at any time instance t

asWrQue (t). In algorithm 6, RdArr (t) (WrArr (t)) is the number of arrived read (write) requests

before t (ti < t and oi = R (W)), and RdDep (t) (WrDep (t)) is the number of finished read (write)

requests before t (fi < t and oi = R (W)). According to the write management policy, if the write

queue stops accepting new write requests when full. In consequence, monitoringWrQue (t) during

execution of test8, the write buffer depth is deduced as its maximum value. Detailed histograms of

arriving and departing write requests are presented in Section 7.

6 POTENTIAL APPLICATIONS
As Table 4 highlights, knowledge of the implementation details of the mainmemory system exposed

by the proposed approach has wide implications on various research fields. A detailed study of

these implications is out side the scope of this paper. However, in this section, we summarize some

of these implications and provide examples of prior research works that utilizes certain knowledge

about MC implementation details.

Architecture Simulators. Architecture simulators are prominently used to validate and evalu-

ate novel policies and compare different approaches. These simulators require a detailed model of

ALGORITHM 5: Reverse-engineering FR-FCFS threshold depth.

Let RDY = 2 be a counter.

repeat
Let lri = ⟨lai ,R⟩, ∀i ∈ [1,RDY]

Let test7 = [lr1, insertNOPs(), lr2, insertNOPs(),, lrRDY]

where: (bnk1 = bnki) ∧ (rw1 = rwi), ∀i ∈ [2,RDY]

resetMC();
runTest(test7);
increment(RDY);

until (∃ l2 : l2 ≥ b2)

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:17

ALGORITHM 6: Reverse-engineering write buffer depth.

test8 = [lr1, insertNOPs(), lr2, insertNOPs(), .., lrn]

where lri = ⟨lai ,W ⟩ and lri+1 = ⟨lai+1,R ⟩ ∀i ∈ [1,n]|i%2 = 1

and bnkm = bnkj , rwm = rw j , and clm , clj ∀m, j ∈ [1,n]

resetMC();
runTest(test8);
At any time instance t :
RdQue (t) = RdArr (t) − RdDep (t)

WrQue (t) =WrArr (t) −WrDep (t)

WQ = max

∀t
(WrQue (t))

Table 4. Applications of the proposed reverse-engineering of MC details.

Research areas examples required knowledge

Architecture simulators

• DRAMSim [36]

All implementation details

• Ramualtor [25]

Performance

• Compiler optimizations [6] Page policy and address mapping

• OS modifications [33] Address mapping

Real-time •WCET analysis [22, 43] All implementation details

embedded systems • Task isolation [42] Address mapping

Security

• DoS [29] Open-page policy with FR-FCFS arbitration

• Rowhammer [24] Address mapping

the hardware architecture to be simulated. There exist a set of DRAM simulators that model state-

of-the-art main memory systems [3, 25, 36]. However, these simulators resemble a subset of the

MC policies, merely because the implementation details of other policies are not publicly available.

Accordingly, the more MC policies that can be reverse-engineered, the more comprehensive and

accurate the simulators will become.

Memory Performance. Memory latency is a critical bottleneck to achieve higher performance

in modern computing systems. Many approaches addressed this issue by proposing compiler

techniques and source-code modifications to increase the memory performance [6, 44]. The main

idea behind these approaches is to layout the data footprint of the application to increase data

locality. Locality is a key factor for memory performance since data blocks that are close to each

other are accessed faster. This is true for caches (e.g. requests to same cache line), and for DRAMs

(e.g. requests targeting same row). However, if the implementation details of the memory hierarchy

are not available, exploiting these locality opportunities is limited. For instance, the aforementioned

approaches [6, 44] focus only on array structures, since they are placed contiguously in the memory

by default. Other approaches proposed OS modifications to map applications to certain DRAM

banks through virtual-to-physical mappings [33]. These approaches assume the knowledge of the

address mapping implemented by the MC.

Real-time Embedded Systems. Real-time platforms consist of memory hierarchies with a

combination of on-chip scratchpads, caches, and DRAMs [31]. It is imperative for the memory

hierarchy to be predictable to allow WCET analysis tools to account for latencies incurred during

memory accesses. Since implementation details are not publicly available, WCET analysis tools

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 M. Hassan et al.

have to consider conservative models of the architecture of the memory hierarchy. Unfortunately,

this leads to pessimistic WCET estimates [43]. Exposing the architecture details of the memory

hierarchy will definitely lead to more realistic and tight WCET estimates for real-time systems

platforms. For instance, state-of-the-art DRAM analysis on COTS platforms [30, 43] assume that all

properties of the MC including the page policy and arbitration are known a priori. They use this

information to provide bounds on memory interferences in multi-core systems. Another potential

direction to mitigate the unpredictability of memory behaviour is to achieve task isolation through

DRAM bank privatization. PALLOC [42] follows this direction by changing the virtual-to-physical

translation in the OS to map tasks to distinct DRAM banks, which requires the knowledge of the

address mapping in the system.

Hardware Attacks. Exploiting the architecture details of the memory system creates new

vulnerabilities or strengthens existing ones in the memory system, which opens the door for hard-

ware attacks. Examples for these attacks include: Denial-of-Service(DoS) [29], Error Injection [24],

Covert- [28], and Side-channel attacks [38]. All these attacks assume certain knowledge about the

MC such as the address mapping, page policy, and arbitration. Addressing these vulnerabilities is

crucial to guarantee system’s security; though, it is not the focus of this work.

In summary, we argue that acquiring the knowledge about detailed implementation of the

memory system opens the door for tremendous applications in various research areas.

7 EXPERIMENTAL EVALUATION

We use the proposed solution in Section 5 to reverse-engineer the MC properties of the Xilinx

Virtex-5 based XUPV5-LX110T development board with an on-board DDR2 memory module.

We implement the algorithms into a testbench that executes on the board’s synthesized MC.

The Xilinx development board enables us to prove the ability of the proposed methodology to

reverse-engineer a real commercial platform; however, since its MC deploys a pre-defined subset of

policies, it does not allow for exploring all the capabilities of the proposed methodology. Therefore,

in addition to the board, we use a simulation framework consists of Macsim [23], an X86 simulator

integrated with DRAMSim2 [36], a comprehensive DRAM simulator. We extend DRAMSim2 to

integrate state-of-the-art MC’s policies to illustrate the capabilities of the proposed methodology

to reverse-engineer them in a multi-core architecture executing high-level programs. Sections 7.1

and 7.2 discuss our findings for the Xilinx board and the simulation framework, respectively.

7.1 Reverse-engineering MC’s properties of the XUPV5-LX110T platform

7.1.1 System specifications. The Xilinx XUPV5-LX110T development system [41] integrates a

256MByte DDR2 memory [27]. The memory module is organized as a single memory rank with 16

data bits per column. The memory controller is generated and synthesized on the board using the

memory interface generator (MIG) [5], which is part of the Xilinx toolchain. Table 5 tabulates the

timing constraints of the DDR2 memory deployed on the board, and the properties of the MC.

7.1.2 Methodology. The XUPV5-LX110T board allows us to configure the memory controller.

Accordingly, we configure the memory controller with certain properties. Afterwards, we test if the

proposed methodology can figure them out. We use MCXplore [11, 12] to generate memory traces

that represent our reverse-engineering algorithms. MCXplore is an open source framework that

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:19

Table 5. DDR2 specifications.

Property Value

of row bits 13

of column bits 10

of bank bits 2

Address mapping scheme All possible permutations (default is rw : bnk : cl)
Page policy Open-page (default) or close-page policy

Command arbitration scheme FIFO

DDR2 operating frequency 267 MHz

Timing constraints in cycles tCL=4, tRCD=4, tRP=4, tRTP=3, tRAS=11, tRRD=3

enables the generation of memory traces with certain DRAM behavior. Then, we integrate these

traces into a synthesizable testbench that is executed on the on-board MC. The testbench generates

a sequence of read and write requests to the MC. These commands are queued into a 32 entry

wide FIFO buffer, from which the MC issues to the DDR2 memory. The board provides a real-time

propoing of MC’s interface signals through a tool called ChipScope Pro. We use ChipScope Pro to

monitor the arrival and finish time of memory requests as defined in Section 4. Recall that test2 in

Algorithm 1 helps in distinguishing between rank and bank bits. Since the on-board DRAM has a

single rank, we execute only test1 and we do not need to run test2.

7.1.3 Results. Figure 9 delineates the obtained results upon executing test1. Given that the

page policy and the address mapping of the MC are configurable, we first use the default address

mapping and run test1 twice, once with the page policy configured as open-page and the other

with close-page. The observed latencies of these two executions are shown in Figure 9a. The CP

configuration in Figure 9a has a fixed latency for all bits. From Inference I3, we deduce that it has a

close-page policy. On the other hand, bits [6, 9] of the OP configuration has a latency of 4, which is

less than tRCD + tCL. Accordingly, using Inference I2, we deduce that it has an open-page policy.

Afterwards, to show the ability of the proposed methodology to disclose the address mapping bits,

we use the MC default settings except for the address mapping, where we experiment with all

allowable permutations of the board. Figure 9b illustrates the monitored latencies for running test1
on each mapping. Table 6 summarizes our findings.

Table 6. Address mapping findings for XUPV5-LX110T.

Map. cl bits bnk bits rw bits

Map1 [6, 9] [10, 11] [12, 24] rw : bnk : cl
Map2 [8, 11] [6, 7] [12, 24] rw : cl : bnk
Map3 [21, 24] [19, 20] [6, 18] cl : bnk : rw
Map4 [19, 22] [23, 24] [6, 18] bnk : cl : rw
Map5 [21, 24] [6, 7] [8, 20] cl : rw : bnk
Map6 [6, 9] [23, 24] [10, 22] bnk : rw : cl

Inference I5 b2 ≤ li ≤ b3 I6

Table 7. System configuration.

Parameter Configuration

Core specifications 3 GHz, 5 stages out-of-order pipeline, 256-entry reorder buffer

Cache specifications L1 I-cache: 4 KB, 8-way 8-set, 64B line size

L1 D-cache: 16 KB, 4-way 64-set, 64B line size

L2 D-cache: 32 KB, 8-way 64-set, 64B line size

DRAM specifications Single channel, 1600 MHz DDR3, 64-bit data bus

BL=8, 2 ranks, 8 banks per rank, 16 KB row buffer size

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 M. Hassan et al.

0
2
4
6
8

10
12
14
16
18

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

CP OP

(a) Default mapping (Map1) and different
page policies.

0
2
4
6
8

10
12
14
16
18

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

Map1 Map2 Map3 Map4 Map5 Map6

(b) Default page-policy (OP) and different
address mappings.

Fig. 9. Latency plots for test1 stimulating the on-board MC of XUPV5-LX110T. OP: open-page policy, and CP:
close-page policy.

To reverse-engineer the command arbitration scheme, we deploy test5 and test6 and observe the

data bus signal. We observe that the order of requests issued by the on-board MC and the order of

data blocks returned by the memory module are identical. Using inferences I13 and I14, we infer

that the command arbitration scheme implemented by the on-board MC is likely a FIFO. Note that

we confirm the correctness of our inferences against reference design guides, and inspecting the

synthesizable MC code design if necessary.

7.2 Evaluation on simulation framework

7.2.1 System specifications. The simulation framework services two purposes in our evaluation.

First, it provides a multi-core architecture executing real C programs. For the Xilinx board, a

fine-grained access to the MC is possible through testbench generators; hence, we can provide our

algorithms in the form of a trace of read and write accesses. Clearly, directly issuing memory traces

is not possible in more complex COTS systems with processing units and cache hierarchy. In these

systems, accessing the DRAM is possible only through high-level programs. Accordingly, we use the

MacSim simulator with a processor, cache hierarchy, and DRAM to emulate such situation, where

we encode our algorithms in high-level C programs. Second, as aforementioned, the simulator

is flexible to modify; thus, we extend it by integrating a wide set of state-of-the-art MC policies.

Tables 1 and 7 show the DRAM memory module specifications and processor configurations,

respectively. We deploy the targetted policies into three MC configurations: MC A, MC B, and MC

C. Table 8 tabulates the properties of each MC.

7.2.2 Methodology. We implement the reverse-engineering algorithms as micro-benchmarks in

C with inline assembly code, which are executed by the processing core. We compile the micro-

benchmarks with no optimization flags to ensure that the reverse-engineering requests are not

optimized in any way that might change the order of requests accessing the DRAM. We execute

Table 8. MC configurations.

Parameter MC A MC B MC C

Address Mapping chn:rw:cl:rk:bk chn:rk:rw:bk:cl chn:rk:rw:cl:bk

Page-policy Close-Page Open-Page Hybrid

Arbitration Round-Robin FR-FCFS FIFO

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:21

0

5

10

15

20

25

30

35
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30La

te
nc

y
(D

R
A

M
 M

C
 c

yc
le

s)

Address bits

MC A MC B MC C

(a) Latency plots for test1

0

10

20

30

40

50

60

70

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

MC A MC B MC C

(b) Latency plots for test2

Fig. 10. Latency plots for page policy and address mapping inference tests.

the memory requests intended for reverse-engineering the MC for a sufficiently large number

of iterations in order to offset the effects of DRAM refreshes, and elicit stable latencies of the

requests intended for reverse-engineering. In addition, we have to ensure that these requests access

the DRAM and are not fetched from the cache. This can be achieved by mutiple ways. Modern

architectures enables bypassing the cache hierarchy through special instructions. For instance, the

x86 ISA provides bypass instructions for reads/writes with no temporal locality [16]. The proposed

reverse-engineering methodology also works for architectures that do not support cache bypassing.

For those architectures, we execute a sequence of memory instructions based on the cache hierarchy

is executed on each iteration such that the reverse-engineering requests are evicted from the cache.

We rely on the methods proposed in [1] to determine the cache structure and replacement policy to

generate the cache eviction requests. After ensuring that the reverse-engineering requests access

the DRAM, we execute the reverse-engineering program and measure the latencies of these requests.

Afterwards, we apply the inference rules proposed in Section 5 on these measured latencies to

reverse-engineer the MC properties.

Recall that the algorithms specified in Section 5 insert NOP instructions between the requests

intended for reverse-engineering to achieve specific access latency ranges necessary to reverse-

engineer the properties of the MC. In addition, we also execute a number of NOP instructions after

performing the cache evict requests in order to ensure that they are completed, and no requests

occupy the store buffer or instruction buffer. The number of NOPs used is determined based on the

frequency scaling factor between the processor and MC, the length of instruction/reorder buffer,

and cache miss penalties. In order to avoid any reordering of reverse-engineering requests by the

requestor, we create data dependencies between the reverse-engineering requests.

7.2.3 Results. Page policy and address mapping. We first reverse-engineer the address map-

ping and page policy implemented by the MC. Figures 10a and 10b show the access latencies for

different MCs on executing test1 and test2 of Algorithm 1 respectively. On executing test1, MCs

B and C implement an open-page policy from inference rule I2 as bits 6-12 and bits 9-15 exhibit

latency equivalent to tCL = 10 cycles. Applying inference rule I3, MC A implements a close-page

policy as all the bits have the same latency (tRCD + tCL cycles) on executing test1. The column

and row bits for the MCs implementing an open-page policy are inferred based on inference rules

I5 and I6 respectively. The column bits for MCs B and C are bits 6-12 and 9-15 respectively, and

the row bits are bits 19-29 and bits 16-29 respectively. The bank and rank bits for all the MCs are

identified by executing test2, and applying inference rules I7 and I8 for open-page policy and I10

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 M. Hassan et al.

0

20

40

60

80

100

120

0 50 100 150 200 250

La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Request #

Different row Different column

(a) Hybrid-page policy.

0

5

10

15

20

25

0 5 10 15 20La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Request #

Latency

(b) FR-FCFS threshold.

Fig. 11. Latency plot for reverse-engineering hybrid-page policy and FR-FCFS.

and I11 for close-page policy respectively. From Figure 10b, the bank bits for MCs A, B, and C are

bits bits 6-8, 13-18, and 6-8 respectively. Note that for MC B, the bank bits are 13-18 and row bits

are 19-29. This contradicts the DRAM memory module specifications of 8 banks or 3 bank bits, and

16K rows or 14 row bits. Applying inference rule I12, the 6 bank bits can be inferred as an XOR

combination of the three bank bits and three lower significant row bits.

Hybrid-page policy. Figure 11a shows the latencies of the reverse-engineering requests for

one iteration on executing test3 of Algorithm 2 for MC C. Note that we execute test3 for all MC

configurations, and show only the MC configuration that exhibited latencies aligning with the

latencies in inference rule I4. Recall that test3 executes a sequence of n requests targeting different

rows in the same bank followed by another sequence of n requests targeting the same row. It is

observed from Figure 11a that some of the initial accesses targeting different rows to the same rank

and bank incur a precharge overhead resulting in an access latency of tRP + tRCD + tCL cycles (30

cycles). However, the page policy adapts to the incoming access sequence and precharges the row

buffer soon after the previous request has completed its operation resulting in subsequent accesses

targeting idle row buffers. This is observed in the change in latency for accesses targeting different

rows to the same rank and bank from tRP + tRCD + tCL to tRCD + tCL cycles (20 cycles). On

executing the next access sequence that target different columns to the same row, bank, and rank,

the latency for the requests remains at tRCD + tCL cycles as the current state of the hybrid-page

policy precharges the row buffer soon after a request has completed it operation. Therefore, despite

accesses targeting different columns to the same rank, bank, and row, each access incurs the latency

of activating the row buffer. Again, the hybrid-page policy adapts to favour the row buffer hits by

delaying the precharge to the row buffer after each access. This is observed in the latency change

for requests in the second access sequence from tRCD + tCL to tCL cycles (10 cycles). On repeating

these two sequences, as Figure 11a shows, MC adapts between close- and open-page policies to

reduce the DRAM access latency. Notice that some requests have access latencies higher than the

possible access latency, which is b6 = 54 cycles. It is likely that these requests arrived when the MC

was refreshing the DRAM banks, and therefore stalled until the refresh completed.

Arbitration Scheme. We execute test5 and test6 and infer the command arbitration scheme by

comparing the order of data returned by the MC with the request order issued to the MC. For MC

A, we observe the same order of requests issued and data returned for test5, but a different order

of data returned and request order for test6. In test6, the first and second request target different

rows to the same bank and rank, and the third request targets a different bank. We notice that

the third request to a bank different from the first two requests of test6 completes earlier than the

second request. From inference I14, we can infer that the command arbitration scheme in MC A is

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:23

30

1

5

550 1250 1950 24500
Time (cycles)

RdArr RdDep RdQue

0
5

10
15
20
25
30
35

#
R

e
q

u
e
st

s

(a) Read requests histogram.

3 4

2

5

550 1250 1950 24500
Time (cycles)

WrArr WrDep WrQue

0
5

10
15
20
25
30
35

#
R

e
q
u
e
st

s

(b) Write requests histogram.

Fig. 12. Write buffer policy.

RR. For MC B, we observe a different order between the returned data and the issued requests for

test5. Recall, that test5 generates three requests to the same bank, with the first and third request

targeting the same row, and the second request targeting a different row. We observe that the third

request is serviced before the second request, which indicates that the MC prioritizes requests to

rows present in the row buffer. This observation aligns with the inference rule I13, and hence MC B

implements FR-FCFS command arbitration scheme. For MC C, the order of data returned by the

MC and the request issue order are the same for both tests. Hence, we infer that the command

arbitration scheme implemented in MC C is FIFO.

FR-FCFS threshold. test7 in Algorithm 5 exposes the threshold enforced by the MC to limit

the number of row buffer hits before pre-charging the row buffer for FR-FCFS arbitration scheme.

The latency plot for this test is shown in Figure 11b. From Figure 11b, the threshold enforced by

the MC is 4 as after every 4 accesses to the same row, bank, and rank, the row buffer is pre-charged.

This results in every n ∗ 4 + 1
th

request to incur the penalty of re-activating the row buffer.

Write buffer policy. As aforestated, contemporary MCs favor reads over writes because read

instructions stall the pipeline, while write instructions do not. They buffer writes in a separate

buffer and schedule them according to various policies. In order to show the ability to demystify

the write buffer information, we integrate the following write management policy in DRAMSim2.

We split the unified transaction queue into two separate queues, one for reads and one for writes.

The write queue has two watermarks: a high watermark, HI , and a low watermark, LO . When the

write queue size,WQ , exceeds the high watermark, the MC services writes until the size drops

to the lower watermark. In addition, writes are serviced when there are no pending reads. We

experimented with a wide variety of values for the watermarks and the write queue size. For clarity,

we show only the results for the case whereWQ = HI = 16, and LO = 0. In addition, we set

the read queue size to 16. In this case, the MC waits for the write queue to fill up before it starts

servicing writes. afterwards, it services writes until the emptiness of the write queue. Figure 12a

shows the histogram of the number of arriving (RdArr), departing (RdDep), and queued (rdQue)

read requests. Figure 12b presents the same data but for the write requests. We calculate the number

of queued requested of one type as the difference between the arriving and departing requests

of that type, rdQue = rdArr − rdDep. Clearly, from both figures, we can infer that both the write

queue size and the read queue size are 16. This is because the maximum value of rdQue and wrQue

is 17, which represents the case of 16 queued requests, while an extra request is being serviced. We

start counting time at stamp 0 , where the first read request arrives. Since the arrival rate of read

requests is higher than the service rate, the read queue fills up quickly at stamp 1 . The first write

request does not arrive until stamp 2 at cycle 526. At stamp 3 , the write queue fills up; hence, the

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 M. Hassan et al.

MC switches to service writes. As a result, we observe at Figure 12a, the RdDep plot saturates at 17.

the 18
th

read request waits until stamp 5 to get serviced. At stamp 4 , all the write requests in the

program have arrived; hence, WrQue starts decreasing until all writes are being serviced at stamp

5. At 5, the MC switches back to service requests from the read queue.

8 CONCLUSION

We investigate opportunities to reverse-engineer properties of DRAM MCs using latency-based

analysis. The analysis provides us with the best and worst-case bounds on access requests to

the DRAM, on which we base our inference rules for reverse-engineering MC properties such as

the page policy, address mapping scheme, and command arbitration scheme. We implement our

algorithms for reverse-engineering these properties into a software tool, and our experimental

evaluation confirms that we can discover the targeted properties of the MCs. An important aspect

we reserve for future work involves collecting a suite of embedded platforms with varying MC

configurations, and evaluating further practical benefits of the proposed work on them.

REFERENCES
[1] Andreas Abel and Jan Reineke. 2013. Measurement-based modeling of the cache replacement policy. IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS).

[2] Benny Akesson, Kees Goossens, and Markus Ringhofer. 2007. Predator: A Predictable SDRAM Memory Controller. In

IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).

[3] Niladrish Chatterjee, Rajeev Balasubramonian, Manjunath Shevgoor, S Pugsley, A Udipi, Ali Shafiee, Kshitij Sudan,

Manu Awasthi, and Zeshan Chishti. 2012. Usimm: the utah simulated memory module. University of Utah, Tech. Rep

(2012).

[4] Clark L Coleman and Jack W Davidson. 2001. Automatic memory hierarchy characterization. In IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS).

[5] Adrian Cosoroaba. 2007. Memory interfaces made easy with xilinx fpgas and the memory interface generator. Xilinx

Corporation, white paper (2007).

[6] Wei Ding, Jun Liu, Mahmut Kandemir, and Mary Jane Irwin. 2013. Reshaping cache misses to improve row-buffer

locality in multicore systems. In IEEE international conference on Parallel architectures and compilation techniques

(PACT).

[7] Sven Goossens, Benny Akesson, and Kees Goossens. 2013. Conservative open-page policy for mixed time-criticality

memory controllers. In IEEE Design, Automation Test in Europe Conference Exhibition (DATE).

[8] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. 2018. A comparative study of predictable dram

controllers. ACM Transactions on Embedded Computing Systems (TECS) (2018).

[9] Mohamed Hassan. 2017. Predictable Shared Memory Resources for Multi-Core Real-Time Systems. (2017).

[10] Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. 2015. Reverse-engineering embedded memory controllers

through latency-based analysis. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

[11] Mohamed Hassan and Hiren Patel. 2016. MCXplore: An automated framework for validating memory controller

designs. In IEEE Conference on Design, Automation & Test in Europe (DATE).

[12] Mohamed Hassan and Hiren Patel. 2018. MCXplore: Automating the Validation Process of DRAM Memory Controller

Designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2018).

[13] Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. 2015. A framework for scheduling DRAM memory accesses

for multi-core mixed-time critical systems. In IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS).

[14] Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. 2017. PMC: A Requirement-Aware DRAM Controller for

Multicore Mixed Criticality Systems. ACM Transactions on Embedded Computing Systems (TECS) (2017).

[15] Mohamed Hassan and Rodolfo Pellizzoni. 2018. Bounding DRAM Interference in COTS Heterogeneous MPSoCs for

Mixed Criticality Systems. In ACM SIGBED International Conference on Embedded Software (EMSOFT).

[16] Intel. 2011. Intel 64 and IA-32 Architectures, Software Developer’s Manual, Instruction Set Reference, A-Z. (2011).

[17] Intel. 2017. Intel Memory Latency Checker v3.3. (2017). https://software.intel.com/en-us/articles/

intelr-memory-latency-checker

[18] Intel. 2017. Intel Xeon Processor X5650. (2017). http://ark.intel.com/products/47922.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://ark.intel.com/products/47922

Exposing Implementation Details of Embedded DRAM Memory Controllers 1:25

[19] Bruce Jacob, Spencer Ng, and David Wang. 2010. Memory systems: cache, DRAM, disk. Morgan Kaufmann.

[20] JEDEC. 2008. JEDEC DDR3 SDRAM specifications JESD79-3D. (2008). http://www.jedec.org/standards-documents/

docs/jesd-79-3d

[21] Tobias John and Robert Baumgartl. 2007. Exact cache characterization by experimental parameter extraction. In ACM

International Conference on Real-Time and Network Systems (RTNS).

[22] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan Rajkumar. 2014. Bounding

memory interference delay in COTS-based multi-core systems. In IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS).

[23] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun Lim, and Tri Pho. 2012. Macsim: A

cpu-gpu heterogeneous simulation framework user guide. Georgia Institute of Technology (2012).

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur

Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In

ACM SIGARCH Computer Architecture News.

[25] Y. Kim, W. Yang, and O. Mutlu. 2016. Ramulator: A Fast and Extensible DRAM Simulator. IEEE Computer Architecture

Letters (2016).

[26] Wei-Fen Lin, Steven K Reinhardt, and Doug Burger. 2001. Reducing DRAM latencies with an integrated memory

hierarchy design. In IEEE Symposium on High-Performance Computer Architecture (HPCA). 301–312.

[27] Micron. 2017. Micron DDR2 SDRAM. (2017). https://www.micron.com/products/dram/ddr2-sdram.

[28] Jonathan Millen. 1999. 20 years of covert channel modeling and analysis. In IEEE Symposium on Security and Privacy.

[29] Thomas Moscibroda and Onur Mutlu. 2007. Memory performance attacks: Denial of memory service in multi-core

systems. In USENIX Security Symposium.

[30] OnurMutlu and Lavanya Subramanian. 2014. Research problems and opportunities inmemory systems. Supercomputing

Frontiers and Innovations (2014).

[31] P.R. Panda, N.D. Dutt, and A. Nicolau. 1997. Exploiting off-chip memory access modes in high-level synthesis. In

IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[32] M. Paolieri, E. QuiÃśones, F.J. Cazorla, and M. Valero. 2009. An Analyzable Memory Controller for Hard Real-Time

CMPs. IEEE Embedded Systems Letters (ESL) (2009).

[33] Heekwon Park, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H Noh. 2013. Regularities considered harmful:

forcing randomness to memory accesses to reduce row buffer conflicts for multi-core, multi-bank systems. In ACM

SIGPLAN Notices.

[34] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard. 2016. DRAMA: Exploiting

DRAM Addressing for Cross-CPU Attacks.. In USENIX Security Symposium.

[35] Jan Reineke, Isaac Liu, Hiren Patel, Sungjun Kim, and Edward A. Lee. 2011. PRET DRAM Controller: Bank Privatization

for Predictability and Temporal Isolation. In IEEE/ACM International Conference on Hardware/Software Codesign and

System Synthesis (CODES+ISSS).

[36] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate Memory System Simulator. Computer

Architecture Letters (2011).

[37] Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramonian, and Mohit Tiwari. 2015. Avoiding informa-

tion leakage in the memory controller with fixed service policies. In Proceedings of the 48th International Symposium

on Microarchitecture. ACM.

[38] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. 2014. Timing channel protection for a shared memory controller.

In IEEE International Symposium on High Performance Computer Architecture (HPCA).

[39] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. 2010. Demystifying GPU microarchitecture

through microbenchmarking. In IEEE International Symposium on Performance Analysis of Systems Software (ISPASS).

[40] Zheng Pei Wu, Y. Krish, and R. Pellizzoni. 2013. Worst Case Analysis of DRAM Latency in Multi-requestor Systems. In

Real-Time Systems Symposium (RTSS), 2013 IEEE 34th.

[41] UG347 Xilinx. 2011. ML505/506/507 Evaluation Platform User Guide. Document Revision 3, 2 (2011). http://www.xilinx.

com/support/documentation/boards_and_kits/ug347.pdf

[42] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. 2014. PALLOC: DRAM Bank-Aware Mem-

ory Allocator for Performance Isolation on Multicore Platforms. In IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS).

[43] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. 2015. Parallelism-aware memory interference delay

analysis for COTS multicore systems. In IEEE Euromicro Conference on Real-Time Systems (ECRTS).

[44] Yuanrui Zhang, Wei Ding, Jun Liu, and Mahmut Kandemir. 2011. Optimizing data layouts for parallel computation on

multicores. In IEEE conference on Parallel Architectures and Compilation Techniques (PACT).

[45] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. 2000. A permutation-based page interleaving scheme to reduce

row-buffer conflicts and exploit data locality. In ACM/IEEE international symposium on Microarchitecture (MICRO).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.

http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.micron.com/products/dram/ddr2-sdram
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf

