
Real-Time Systems
https://doi.org/10.1007/s11241-019-09338-8

Reduced latency DRAM for multi-core safety-critical
real-time systems

Mohamed Hassan1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Predictable execution time upon accessing shared memories in multi-core real-time
systems is a stringent requirement. A plethora of existing works focus on the anal-
ysis of Double Data Rate Dynamic Random Access Memories (DDR DRAMs), or
redesigning its memory to provide predictable memory behavior. In this paper, we
show that DDR DRAMs by construction suffer inherent limitations associated with
achieving such predictability. These limitations lead to (1) highly variable access laten-
cies that fluctuate based on various factors such as access patterns and memory state
from previous accesses, and (2) overly pessimistic latency bounds. As a result, DDR
DRAMs can be ill-suited for some real-time systems that mandate a strict predictable
performance with tight timing constraints. Targeting these systems, we promote an
alternative off-chip memory solution that is based on the emerging Reduced Latency
DRAM (RLDRAM) protocol, and propose a predictable memory controller (RLDC)
managing accesses to this memory. Comparing with the state-of-the-art predictable
DDR controllers, the proposed solution provides up to 11× less timing variability and
6.4× reduction in the worst case memory latency.

Keywords DRAM · RLDRAM · Latency · Memory · Real-time systems ·
Safety-critical systems

1 Introduction

With the Internet-of-Things (IoT) revolution, real-time systems are unprecedentedly
becoming ubiquitous in our daily life. Examples include healthcare devices, automo-
tive, and smart power grids. In these systems, a failure can result in severe consequences
such as loss of lives. This failure is possible not only by incorrect functionality, but

B Mohamed Hassan
mohamed.hassan@mcmaster.ca

1 Electrical and Computer Engineering Dept., McMaster University, ITB A318, 1280 Main Street
West, Hamilton, ON L8S 4K1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-019-09338-8&domain=pdf
http://orcid.org/0000-0001-5926-5861

Real-Time Systems

also by violating temporal requirements. Accordingly, a detailed worst-case execution
time (WCET) analysis (statically or experimentally) of a real-time task’s execution is
necessary to ensure satisfying the task’s temporal requirements. Hardware components
have to follow a predictable behavior to allow for this analysis. Unfortunately, conven-
tional computing systems are not designed to be predictable. Numerous architectural
optimizations such as deep pipelines, branch prediction, and aggressive reordering
aim to provide high performance at the expense of immense timing variability. Since
failures in real-time systems have to be avoided at all costs, hardware architecture has
to be reconsidered to account for predictability in the first place.

Considering off-chip main memory, which is a critical component of most com-
puting systems (Mutlu and Subramanian 2014), we find that Double Data Rate
Dynamic Random Access Memories (DDR DRAMs) or simply (DDRx1) are the
most used nowadays. This is because they provide a low-cost, a high-capacity, and a
high-bandwidth solution for performance oriented systems. Despite the name, DDRx
DRAMs in reality do not provide random access. Their access latency varies notably
based on many factors such as access patterns, transaction type (read or write), and the
DRAM state from previous accesses. Moreover, to further boost DDRx performance
and reduce access latency, memory controllers usually employ complex optimiza-
tions such as multiple reordering levels, prioritizations, and adaptive policies (Hassan
and Pate 2017). These memory controller optimizations along with the variability of
DDRx’s access latency result in highly pessimistic worst case latency (WCL) (Kim
et al. 2014; Yun et al. 2015), which encumbers the deployment of DDRx in real-time
systems. To address this challenge, researchers proposed redesigning thememory con-
troller to provide predictable access to DDRx memories (Akesson et al. 2007; Ecco
andErnst 2015; Ecco et al. 2016, 2014;Goossens et al. 2013;Hassan et al. 2015, 2016;
Jalle et al. 2014; Kim et al. 2015; Krishnapillai et al. 2014; Li et al. 2014; Paolieri
et al. 2009; Reineke et al. 2011; Valsan and Yun 2015; Wu et al. 2013). This approach
helps in reducing the interference latency amongst requests belonging to different
tasks or processing elements (PEs). Nonetheless, it does not reduce the variability in
the access latency of the DDRx itself. This access latency is inherently bounded by
the physical characteristic of the DDRx chips and is enforced by the JEDEC stan-
dard constraints (2018). DDRx internal circuitry by construction targets average-case
performance with complex interactions between DDRx commands and more than 20
timing constraints (Wu et al. 2013). As we show in this paper, this inherent variabil-
ity greatly affects the resulting WCL even when adopting one of the aforementioned
predictable memory controllers in the system. As a consequence, we believe revolu-
tionary solutions have to be devised to provide more predictable memory behavior
with lower WCL for real-time systems.

Towards this target, we make the following contributions.

1. We thoroughly study the variability of DDRx’s access latency and expose its
limitations with regard to real-time systems (Sect. 3).

2. Motivated by these limitations, we explore alternatives to DDRx memories.
Namely, we promote the adoption of Reduced Latency DRAM (RLDRAM) in

1 we use the letter x since observations we make in this paper are generic for any DDR protocol (DDR2,
DDR3, DDR4, etc.).

123

Real-Time Systems

real-time systems. RLDRAM is an emerging DRAM protocol that is currently
led by Micron Technology Inc. (2018a) and provides predictable behavior with
lower access latency compared to DDRx protocols. We illustrate how RLDRAM
can provide a considerable reduction in WCL as well as less access variability,
which establishes themotivation towards adopting RLDRAM in real-time systems
(Sect. 4).

3. To enable this adoption, we propose RLDC: a memory controller design that
predictably manages accesses to the RLDRAM. We also conduct timing analysis
that provides an upper bound on the latency suffered by any memory request upon
accessing the RLDRAM using RLDC (Sect. 5).

4. To show the effectiveness of the proposed solution, we compare with eight of
the state-of-the-art predictable DDRx controllers using representative benchmarks
from the automotive domain. Results show that the proposed solution provides up
to 6.4× reduction in WCL and 11× less latency variability (Sect. 6).

1.1 Extended version

A preliminary version of this paper was proposed in Hassan (2018). Compared to
Hassan (2018), this paper makes the following contributions.

1. We highlight the fact that RLDRAM can be configured to use two addressing
modes. In addition to the non-multiplexed addressingmode used inHassan (2018),
we investigate in this paper the usage of a multiplexed address mode. We thor-
oughly study the effect of both modes on the latency variability as well as access
latency of RLDRAM. We also compare the advantages and disadvantages of each
mode when used in real-time systems.

2. We extend the proposed RLDC controller to enable the usage of both addressing
modes. In addition, we extend the timing analysis (Sect. 5.3) to derive latency
bounds under both addressing modes. We then compare both addressing modes
with regard to the resulting totalWCL guarantees provided by RLDC upon access-
ing RLDRAM (Sect. 6.5).

3. We study the effect of using various possible burst lengths. RLDRAM supports
a burst length of 2, 4 and 8. The evaluation in Hassan (2018) focused on a burst
length of 8. In this paper, we study the effect of different burst lengths on the access
latency of the RLDRAM device (Sect. 4.2.2) as well as on the WCL behavior of
the RLDC controller (Sect. 6.5).

4. The study of the access latency variability of DDRx DRAMs in Hassan (2018)
focused on scenarios incurred by read transactions. For sake of completeness, we
extend this study to include also scenarios incurred bywrite transactions (Sect. 3.2).
This extensions shows thatwrite transactions incur even higher variability in access
latency to DDRx DRAMs than the read transactions.

5. In the study of state-of-the-art predictable DDRx controllers (Sect. 3.3), we detail
the analysis of computing the latency bounds as well as latency variability.

123

Real-Time Systems

2 Related work

Predictable DDRx solutions Existing works focus on providing predictability to
real-time tasks upon accessing DDRx main memories (e.g. Akesson et al. 2007; Ecco
and Ernst 2015; Ecco et al. 2016, 2014; Goossens et al. 2013; Hassan et al. 2015,
2016; Hassan and Pellizzoni 2018; Jalle et al. 2014; Kim et al. 2015, 2014; Krish-
napillai et al. 2014; Li et al. 2014; Paolieri et al. 2009; Reineke et al. 2011; Valsan
and Yun 2015; Wu et al. 2013; Yun et al. 2014, 2015). These efforts follow two
major directions. The first direction is to analyze existing memory controllers used
in conventional high-performance systems to upper bound the latency suffered by
any request upon accessing DDRx main memory (Hassan and Pellizzoni 2018; Kim
et al. 2014; Yun et al. 2015). Following a similar direction, (Yun et al. 2014) targets to
boundDRAM interference in conventional platforms by enforcing bank partitioning at
the operating system level. As aforementioned, these commodity controllers target to
increase average-case performance through complex optimizations at the expense of
predictability. Consequently, the provided bounds by these approaches are pessimistic,
which entails them ill-suited for real-time systems with tight timing requirements. The
second direction is to entirely or partially redesign the memory controller to account
for predictability (e.g. Akesson et al. 2007; Ecco and Ernst 2015, 2017; Ecco et al.
2016, 2014; Goossens et al. 2013; Guo and Pellizzoni 2017; Hassan et al. 2015, 2016;
Jalle et al. 2014; Kim et al. 2015; Krishnapillai et al. 2014; Li et al. 2014; Paolieri
et al. 2009; Reineke et al. 2011; Valsan and Yun 2015; Wu et al. 2013). A comparative
study that highlights strengths and limitations of some of these controllers is proposed
in Guo et al. (2018). Although this approach reduces latency variabilities due to delay
interferences among requests of different tasks, it suffers from the two main draw-
backs. (1) It still suffers from high WCLs due to the complex interactions between
DDRx commands. (2) It can not address the variability in the access latency of the
DDRx chips. We show that access latency variability in DDRx memories severely
affects the predictability of memory requests. We address this problem by promoting
the deployment of RLDRAM emerging memories in real-time systems. We provide a
predictable RLDRAM memory controller with tighter latency bounds and less vari-
ability compared to these DDRx controllers.

RLDRAMRLDRAMmemory is originally targeted at high-speed routers (Micron
Technology Inc. 2018b) and network processing (Toal et al. 2007). Researchers also
envisioned the usage of RLDRAM as a low-latency memory module in a hetero-
geneous memory system to increase overall memory performance (Chatterjee et al.
2012; Phadke and Narayanasamy 2011). To our best knowledge, we are the first to
investigate the usage of RLDRAM in real-time systems.

3 DDRx limitations

We first introduce the basics of the DDRx protocol. Then, we study its limitations with
regard to providing predictability.

123

Real-Time Systems

Fig. 1 DRAM architecture

3.1 DDRx DRAM basics

Figure 1 illustrates the basic structure of DDRx DRAMs. They consist of an array
of memory cells arranged as banks. Cells in each bank are organized in rows and
columns. Multiple banks can construct a logical entity called a rank. Each bank has
sense amplifiers,which also cache themost-recently accessed row in each bank (known
as row buffer). As Fig. 1 shows, the address bits are split into two segments. One
segment is used by the row decoder to determine the requested row, and the other is
used by the column decoder to determine which column to access within this row.
DDRx memories use a multiplexed address mode such that these two segments are
provided to the memory in two steps. First, the row address is provided to activate
the requested row. Then, in a later cycle, the remaining address is provided to index
specific column(s) in the activated row.

Although address multiplexing reduces the pin count of the DDRx chip (and hence
reduces its cost), it increases the access latency as one memory access is now split into
multiple stages. Namely, one access to a DDRx memory can comprise a maximum of
three stages: (1) precharge, (2) activate, and (3) read or write. All these stages have to
be orchestrated by an on-chip memory controller through issuing memory commands.
A precharge command (P) writes back the data in the row buffer into DRAM cells. It
is needed if the access is to a row different than the one in the row buffer. An activate
command (A) fetches the requested row from the cells into the row buffer. Read/Write
commands (R/W) conduct the requested memory operation. The controller also needs
to periodically issue a REF command to negate the charge leakage from the capacitors
that store the data. The effect of REF on predictability is deterministic and is limited
to around 2% of task’s memory latency (Kim et al. 2014). In addition, the majority of
the DDRx controllers do not incorporate this effect on their analysis as they conduct
a per-request analysis, while the REF effect should be incorporated in WCET analysis
at the task level to avoid pessimism (Guo et al. 2018; Hassan et al. 2015). For these
reasons, we do not consider the REF command in this paper.

All commands have strict timing constraints that are dictated by the JEDECstandard
(2018) and must be satisfied by all memory controller designs. Table 1 tabulates the
most relevant timing constraints for DDR3-1600 DRAM. It is worth noting that, in
addition to increasing the access latency, the aforementioned three stages (precharge,

123

Real-Time Systems

Table 1 JEDEC timing constraints (JEDEC DDR3 SDRAM 2018)

Parameter Delay description Cycles

t RCD A to R/W 10

tCCD R to R orW toW (same rank) 4

t RL R to start of data transfer 10

t RP P to A 10

tW L W to start of data transfer 9

t RTW R toW 6

t RT P R to P 5

tWT R End of data transfer of W to R 5

tW R End of data transfer of W to P 10

t RAS A to P 24

t RC A to A (same bank) 34

t RRD A to A (diff bank in same rank) 4

BL/2 Data bus transfer 4 (BL = 8)a

t RT RS Rank to rank switch 1

aBL is the burst length, which indicates the number of data beats to be transferred by one access

activate, and read/write) lead to high variability in access latency. This is because one
request can consist of one, two, or three stages based on the memory state as follows.
(1) If the request targets a row that already exists in the row buffer (denoted as open
row), it only consists of a single stage and the controller issues only either a R or W
command based on the request type. (2) If the request targets a bank that is already
precharged (i.e. does not have an open row in the row buffer), it consists of two stages:
the activate stage to bring the row to the row buffer in addition to the read/write stage.
We say in this case that the request targets a closed row. (3) Finally, if the request
targets a bank that has an open row in the row buffer that is different than the targeted
row by the request, it needs all the three stages and the controller in this case issues
three commands on behalf of that request: P, A, and then R or W. We say in this case
that the request is targeting a conflict row.

Finally, the data bus of the DDRx is bidirectional: same wires are used to both read
from and write to the DRAM. This also increases access latency since the data bus
needs to switch from read to write or vice versa. For instance, in DDR3-1600 devices,
the R-to-W switching delay is 6 cycles, while the W-to-R delay is 18 cycles.

3.2 Predictability considerations

Since predictability is of utmost importance in real-time systems, we investigate in
details the effect of DDRx’s access latency variability on predictability. Predictability
has different definitions in the real-time literature. One important measure of system
predictability is the relative difference between best- and worst-case execution times
(or latencies in case of memories) (Wilhelm et al. 2008). The latency of a memory
request can be anywhere between the best-case latency (BCL) and WCL. To differ-

123

Real-Time Systems

entiate between the effects from the access protocol of the DRAM and the effects
from the scheduling techniques of the controller, we define two latency components:
memory access latency (Definition 1), and total memory latency (Definition 2).

Definition 1 Memory access latency of a request to the DRAM is measured from the
time stamp when the request is elected by the scheduling mechanisms of the controller
to be sent to the memory (i.e. it is at the head of the scheduling queue) until its data
starts the transfer on the data bus.

Definition 2 Total memory latency of a request to the DRAM is measured from its
arrival at the memory controller until the start of its data transfer.

Memory access latency accounts only for time consumed by the request itself to
perform the access including delays suffered due to the current state of the memory
(i.e. remaining timing constraints from previously issued requests). In contrast, total
memory latency accounts for delays due to both arbitration decisions at the memory
controller aswell as the access latency to theDRAM. Since the target of this subsection
is to study the predictability of the DRAM device itself and not the controller, we
eliminate any scheduling-specific effects induced by the controller. Therefore, we
focus only on the access latency as per Definition 1. The controller’s scheduling
effects on predictability is discussed in Sect. 3.3. To obtain best- andworst-caseDRAM
access latencies, we study all possible access scenarios and their corresponding access
latency. Then, to quantitatively measure the DRAM predictability, we define the term
variability window in Definition 3.

Definition 3 Variability window of a latency component, VW , is a measure of the
possible variations in the value of this component and is computed as the percentage
increase from the best (BCL) to theworst case latency (WCL) values of this component.

VW = WCL − BCL

BCL
× 100 (1)

In DDRx memories, many factors determine the access latency of the request such
as (1) the DRAM state from previous accesses, (2) the data bus direction based on the
type of the current and previous transactions (read orwrite), and (3) the request address
(i.e. targeted rank, bank, and row). Figures 2 and 3 illustrate the variability in the access
latency by dictating example access scenarios that exhibit the effects from one or more
of these factors.Bothfigures consider a sequence of two consecutive requests accessing
DDRx. Using a sequence of two requests instead of just one request is necessary to
show the case for delays due to the change of the DRAM state caused by commands
of a previous request. The second request with subscript 1 in the figure is the request
under consideration, while the first request (with subscript 0) is the previous request.
Figure 2 delineates command interactions for the considered request being a read,
while the scenarios for a write transaction are delineated in Fig. 3. The chart in the
upper right of Figs. 2 and 3 delineates the access latency of the considered request
for each scenario, while the table briefly explains the scenarios. As per Definition 1,
access latency is measured from the arrival of the considered request at the head of

123

Real-Time Systems

the queue at cycle 0, until the start of its data transfer (DATA1). Complying with the
majority of the commodity as well as predictable DRAM controllers, we assume that
once the DRAM started executing one command of a request, it cannot be preempted,
and commands from different requests can be pipelined to increase performance. The
specific clock cycle values in Figs. 2 and 3 reflect the timing constraints of DDR3-
1600 as tabulated in Table 1; however, the general scenarios apply for all DDRx
devices since the basics of the access protocol remain the same. Since both a read
request (Fig. 2) and a write request (Fig. 3) encounter similar access scenarios and
the only differences are in timing constraints. In the following subsections, we focus
on detailing the access scenarios for only the read request in Fig. 2. Afterwards, we
compute BCL, WCL, and VW for both the read and the write transactions.

3.2.1 Targeting an open row

Figure 2a–e represent scenarios in which the considered request targets a row that is
already open in the row buffer. Accordingly, the request does not need the precharge
nor the activate stages, and only issues a R command. Figure 2a depicts the best
case scenario: in addition to targeting an open row, R1 satisfies all timing constraints
upon arrival; hence, the controller issues R1 immediately. DRAM takes t RL cycles to
place the data into the data bus. In Fig. 2b, R1 arrives directly after the memory has
serviced another read, R0, to a different rank; accordingly, R1 has to be delayed by
BL/2+ t RT RS cycles. This is because data transfers from different ranks according
to the standard has to be separated by the rank switching latency of t RT RS cycles.
Similarly, in Fig. 2c, arrives directly after the memory has serviced another write,W0.
Therefore, R1 has to be delayed by tW L + BL/2 + t RT RS − t RL cycles.

In Fig. 2d, R1 arrives directly after the memory has serviced R0 to the same rank
(either same bank or not). According to the JEDEC standard, it has to be delayed by
tCCD cycles before conducting the access. R1 in Fig. 2e is further delayed by the data
bus turnaround time. Since the DRAM bus is bidirectional, certain delay has to elapse
between every two successive requests of different types to same rank. R1 arrives after
a write request, W0, to same rank; thus, it has to be delayed by a W-to-R delay of
tW L + BL/2 + tWT R cycles.

3.2.2 Targeting a closed row

In Fig. 2f–j, the considered request targets a closed row. Accordingly, it consists of A1
andR1 commands. In Fig. 2f, the request arrives such that all timing constraints invoked
due to previous requests are already satisfied. Therefore, the controller immediately
issues A1 at cycle 0, waits for the row to be activated (t RCD cycles), and then issue
the R1 command at cycle 10. In Fig. 2g, h, the request arrives while the memory is
servicing a request to a different rank. A1 is still issued immediately since the standard
does not impose constraints among A commands to different ranks. However, R1 has
to wait for additional delays due to this previous request. In Fig. 2g, it has to wait for
BL/2 + t RT RS cycles after R0 similar to Fig. 2d, while in Fig. 2h, it has to wait for
tW L + BL/2 + t RT RS − t RL cycles after W0 similar to Fig. 2e. In Fig. 2i, j, the
request arrives while the memory is servicing a previous request to a different bank in

123

Real-Time Systems

Fig. 2 Different DDRx access scenarios based on the arrival time of the request and the state of the memory
from the directly previous request. The considered request is a read and arrives at the head of the queue at
time 0. Timing constraints are relatively scaled based on JEDEC standard for DDR3-1600 (2018) (Table 1),
with a clock of 1.5ns. Subscripts are for request numbers. Latency is measured from arrival to the start of
data transfer [latency for (a) is 10 cycles or 10 × 1.5 = 15 ns]

123

Real-Time Systems

Fig. 3 Different DDRx access scenarios based on the arrival time of the request and the state of the memory
from the directly previous request. The considered request is a write and arrives at the head of the queue at
time 0. Timing constraints are relatively scaled based on JEDEC standard for DDR3-1600 (2018) (Table 1),
with a clock of 1.5ns. Subscripts are for request numbers. Latency is measured from arrival to the start of
data transfer [latency for (a) is 9 cycles or 9 × 1.5 = 13.5 ns]

123

Real-Time Systems

same rank. In this case, A1 and A0 has to be separated by t RRD cycles in addition to
the aforementioned timing constraints related to R1.

3.2.3 Targeting a conflict row

Figure 2k–o are for a request that targets a conflict row, and thus, consists of P1,
A1, and R1. In Fig. 2k, the request satisfies all timing constraints upon arrival. The
controller immediately issues P1 at cycle 0 to precharge the existing row in the row
buffer, an operation that consumes t RP cycles. Afterwards, it issues the A1 command
to activate the row, and then issues R1 after additional t RCD cycles. In Fig. 2l, m,
the request arrives one cycle after the memory controller issued A0 command of a
previous request to a different row in the same bank. This previous request is a read
in Fig. 2l. Consequently, P1 is delayed by t RAS − 1 cycles. On the other hand, in
Fig. 2m, the previous request is a write. Hence, P1 cannot be issued before tW R cycles
after writing the data of that previous request. Fig. 2n and o are similar to Fig. 2l and
m, respectively. However, the considered request arrives directly after a P0 command
instead of a A0. Therefore, P1 is further delayed by extra t RP cycles.

3.2.4 Variability window for the read request

While Fig. 2a represents the best-case scenario for the two-request sequence with the
access latency of the considered read request being 10 cycles, Fig. 2o represents the
worst-case scenario with access latency of 72 cycles. As the chart in Fig. 2 highlights,
the resulting variability window is 620%.

3.2.5 Variability window for the write request

Similar to the read request case, the scenario in Fig. 3a represents the best case where
the write request suffers an access latency of tW L = 9 cycles, while the scenario
in Fig. 3o represents the worst case with access latency of 71 cycles. Therefore, the
resulting variability window for the write request is 688.9%, which is even higher than
the variability window of the read request case.

3.2.6 A concluding remark

From this detailed discussion, it is obvious that the variability window for DDR
DRAMs is significantly high, which makes achieving predictability in DRAM a chal-
lenging task. Moreover, this value does not include the variability of the memory
controller behavior. When considered, the variability window is expected to further
increase since thememory controller scheduler accounts for largenumber of arbitration
decisions. Examples include prioritizing requests from certain processing elements
over the others, arbitrating based on transaction type (read vs write), and scheduling
based on request addresses such as per-rank and per-bank arbitration. As we show in
the next subsection, even state-of-the-art DDRx controllers aimed at real-time systems
suffer significant variability in memory latency.

123

Real-Time Systems

3.3 Variability window in predictable memory controllers

We study both analytically and empirically the memory behavior of the state-of-the-
art predictable memory controllers: AMC Paolieri et al. (2009), PMC Hassan et al.
(2015), RTMem Li et al. (2014), DCmc Jalle et al. (2014), ORP Wu et al. (2013),
MCMC Ecco et al. (2014), ROC Krishnapillai et al. (2014), and ReOrder Ecco and
Ernst (2015), Ecco et al. (2016). In this section, we discuss the analytical results, while
we discuss the empirical results in the evaluation section (Sect. 6). From Definition 3,
to compute VW for each of the eight DDRx controllers, we need to compute both
WCL and BCL.

3.3.1 Worst-case latency

For theWCL,we use the generalizedmodel provided inGuo et al. (2018). In particular,
we use Eqs. 2 and 3 from Guo et al. (2018) for open- and close-page controllers
(replicated by Eqs. 2 and 3 in this report), respectively. HR is the row hit ratio of the
task. Hit ratio is the percentage of requests accessing a row that is already existing in
the row buffer. REQr is either the number of PEs sharing the same rank as the PE
under analysis (for controllers with rank support), or the total number of PEs in the
system (for controllers without rank support). The terms BasicAccess, RowAccess,
Interference, and RowInter are controller dependent and are defined in Table 2 (a
replication of Table 3 in Guo et al. (2018)). In Table 2, BI determines the number
of banks accessed by a request, BC determines the number of read (R) or write (W)
commands generated for each bank, while R represents the number of ranks.

LatencyReq = BasicAccess + Interference · (REQr − 1) (2)

LatencyReq = (BasicAccess + RowAccess · (1 − HR))

+ (Interference + RowInter · (1 − HR)) · (REQr − 1) (3)

In this section, we derive the VW for a system with four PEs. For controllers aimed
at multi-rank DRAMs (MCMC, ROC, and ReOrder), we calculate the VW for a 4-
rank memory system (R = 4 in Table 2). Accordingly, in Eqs. 2 and 3, as well as in
Table 2: REQr = 4 for controllers that do not support multi ranks, while REQr = 1
for controllers supporting multi ranks. It is worth noting that PMC has a new version
that supports multi-ranks (Hassan et al. 2016); however, this analysis only covers the
version with no multi-rank support in Hassan et al. (2015). For controllers that require
knowledge about the hit ratio (DCmc, ORP, ROC, and ReOrder), we assume a hit ratio
of HR = 35%. Computing the WCL for different number of ranks or different hit
ratios is not the focus of this paper and is already studied in the the corresponding
papers of these controllers as well as in the comparative study in Guo et al. (2018).
Finally, we derive the analysis for a single memory access (i.e. BI = 1 and BC = 1).
Based on all these substitutions as well as the timing constraints for DDR3 shown in
Table 1, we delineate the analytical WCL in Fig. 4.

123

Real-Time Systems

Ta
bl
e
2

M
C
ge
ne
ra
le
qu

at
io
n
co
m
po

ne
nt
s
(K

(c
on

d)
eq
ua
ls
1
if
co
nd

is
sa
tis
fie
d
an
d
0
ot
he
rw

is
e)

R
ow

In
te
r

In
te
rf
er
en
ce

B
as
ic
A
cc
es
s

R
ow

A
cc
es
s

A
M
C

N
A

(15
·K

(
B
I

=
8)

+
42

)
·B

C

(15
·K

(
B
I

=
8)

+
42

)
N
A

PM
C
R
T
M
em

N
A

K(
B
C

=
1)

·((1
5
·

K(
B
I

=
8)

+
42

))
+

K(
B
C

>

1)
·((4

·B
C

+
1)

·B
I

+
13

+
4

·K
(
B
I

=
8)

)

K(
B
C

=
1)

·((1
5
·

K(
B
I

=
8)

+
42

))
+
K(

B
C

�=
1)

·((4
·B

C
+

1)
·B

I
+

13
+

4
·K

(
B
I

=
8)

)

N
A

D
C
m
c

0
28

·B
C

13
·B

C
18

O
R
P

7
13

·B
C

19
·B

C
+

6
27

R
eO

rd
er

7
+

3
R

8
R

·B
C

(8
R

+
25

)
·B

C
33

+
3
R

R
O
C

3
·R

+
6

(3
·R

+
12

)
·B

C
(3·R

+2
4) ·B

C
+6

3
·R

+
27

M
C
M
C

N
A

Sl
ot

· R
·B

C
Sl
ot

·R
·B

C
+
22

W
he
re

Sl
ot

=

⎧ ⎪ ⎨ ⎪ ⎩

42
/
P
E

if
(
R
E
Q
r

≤
6)

∧(
R

≤
2)

9
if
(
R

=
2)

∧(
R
E
Q
r
>

6)

7
O
th
er
w
is
e

N
A

FR
-F
C
FS

0
22

4
·B

C
24

·B
C

18

123

Real-Time Systems

Fig. 4 Worst-case analytical latencies for the DDRx controllers for DDR3-1600 (1 cycle = 1.5 ns)

Fig. 5 Best-case analytical latency for the DDRx controllers with open-page policy for DDR3-1600
(1 cycle = 1.5 ns)

Fig. 6 Best-case analytical latency for the DDRx controllers with close-page policy for DDR3-1600
(1 cycle = 1.5 ns)

3.3.2 Best-case latency

We compute the BCL assuming the considered request does not suffer from any addi-
tional delays due to other requests. In other words, the BCL is due to timing constraints
for only commands of the request under analysis. We have two cases, based on the
controller type. For open-page controllers, in best case, a request will consist of a
single R (or W) command. Therefore, the data will start transferring on the bus as
soon as the corresponding t RL (or tW L) constraint is satisfied. From the JEDEC
DDR DRAM standard [e.g. for DDR3 (2018) as shown in Table 1] , tW L ≤ t RL .
Therefore, in best case the request is a W request. Figure 5 delineates this scenario.
Accordingly, the BCL for open-page controllers is computed as

BCLOpen = tWL = 9 cycles = 13.5 ns.

On the other hand, for close-page controllers, the request has to startwith anActivate
(A) command followed by a write commandW after t RCD cycles. Figure 6 illustrates
this scenario. Hence, the BCL for close-page controllers is computed as

BCLClose = tRCD + tWL = 19 cycles = 28.5 ns.

123

Real-Time Systems

Fig. 7 Analytical variability window for different predictable memory controllers

3.3.3 Variability window

Based on the derived WCL and BCL, the final step is to calculate the analytical
VW using Definition 3. Figure 7 delineates the VW values for the considered DDRx
controllers.

As Fig. 7 illustrates, the variability window of these predicable controllers is huge.
It exceeds 800% in 6 out of the 8 studied controllers. We observe that controllers with
multi-rank support (MCMC, ROC, and ReOrder) provide less variability window.
For instance, MCMC has the least variability window of 261%. This is because these
controllers mitigate the interference among different PEs by partitioning banks among
PEs as well as mitigates the bus switching delays by alternating between different
ranks. However, the is still large and can be ill-suited for real-time systems with tight
safety-critical timing requirements.

As aforementioned, this high variability is due to the physically inherent limitations
of the DDRxmemories that induce large timing constraints, which all controllers have
to satisfy. As a result, we believe that exploring other types of off-chip memories that
address these limitations is unavoidable towards providing more predictable memory
performance with less variability and tighter bounds.

4 RLDRAM for real-time systems

RLDRAM is an emerging DRAM currently led by Micron (Micron Technology Inc.
2018a) and provides a remarkable lower access latency compared to DDRx proto-
cols. RLDRAM has a similar structure to DDRx as depicted in Fig. 1. Nonetheless,
RLDRAM achieves lower access latency by adopting unique architecture features that
do not exist in commodity DDRx DRAMs. Two major features are of particular inter-
est. First, RLDRAM uses an SRAM-like non-multiplexed address mode. All address
bits are provided to the memory in one step as opposed to the two-step multiplexed
mode in DDRx. Second, the row management through activation and precharging is
handled internally by the RLDRAM device instead of the memory controller in case
of DDRx. These two features together lead to multiple advantages of RLDRAM: (1)

123

Real-Time Systems

Table 3 Timing constraints for
RLDRAM3 (Micron
Technology Inc. 2018a)

Parameter Delay description Cycles

tRC Minimum time
between two
commands to same
bank

6

tWL Minimum time
between W to start
of data transfer

14

tRL Minimum time
between R to start of
data transfer

13

BL/2 Minimum time
between two
commands of same
type to different
banks

4 (BL = 8)

tRL − tWL + BL/2 Minimum time
between R toW
commands to
different banks

3 (BL = 8)

tW L − t RL + BL/2 Minimum time
between W to R
commands to
different banks

5 (BL = 8)

simplifying the access protocol, as accesses to RLDRAM consist of only R or W
commands; (2) achieving low random access delay (t RC), which has a direct effect
on worst-case access latency; and (3) decreasing bus turnaround (W-to-R and R-to-
W) delays. Table 3 lists the most relevant timing constraints of RLDRAM3 running
at 1600MHz. Overall, these advantages enable RLDRAM to provide a significant
reduction in access latency, while incurring less variability as compared to DDRx
memories as we illustrate in next subsection. In addition to the described SRAM-like
non-multiplexed address mode, RLDRAM also supports a DRAM-like multiplexed
address mode. In the latter, the address is divided into two parts and is provided to the
RLDRAM device in two consecutive cycles. In the next subsection, we discuss the
key differences between the two modes.

4.1 Multiplexed vs non-multiplexed addressing in RLDRAM

RLDRAMdevices can be configured to use one of two addressingmodes: multiplexed
and non-multiplexed. This configuration is done through amode configuration register
in the device. In the non-multiplexed address mode (Fig. 8a), all the address bits are
provided to the memory at one cycle with the access command and bank bits. In
Fig. 8a, the address of the write request is provided at cycle 0 and the address of the
read request is provided at cycle 6. On the other hand, in the multiplexed address mode
(Fig. 8b), the request to the RLDRAM consists of two cycles. In the first cycle, the

123

Real-Time Systems

Fig. 8 Effects of address modes in RLDRAM

command, the bank bits, and a portion of the address bits are sent to the RLDRAM.
This is shown in Fig. 8b at cycle 0 for the write request and at cycle 6 for the read
request, where Ax is the first portion of the address. Then, in the subsequent cycle, the
remaining portion of the address bits are sent to the RLDRAM. This is the Ay portion
in Fig. 8b at cycles 1 and 7 for the write and read requests, respectively.

4.1.1 Effects of multiplexed addressing on RLDRAM access latency

Using themultiplexed addressmode affects the RLDRAM latency by imposing certain
rules on the timing constraints as follows.

1. t RC timing constraint between two commands (cmd1 and cmd2) to the same bank
is not affected. It will still be measured from the cycle of issuing cmd1 to the cycle
of issuing cmd2. This is because in the multiplexed address mode, commands are
issued in the first cycle with the bank address and the Ax portion of the address as
aforementioned. This is shown in Fig. 8a, b by having the same behavior for t RC
in both addressing modes.

2. t RL and tW L in a multiplexed address mode has to be measured from the cycle
of issuing the Ay portion of the address as Fig. 8b delineates. This increases the
effective delay between the R/W command and the start of its data transfer by one
cycle. This explains why data transfer of the write and read requests start at cycles
15 and 20, respectively in Fig. 8b as opposed to starting at cycles 14 and 19 in
Fig. 8a.

3. From Table 3, the minimum separation between any two commands of same type
(i.e. both are reads or writes) accessing different banks has to be BL/2, where
BL is the burst length. This is necessary to ensure no collision on the data bus
since the time taken to transfer the data on the bus is BL/2. This still applies to
the multiplexed address mode, with one exception. If BL = 2, that means those
two commands can be issued in consecutive cycles. However, this is not possible
in a multiplexed address mode since each request takes effectively two cycles
instead of one to be issued to the RLDRAM. Accordingly, in case of BL = 2,
the minimum separation between two commands of same type to different banks
is effectively 2 cycles. This can be generalized by stating the following rule: the
minimum separation between two commands of same type to different banks under
a multiplexed address mode is M AX(BL/2, 2).

123

Real-Time Systems

Table 4 Differences in timing constraints between multiplexed and non-multiplexed address modes for
RLDRAM3 (Micron Technology Inc. 2018a)

Parameter Non-multiplexed
address

Multiplexed
address

t RC Same behavior as explained in Table 3

tW L Measured from
the W command
to the start of
data transfer

Measured from
the Ay portion
of the address
(one cycle after
the W
command) to the
start of data
transfer

t RL Measured from
the R command
to the start of
data transfer

Measured from
the Ay portion
of the address
(one cycle after
the R command)
to the start of
data transfer

R-to-Ror W-to-W BL/2 MAX(BL/2, 2)

R-to-W MAX(t RL −
tW L+BL/2, 1)

MAX(t RL −
tW L+BL/2, 2)

W-to-R MAX(tW L −
t RL + BL/2,1)

MAX(tW L −
t RL + BL/2, 2)

4. From Table 3, the minimum separation between a R and aW command accessing
different banks has to be t RL − tW L + BL/2. Similar to the situation explained
in the previous point, this can lead to a separation between the two commands
that is less than 2 cycles (since t RL < tW L). As aforementioned, this is not
possible in multiplexed address mode. Therefore, under the multiplexed address
mode, we modify the R-to-W constraints for commands accessing different banks
to be: MAX(t RL − tW L + BL/2, 2). Similarly, the W-to-R delay changes to
MAX(tW L − t RL + BL/2, 2).

Table 4 summarizes the differences betweenmultiplexed and non-multiplexed address
modes with regard to timing constraints.

4.1.2 Advantages of multiplexed address mode

From this discussion, it is clear that the multiplexed address mode can have bad effects
on the access latency of RLDRAM as well as the effective bandwidth. Nonetheless,
the multiplexed address mode has two advantages.

1. It reduces the number of address pins used by thememory controller,which reduces
the area, and hence, the cost of the memory system.

2. It allows the RLDRAM interfacing to be compatible with existing DRAM con-
trollers in terms of addressing.

123

Real-Time Systems

Fig. 9 Different RLDRAM access scenarios. Timing constraints are relatively scaled based on the timing
constraints of RLDRAM3-1600 with a clock of 1.5ns (Table 3). Subscripts are for request numbers

4.2 RLDRAM variability window

Figure 9 delineates possible access scenarios of a request to RLDRAMsimilar to Fig. 2
for DDRx. The chart in the bottom right shows the latency of the considered request
for each scenario, while the table in the bottom left briefly explains each scenario.
Unlike DDRx, RLDRAM is more deterministic, which explains the small number
of access scenarios. Figure 9a, b depicts the best case scenario for a read (write)
request that satisfies all timing constraints upon arrival. In Fig. 9c, f, the considered
request arrives at the head of the queue directly after the memory started servicing a
previous request of the same type to a different bank. Thus, it is delayed by BL/2− 1
cycles. In Fig. 9d, e, the request arrives at the head of the queue directly after the
memory started servicing a previous request of a different type to a different bank.
Therefore,W1 in Fig. 9d has to be separated from the previous R0 by a R-to-W delay of
t RL+BL/2− tW L . Similarly, R1 in Fig. 9e has to be separated from the previousW0
by tW L + BL/2− t RL , which is theW-to-R bus turnaround time. Finally, Fig. 9g, h
show the worst-case scenario, which is a bank conflict. The considered request arrives
after the memory started servicing a request to the same bank; thus, it has to be delayed
by t RC − 1 cycles. Since the type of the previous request is irrelevant in Fig. 9g, h,
C0 indicates either a R0 or W0.

123

Real-Time Systems

Fig. 10 Access latency for different scenarios, addressing modes, and burst lengths

4.2.1 Variability window

The scenario in Fig. 9a incurs the BCL, which equals to 13 cycles. Contrarily, the
scenario in Fig. 9f encounters the WCL, which equals to 19 cycles. As a result, the
variability window for the given sequence to the RLDRAM3-1600 is 46.2% as the
chart in Fig. 9 delineates.

Compared to DDRx, RLDRAMprovides 13.4× reduction in the latency variability
and 3.79× reduction in the worst-case access latency. This identifies RLDRAM as
promising solution towards providing amainmemory with better predictable behavior
and tighter WCL for real-time systems.

4.2.2 VW for different addressing modes and burst lengths

The scenarios delineated in Fig. 9 and discussed in Sect. 4.2.1 assumes an RLDRAM
configured with a non-multiplexed address mode and uses BL = 8. In this section, we
study the access latency of RLDRAM assuming the same scenarios, while exploring
different address modes (both multiplexed and non-multiplexed) as well as various
burst lengths; namely, BL = 8, 4 and 2. For each combination of addressing mode
and BL , we construct the command interactions of each scenario similar to Fig. 9.
Then, we calculate the access latency of the second request, which we plot in Fig. 10.

We highlight two main observations from the results shown in Fig. 10.

1. The non-multiplexed addressmode increases theRLDRAMaccess latency by only
one cycle inmost scenarios. This one cycle is again because the address is provided
to the RLDRAM device in two cycles and the read/write latency (t RL/tW L) is
measured from the second cycle (Table 4).

123

Real-Time Systems

2. There are cases where the multiplexed address mode increases the access latency
by two cycles as compared to the non-multiplexed mode. This occurs for BL = 2:
scenarios c,d, and f, and BL = 4: scenario d in Fig. 10. This can be explained as
follows.

– For BL = 2, consecutive commands in non-multiplexed address mode can be
issued in consecutive cycles if they are of the same type since BL/2 = 1 (the
case for scenarios c and f), or aR followedbyaW since t RL+tW L−BL/2 = 0
and to prevent command bus conflict they can be issued consecutively one after
the other (the case for scenario d). On the other hand, consecutive commands
in multiplexed address mode have to be separated by a minimum of two cycles
(Table 4).

– For BL = 4 in a non-multiplexed address mode, consecutive R and W com-
mands are separated by t RL + tW L − BL/2 = 1, while in a multiplexed
address mode they have to be separated by two cycles.

This adds one extra cycle of delay in addition to the one cycle added by the
t RL/tW L as explained in the observation 1.

Studying access latency under all the aforementioned scenarios and combinations, we
can conclude that the non-multiplexed address mode does not severely degrade the
low access latency advantage of RLDRAM over commodity DDRx.

Worst-case latencyWe calculate the WCL for both addressing modes and different
burst lengths and we depict the results in Fig. 11a. As Fig. 11a illustrates, the WCL of
the multiplexed address mode is larger than that of the non-multiplexed address mode
by one cycle (or 1.5 ns). As aforementioned, this is because in multiplexed address
mode, the start of data transfer has to wait for 14/15 cycles after the issuance of R/W
commands, respectively, as opposed to 13/14 cycles in case of the non-multiplexed
address mode. We also observe that the WCL for a specific addressing mode does
not change with the change of the burst length. From Fig. 9, the WCL (Fig. 9h) is
t RC + tW L , which is independent of the burst length.

Variability windowWe also calculate the variability window under both addressing
modes for different burst lengths and we depict the results in Fig. 11b. From Fig. 11b,
theVWfor themultiplexed addressmode is 42.9%, and theVWof the non-multiplexed
address mode is 46.2%. The multiplexed address mode has a lower VW because it
has a higher BCL, while its difference between the WCL and BCL is the same as
the non-multiplexed address mode (Eq. 1. Fig. 11b also shows that the VW of each
addressing mode does not change with varying the burst length. The reason is that the
burst length does not affect the best and worst case scenarios. From Fig. 9, the BCL
(Fig. 9a) is t RL and the WCL (Fig. 9h) is t RC + tW L . Both are independent of BL;
hence, the VW does not actually change across different burst lengths.

5 Predictable RLDRAM controller

To enable the usage of RLDRAM in real-time systems, we propose RLDC as a
predictable RLDRAM memory controller that manages accesses to the RLDRAM.

123

Real-Time Systems

Fig. 11 Variability window andWCL under both multiplexed and non-multiplexed address mode for BL =
2, 4 and 8

Fig. 12 High level architecture of RLDC

Figure 12 depicts the high-level architecture of RLDC. RLDC translates the memory
requests into the corresponding RLDRAM commands and ensures the satisfaction of
timing constraints amongst commands. It also predictably arbitrates amongst requests
from PEs in a multi-processor system.

5.1 Bank partitioning vs bank sharing

Once a request is received by the memory controller, the Processor Decoder decodes
the request’s PE identification (Id) by using the PE bits encoded with the request. Then
the Command Generation block generates the corresponding command by using
the operation type of the request (read or write). Simultaneously, address translation
is conducted by the Address Mapping block in Fig. 12 to determine which bank,
row, and column to access. The proposed controller allows for two different memory
layouts: bank partitioning and bank sharing. Bank partitioning partitions RLDRAM
banks across PEs, where each PE obtains an exclusive access to specific bank(s). On
the other hand, bank sharing allows each PE to access any bank. Bank partitioning
reduces the interference among PEs, while bank sharing provides more flexibility. The
user selects the layout through one bit in a memory configuration register inside the
controller (not shown inFig. 12).We conduct latency analysis for bothmechanisms and
experimentally compare their behaviors. For bank partitioning, the Address Mapping
conducts the partitioning based on the Id provided by the Processor Decoder. Once a
request’s command is generated and its bank is calculated, this information is buffered
in the corresponding PE queue to be scheduled by the predictable arbiter.

123

Real-Time Systems

Fig. 13 WCL in a four-PE sysem with bank-sharing RLDC

5.2 Predictable arbitration

The proposed controller deploys Round Robin (RR) arbitration (RR Arbiter in Fig. 12)
amongst requests at the head of each processor buffer (perPE Buffers). RR is a dynamic
predictable arbitration mechanism that facilitates the latency analysis without sacri-
ficing average-case performance. At the beginning of each cycle, the arbiter checks if
the PE with the current slot in the RR schedule has a ready request to be sent to the
RLDRAM. Timing Checker block decides if the request at the head of the queue of
this processor satisfies the timing constraints of the RLDRAMand can be immediately
serviced. This is conducted by maintaining a counter for each timing constraint. To
exemplify, if RLDC issued a R to a bank, the t RC counter of that bank is initialized by
the t RC constraint value. Hence, the Timing Checker ensures that no other command
is issued to that bank before the t RC counter reaches zero. If the request is ready, the
arbiter issues it to the RLDRAM in the form of a command (either R or W), a bank
address, and request address. These are the cmd, ba, and addr signals in Fig. 12 at
the interface between the controller and the RLDRAM. If the request is not ready due
to timing violations, the arbiter checks the next PE in the schedule.

5.3 Latency analysis

We derive both worst- and best-case values for the total memory latency (Definition 2)
incurred by any request to the proposed RLDRAM solution. The analysis is conducted
for a multi-processor system. Although the proposed solution works for any pipeline
architecture, we conduct the analysis assuming in-order PEs as they better represent
PEs used for real-time systems. In addition, it is the commonly assumed pipeline type
in predictable DDRx solutions including the ones we compare against (e.g. Hassan
et al. 2015; Wu et al. 2013). For sake of generality, we derive the worst-case total
latency for the two supported memory layouts: (1) bank sharing, where any PE has
access to all banks (Lemma 1), and (2) bank partitioning, where banks are privately
assigned to PEs (Lemma 2). Moreover, to enable the analytical calculation of the
variability window, Lemma 3 provides the best-case total latency, which is the same
for both bank partitioning and bank sharing mechanisms.

123

Real-Time Systems

Lemma 1 The worst-case total latency of any request to RLDC in a system with N
PEs and a bank sharing layout can be calculated as follows (where tCL is t RL if
Reqi is a read and tW L if Reqi is a write):

WCLshare = (N − 1) × tRC + tCL.

Proof Recall that RLDC implements RR arbitration among PEs. As a consequence,
the PE under analysis in the worst case waits for all other N−1 PEs before it is granted
access. Additionally, since bank partitioning is not deployed, requests from different
PEs can target any bank. In the worst case, requests from all PEs target the same bank
such that only one command is serviced every t RC cycles. Accordingly, the PE under
analysis has to wait for (N −1)× t RC cycles before it gains access to the RLDRAM.
Once the command of the request under analysis is issued to the memory (R or W),
the data transfer will start after t RL or tW L with respect to the type.

Figure 13 delineates this scenario for N = 4, where the WCL is 3 · t RC + t RL =
3 · 6 + 13 = 31 cycles. ��

It is worth noting that Lemma 1 applies for both addressing modes with the only
difference that tCL is measured differently as explained in Sect. 4.1.

Lemma 2 Theworst-case total latency of any request to RLDC in a systemwith N PEs,
a bank partitioning layout, and a non-multiplexed addressing mode can be calculated
as:

WCL part
noMUX = �N − 1

2
� × MAX

(
(tW L − t RL + BL/2), 1

)

+ 	N − 1

2

 × MAX

(
(t RL − tW L + BL/2), 1

) + tCL.

Proof From proof of Lemma 1, the request under analysis in the worst case waits for a
request from each other N −1 PEs before it is granted access. Since bank partitioning
is deployed, requests from PEs are guaranteed to access different banks (assuming that
N is less than the number of banks). Accordingly, the only constraint is to separate
every two successive commands in the RR schedule by the minimum delay required to
avoid data bus collisions. Three cases are possible for any two successive commands
to RLDRAM. (1) Both commands are of same type (either R or W). In this case, the
minimum delay between these two commands isBL/2. Figure 9c, f represent this case.
(2) The two commands are a write followed by a read. In this case, the minimum W-
to-R delay is tWL− tRL+BL/2. Figure 9e represent this case. (3) The two commands
are a read followed by a write. From Fig. 9d, these two commands have to be separated
by a R-to-W delay of t RL − tW L + t BU S cycles.

In the worst case, a data bus switching occurs between every two successive
requests. Furthermore, since tW L is larger than tRL (Table 3), the W-to-R delay is
larger than the R-to-W delay. Thus, the worst-case number ofW-to-R switches is equal
to or larger than R-to-W switches, which justifies the ceiling and flooring operations
in Lemma 2. The MAX operations ensures that no bus collision occurs for the case

123

Real-Time Systems

Fig. 14 WCL in a four-PE sysem with bank-partitioning RLDC

of BL = 2 since in BL = 2, tRL − tWL + BL/2 = 0 for RLDRAM devices with
tRL = tWL − 1.

Figure 14 delineates this worst case scenario for N = 4 and BL = 8, which equals
2 · (tW L − t RL + BL/2) + (t RL − tW L + BL/2) + t RL = 2 · 5 + 3 + 13 = 26
cycles. ��

Corollary 1 The worst-case total latency of any request to RLDC in a system with N
PEs, a bank partitioning layout, and a multiplexed addressing mode can be calculated
as:

WCL part
MUX =

⌈N − 1

2

⌉
× MAX

(
(tW L − t RL + BL/2), 2

)

+
⌊N − 1

2

⌋
× MAX

(
(t RL − tW L + BL/2), 2

) + tCL.

Proof The proof directly follows from the proof of Lemma 2 by substituting the 1 in
the MAX operations by 2. This is because in multiplexed addressing mode, any two
commands has to be separated by a minimum of two cycles as detailed in Sect. 4.1. ��

Lemma 3 The best-case total latency of any request to RLDC, BCL, in a system with
N PEs is calculated as:

BCL = tCL.

Proof In best case, the request under analysis does not suffer any interference latency
from other requests. Accordingly, its command is ready to execute upon arrival. Since
there is a minimum of tRL (tWL) cycles between the R (W) command and the start of
its data transfer, BCL is as calculated in Lemma 3. ��

Similar to Lemma 1, BCL derived in Lemma 3 applies for both addressing modes
with the only difference that tCL is measured differently as explained in Sect. 4.1.

From Lemmas 1–3 and Corollary 1, the variability window for bank sharing (under
both addressing modes) is calculated in Eq. 4, while the variability windows for bank
partitioning RLDC with non-multiplexed and multiplexed addressing modes are cal-

123

Real-Time Systems

Table 5 Simulation environment
configurations PEs 4 PEs, in-order pipeline, a private

16KB L1 and a shared (but
partitioned) 1MB L2 cache

Main memory Either RLDRAM or DDR

RLDRAM RLDRAM3-1600 (Micron
Technology Inc. 2018a) with
timing constraints in Table 3, while
the proposed RLDC manages
accesses to RLDRAM

DDRx DDR3-1600 with timing constraints
with timing constraints in Table 1,
while AMC, PMC, RTMem,
DCmc, ORP, MCMC, ROC, or
ReOrder manages access to DDR3

Bank Management We experiment with both bank
partitioning and bank sharing
among PEs for RLDC

culated in Eqs. 5 and 6, respectively.

VWshare = (N − 1) × t RC

tCL
× 100 (4)

VWpart
noMUX =

(
�N − 1

2
� × MAX

(
(tWL − tRL + BL/2), 1

)

+	N − 1

2

 × MAX(

(
tRL − tWL + BL/2), 1

)) × 100

tCL
(5)

VWpart
MUX =

(
�N − 1

2
� × MAX

(
(tWL − tRL + BL/2), 2

)

+	N − 1

2

 × MAX(

(
tRL − tWL + BL/2), 2

)) × 100

tCL
(6)

6 Evaluation

To evaluate the effectiveness of the proposed predictable RLDRAM solution, we
use MacSim (Kim et al. 2012), a multi-processor architectural simulator integrated
with DRAMSim2 (Rosenfeld et al. 2011) as the main memory system. We extend
DRAMSim2 to faithfully model the RLDRAMoperation and implement the proposed
RLDC to manage accesses to the RLDRAM. We compare the proposed solution with
eight of the state-of-the-art predictable DDRx controllers: AMC (Paolieri et al. 2009),
PMC (Hassan et al. 2015, 2016), RTMem (Li et al. 2014), DCmc (Jalle et al. 2014),
ORP (Wu et al. 2013), MCMC (Ecco et al. 2014), ROC (Krishnapillai et al. 2014),
and ReOrder (Ecco and Ernst 2015; Ecco et al. 2016). On the integration of these
controllers, we reuse the open-source implementation provided by Guo et al. (2018)

123

Real-Time Systems

Fig. 15 Worst-case experimental and analytical latencies (ordered ascendingly by experimental WCL)

and Guo and Pellizzoni (2016). Table 5 tabulates the important system information.
Since this work focuses on the off-chip memory delays, we deliberately configure the
system tominimize interference (other than off-chip memory) among tasks.We assign
each application a dedicated core that it solely uses until completion. In addition, we
use cache partitioning to resolve the interference on the shared cache (L2 in this case).
Cache partitioning is a common solution to cache interference (Gracioli et al. 2015).
We use Benchmarks from the EEMBC-auto suite (Poovey et al. 2009), which includes
representative applications from the embedded automotive domain. We use a2time
benchmark as the application under analysis running on one PE. In our experiments,
a2timehas the following characteristics. It has a total of 2846off-chipmemory requests
with a row hit ratio of 35%. The three other PEs are executing interfering applications.
For these interfering PEs, we pick the three most memory extensive benchmarks from
the EEMBC-auto suite: matrix, aifftr, and aiifft.

6.1 Worst-case latency

Figure 15 delineates both the experimental and the analytical WCLs for the DDRx
and RLDRAM systems used in the experiments. Experimental WCL is the maximum
total latency suffered by a request from the PE under analysis to the main memory. It
is measured from the arrival time instance of the request into the controller to the time
instance when the corresponding data of this request start transferring on the data bus.
Analytical WCL of RLDRAM is the latency bound derived by the timing analysis
conducted in Sect. 5.3.

For DDRx, we use the latency bounds derived in Sect. 3.3. RLDC-part in Fig. 15
indicates that RLDC is configured to use the bank partitioning mechanism, while
RLDC-share indicates RLDC with a bank sharing mechanism.

6.1.1 Observations

1. All experimental WCLs are less than their corresponding bounds, which confirms
that the derived bounds are safe.

123

Real-Time Systems

Fig. 16 Variability window (ordered ascendingly by experimental VW)

2. Clearly, the proposed RLDRAM solution provides a considerable less WCL com-
pared to DDRx both experimentally and analytically. For instance, under bank
partitioning mechanism, RLDC provides a WCL bound of 39ns. On the other
hand, WCL of DDRx varies from 97.5ns for MCMC to 252ns for PMC, RTMem,
and AMC controllers. This is 2.5× and 6.46× higher than RLDC’s WCL, respec-
tively. Similar results are observed experimentally. The WCL of RLDC with bank
partitioning is 34.5ns. Minimum DDRx WCL of 73.5ns is observed for ROC
(2.13×RLDC’sWCL), while themaximumWCL is observed for PMC and equals
to 210ns (6.09× RLDC’s WCL). It is worth noting that this relatively low WCL
of MCMC, ROC, and ReOrder as compared to other DDRx controllers relies on
the existence of four DDRx ranks in the system. For a single-rank DDRx, those
multi-rank controllers lose this advantage.

3. RLDC with bank partitioning provides tighter WCLs compared to bank sharing.
This is because bank partitioning allows each PE to obtain an exclusive access to
specific bank(s), which reduces the interference. This comes at the expense of lack
of flexibility. For instance, unlike bank sharing, partitioning does not allow data
sharing between PEs.

4. The gap between the analytical and experimental WCL is excessively higher for
most of the DDRx controllers. This is because DDRx has larger number of com-
mands and timing constraints between them. This complexity of the DDRx leads
to nondeterministic behavior with wide variability window, which we study in the
next experiment in more details.

6.2 Variability in total request latency

Figure 16 plots the experimentally observed variability window in the total memory
latency forRLDRAMandDDRxusing the same setup as in Sect. 6.1. The experimental
variability window for each controller is calculated based on the observed best- and
worst-case total latencies of this controller. For sake of comparison, we also plot the
analytical variability window from Sect. 3.3.

123

Real-Time Systems

6.2.1 Observations

1. Results show that a request to DDRx suffers from a significant variability in its
latency and the variability window (Definition 3) is above 300% for seven of the
eight considered DDRx controllers. The eighth controller (MCMC) has a variabil-
ity window of 195.2%.

2. Contrarily, RLDC provides a considerable reduction in the variability window:
84.6% for bank sharing and 76.9% for bank partitioning. The explanation for
this is that variability window is the relative difference between BCL and WCL.
BCL occurs when the request suffers no interference at all form other requests. So
its command execute immediately upon arrival. For both RLDRAM and DDRx,
a request in best case consists of a single command (R or W). Accordingly, the
BCL is either tRL or tWL for a read or write request, respectively. Since these
two constraints are less in DDR3 than in RLDRAM3 (From Tables 1 and 3),
DDR3 in fact has less BCL. On the other hand, because of the complexity of the
DDRx protocol, WCL for DDRx is larger than that of RLDRAM as observed in
Sect. 6.1. Accordingly, the variability window of DDRx is expected to be larger
than RLDRAM3. This motivates the adoption of RLDRAM3 in real-time systems
with its lower WCL and less variability.

6.3 Execution time

Figure 17 shows the overall execution time for each controller using the same setup
as in Sects. 6.1 and 6.2. All results in Fig. 17 are normalized to the ROC controller
since it is the one with best (least) observed execution time among considered DDRx
controllers.

6.3.1 Observations

1. As Fig. 17 illustrates, improving WCLs reflects on the overall execution. RLDC
achieves better execution time compared to all DDRx controllers, where the
improvement ranges from 7% (compared to ROC) to 23% (compared to PMC).

2. It is worth noting that the gap between RLDC and DDRx controllers in execution
time is notably less than the gap in the memory behavior (WCL and VW). This
is because the total execution time composes of both computation time spent on
processors and memory time spent on accessing data. RLDC only improves the
off-chip memory access time. Therefore, the total effect on the overall execution
of an application depends on the memory intensity of that application. We found
that for this experiment setup, only 6% to 27% (depending on the controller)
of the application time is consumed in off-chip memory access. Accordingly, we
conclude that reducing overall execution time by 7% to 23% for such non-memory
intensive application is a promising improvement.

3. We also observe that bank partitioning for RLDC offers a little improvement on
the over all execution time than bank sharing in our experiment, with only 1%
difference between RLDC-share and RLDC-part in Fig. 17.

123

Real-Time Systems

Fig. 17 Overall execution time. All results are normalized to ROC controller

6.4 Scalability: sensitivity to number of interfering PEs

In this experiment, we study the effect of varying the number of PEs in the system on
both the analytical memory latency bounds as well as experimental WCL. Figure 18
depicts our findings.

6.4.1 Observations

1. Increasing the number of PEs, the gap in latency between RLDC and the majority
of the considered DDRx controllers immensely increases. This is mainly because
of the timing constraints that dominate the latency bounds, which also reflects the
physical limitations of the DDRx memories. As explained in Sect. 4, RLDRAM
does not suffer from the high latency of activation and precharging stages; thus, it
has a lower tRC delay. In addition, accesses to RLDRAM does not suffer from the
high data bus switching penalties that exist in DDRx memories as the switching
delay in RLDRAM is only one cycle.

2. Some DDRx controllers show better scalability (less increase in WCL with the
increase in number of PEs) than others. DDRx controllers in Fig. 18 can be clas-
sified into three categories. (a) Controllers with bank sharing mechanisms: AMC,
PMC, and RTMem, which suffer the maximum increase in WCL when increasing
the number of PEs. (b) Controllers with bank partitioning and multi-rank support:
ReOrder, ROC, and MCMC, which incur the least WCL increase. This is because
these controllers reduce interference among PEs by combining two techniques.
First, they partition banks to eliminate the row conflict interference, which miti-
gates the long tRC delay. Second, they use the multi-rank support to amortize the
data bus switching delays. (c) Controllers with only bank partitioning: ORP and
DCmc, which exhibit intermediate increase in WCL.

3. Comparing all the aforementioned categories of DDRx controllers with RLDC
(including the ones with bank partitioning and multi-rank requirement), highlights
the advantages of RLDRAM for real-time systems. RLDC (whether with bank
partitioning or sharing) encounters the least WCL across all PEs. This means
that using RLDC, real-time systems enjoy tighter WCL with less sensitivity to

123

Real-Time Systems

Fig. 18 Effect of varying
number of PEs in the system.
T-shaped bars are the analytical
bounds and solid bars are the
experimental WCLs

Fig. 19 Effect of addressing mode and burst length for different number of PEs

the number of interfering PEs, while having the flexibility of sharing data among
different PEs.

6.5 Effects of addressingmode and burst length

We investigate the effects of the configured addressing mode (multiplexed vs. non-
multiplexed) as well as for different burst length configurations on the latency bounds.
Figure 19 delineates the analytical WCL for BL = 2, 4, and 8 in a system with
2, 4, and 8 PEs. As the legend shows, the plots are for different bank management
schemes: partitioning (part) and sharing (share) as well as for different addressing
modes: multiplexing (MUX) and non-multiplexing (noMUX). Figure 19 also delineates
the difference of WCL between multiplexing and non-multiplexing addressing modes
(Diff). Analyzing the results in Fig. 19, we make the following observations.

6.5.1 Observations

1. Generally, RLDC with the non-multiplexed address mode has a less WCL than
RLDC with the multiplexed address mode for all BL and PE values under both
bank partitioning and bank sharing schemes. This is expected and aligns with the
analysis in Sect. 5.3. However, the difference between both addressing modes in
WCL is minimal under most cases as we detail in the remaining observations.

2. Under bank sharing scheme the gap between multiplexed and non-multiplexed
addressing modes is independent of BL and number of PEs and is equal to one

123

Real-Time Systems

cycle or 1.5ns (share-Diff in Fig. 19). This can be explained by Lemma 1, which
shows that the WCL under bank sharing is WCLshare = (N − 1) × tRC + tCL.
Accordingly, WCLshare is independent of BL’s value. In addition, tRC is the
same for both multiplexed and non-multiplexed addressing modes, while tCL of
the multiplexed mode is larger by one cycle. Hence, the difference between both
addressing modes is always one cycle.

3. Under bank partitioning and BL = 8 the gap between multiplexed and non-
multiplexed addressing modes is independent of number of PEs and is equal
to one cycle or 1.5ns (part-Diff in Fig. 19). This is because for BL = 8, both the
R-to-W (tRL− tWL+BL/2) andW-to-R (tWL− tRL+BL/2) delays are larger than
2. Accordingly, from Lemma 2 and Corollary 1, bothWCLpart

noMUX andWCLpart
MUX

will have the same expression. The only difference between them is in tCL’s value,
which is larger for multiplexed address mode by one cycle.

4. Under bank partitioning and BL = 4, 2: Unlike previous cases, for BL = 2 and
4, Fig. 19 illustrates that the gap between both address modes is dependent on the
number of PEs in the system. This can be explained as follows. For BL = 2 or 4,
tRL− tWL+BL/2 < 2; thus, from Corollary 1, the term 	 N−1

2
 × MAX
(
(tRL−

tWL + BL/2), 2
)
will reduce to 	 N−1

2
 × 2 for the multiplexed address mode.
On the other hand, for the non multiplexed address mode, the counterpart term in
Lemma 2 reduces to 	 N−1

2
 × 1. This intuitively explains the dependence of the
gap on the number of PEs (N). From Fig. 19, we also observe that this gap has a
maximum of 4 cycles (or 6ns), which occurs in the case of PE = 8.

7 Other considerations: a discussion

We discuss some of the practical considerations towards adopting RLDRAM in real-
time systems.

7.1 Cost

Compared to DDRx DRAMs, Static RAMs (SRAMs) provide a significantly lower
latency at the expense of a significantly higher cost. This high cost prohibits the
deployment of SRAMs in systems that require large capacity, which leaves the high-
latency DRAMs as the only possible option. RLDRAM addresses this challenge by
offering a balanced solution that provides a comparable latency to SRAMs, with a
comparable cost to DDRx (Micron Technology Inc. 2018b). The lower latency is
achieved by the means explained in Sect. 4. On the other hand, the lower cost than
SRAMs is achieved by preserving the internal structure of DDRx, which consists of
a single transistor as opposed to 6 in the case of SRAMs.

123

Real-Time Systems

7.2 Density

Currently, themaximumdensity supported byRLDRAM3 is 2.25GB [5],whileDDR3
offers up to 8GB. Nonetheless, for real-time systems that require more than 2.25GB
of data, multiple RLDRAM channels may be used.

7.3 Adoption

RLDRAM is manufactured by Micron Technology Inc. (2018b)), one of the biggest
suppliers of memory devices. This ensures its stability and future adoption. It is also
already adopted in high-speed networking solutions (Toal et al. 2007;Micron Technol-
ogy Inc. 2018b). Moreover, RLDRAM is supported by several industry players such
as Intel (2018), Xilnix (2018), Lattice Semiconductors (2018), and Northwest Logic
(2018). As a result, state-of-the-art FPGA-based boards support RLDRAM interfacing
[e.g. Intel Arria 10 GX FPGA (Intel 2018) and Xilinx Virtex UltraScale VCU110 (Xil-
nix 2018) development kits]. We believe that this support is an appealing opportunity
since it provides the necessary means to design, experiment and evaluate RLDRAM
solutions for future real-time systems.

7.4 Task-level analysis

In this paper, we derive an upper bound on the WCL incurred by any request to the
off-chip memory. We also evaluate this WCL for the proposed RLDRAM solution as
well as a breadth of available predictable DDRx solutions. This request-level bound
can be used to either derive the WCET for a real-time task, or to conduct a response
time analysis in a multi-tasking environment (Kim et al. 2014; Mancuso et al. 2017).
In deriving such bound, we assume no knowledge about the the computation or mem-
ory access pattern of any of the running applications. It is worth noting that it can
be possible to reduce off-chip memory interference, and hence improve the memory
latency bounds by either enforcing certain constraints on the memory pattern, or make
assumptions about such pattern. For instance, a system can enforce accesses to the
off-chip memory to be streamlined through a DMA [e.g. by using a software-managed
Scratchpad Memory (SPM)] (Soliman and Pellizzoni 2017). Another example is to
shape the memory access pattern of PEs through throttling (Yun et al. 2013). These
solutions are orthogonal to this work and can help in improving the memory bound;
however, this improvement comes at the expense of compositionality of the task anal-
ysis (Hassan and Pellizzoni 2018).

8 Conclusions

The real-time community has been focusing on DDRx DRAMs as a sole solution for
off-chip memories in real-time systems. We highlight the limitations of DDRxmemo-
ries towards providing predictability in these systems. Then,we show that the emerging
RLDRAM memory provides a promising solution that meets real-time requirements

123

Real-Time Systems

with tighter latency bounds and less variability. To enable this deployment, we pro-
vide a predictable RLDRAM memory controller supporting multi-processor systems
and conduct timing analysis to bound the latency suffered by any memory request.
We compare the proposed solution with competitive predictable DDRx controllers.
Results show that the proposed RLDRAM solution provides up to 6.4× reduction in
the worst case memory latency and up to 11× less latency variability.

References

Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory controller. In:
IEEE/ACM international conference on hardware/software codesign and system synthesis (CODES+
ISSS)

Chatterjee N, Shevgoor M, Balasubramonian R, Davis A, Fang Z, Illikkal R, Iyer R (2012) Leveraging
heterogeneity inDRAMmainmemories to accelerate criticalword access. In: IEEE/ACMinternational
symposium on microarchitecture (MICRO)

Ecco L, Ernst R (2015) Improved DRAM timing bounds for real-time DRAM controllers with read/write
bundling. In: Real-time systems symposium, pp 53–64

Ecco L, Ernst R (2017) Tackling the bus turnaround overhead in real-time SDRAM controllers. IEEE Trans
Comput 66(11):1961–1974

Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank privatization
and fixed priority scheduling. In: IEEE international conference on embedded and real-time computing
systems and applications (RTCSA)

Ecco L, Kostrzewa A, Ernst R (2016) Minimizing DRAM rank switching overhead for improved timing
bounds and performance. In: Euromicro conference on real-time systems (ECRTS)

Goossens S, Akesson B, Goossens K (2013) Conservative open-page policy for mixed time-criticality
memory controllers. In: Proceedings of the conference on design, automation and test in Europe. EDA
Consortium, pp 525–530

Gracioli G, Alhammad A, Mancuso R, Fröhlich AA, Pellizzoni R (2015) A survey on cache management
mechanisms for real-time embedded systems. ACM Comput Surv (CSUR) 48(2):32

Guo D, Pellizzoni R (2016) DRAMController: a simulation framework for real-time DRAM controllers.
https://ece.uwaterloo.ca/%7Erpellizz/techreps/dramcontroller.pdf. Retrieved 2018

Guo D, Pellizzoni R (2017) A requests bundling DRAM controller for mixed-criticality systems. In: IEEE
real-time and embedded technology and applications symposium (RTAS)

Guo D, Hassan M, Pellizzoni R, Patel H (2018) A comparative study of predictable DRAM controllers.
ACM Trans Embed Comput Syst (TECS) 17(2):53

HassanM (2018) On the off-chip memory latency of real-time systems: is DDR dram really the best option?
In: IEEE real-time systems symposium (RTSS)

Hassan M, Patel H (2017) MCXplore: automating the validation process of DRAM memory controller
designs. IEEE Trans Comput Aided Des Integr Circuits Syst (TCAD) 37(5):1050–1063

Hassan M, Pellizzoni R (2018) Bounding DRAM interference in COTS heterogeneous MPSoCs for mixed
criticality systems. In: ACM SIGBED international conference on embedded software (EMSOFT)

Hassan M, Patel H, Pellizzoni R (2015) A framework for scheduling DRAM memory accesses for multi-
coremixed-time critical systems. In: Real-time and embedded technology and applications symposium
(RTAS), pp 307–316

Hassan M, Patel H, Pellizzoni R (2016) PMC: a requirement-aware DRAM controller for multi-core mixed
criticality systems. ACM Trans Embed Comput Syst (TECS) 16(4): Article 100

Intel (2018) Arria 10 FPGA development kit, user guide (2018). https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug%5Fa10-fpga-prod-devkit.pdf. Accessed 12 Sept 2018

Jalle J,QuinonesE,Abella J, Fossati L, ZulianelloM,Cazorla FJ (2014)Adual-criticalitymemory controller
(DCmc): proposal and evaluation of a space case study. In: IEEE real-time systems symposium (RTSS)

JEDEC DDR3 SDRAM (2018) JEDEC DDR3 SDRAM specifications jesd79-3d. http://www.jedec.org/
standards-documents/docs/jesd-79-3d. Accessed 12 Sept 2018

Kim H, Lee J, Lakshminarayana NB, Sim J, Lim J, Pho T (2012) MacSim: a CPU-GPU heterogeneous
simulation framework user guide. Georgia Institute of Technology, Atlanta

123

https://ece.uwaterloo.ca/%7Erpellizz/techreps/dramcontroller.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug%5Fa10-fpga-prod-devkit.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug%5Fa10-fpga-prod-devkit.pdf
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d

Real-Time Systems

KimH,DeNizD,AnderssonB,KleinM,MutluO,RajkumarR (2014)Boundingmemory interference delay
in COTS-based multi-core systems. In: IEEE real-time and embedded technology and applications
symposium (RTAS)

Kim H, Broman D, Lee EA, Zimmer M, Shrivastava A, Oh J (2015) A predictable and command-level
priority-basedDRAMcontroller formixed-criticality systems. In:Real-time and embedded technology
and applications symposium (RTAS), pp 317–326

Krishnapillai Y, Wu ZP, Pellizoni R (2014) ROC: a rank-switching, open-row DRAM controller for time-
predictable systems. In: Euromicro conference on real-time systems (ECRTS)

Lattice Semiconductors (2018) Developing high-speed memory interfaces: the LatticeSCM FPGA
advantage, a white paper. http://www.latticesemi.com/view%5Fdocument?document%5Fid=18926.
Accessed 12 Sept 2018

Li Y, Akesson B, Goossens K (2014) Dynamic command scheduling for real-time memory controllers. In:
Euromicro conference on real-time systems (ECRTS), pp 3–14

Mancuso R, Pellizzoni R, Tokcan N, Caccamo M (2017) WCET derivation under single core equivalence
with explicit memory budget assignment. In: Euromicro conference on real-time systems (ECRTS)

Micron Technology Inc. (2018a) Micron RLDRAM3 SDRAM part mt44k64m18rb 093e. https://www.
micron.com/~/media/documents/products/data-sheet/dram/576mb_rldram3.pdf. Accessed 12 Sept
2018

Micron Technology Inc. (2018b) Micron RLDRAM3 SDRAM product flyer. https://www.micron.com/
%7E/media/documents/products/product-flyer/rldram3%5Fproduct%5Fflyer.pdf. Accessed 12 Sept
2018

Mutlu O, Subramanian L (2014) Research problems and opportunities inmemory systems. Supercomputing
Front Innov 1(3):19–55

Northwest Logic (2018) RLDRAM 3 controller core. https://nwlogic.com/products/docs/RLDRAM%5F3
%5FController%5FCore.pdf. Accessed 12 Sept 2018

Paolieri M, Quiñones E, Cazorla FJ, Valero M (2009) An analyzable memory controller for hard real-time
CMPs. Embed Syst Lett (ESL) 1:86–90

Phadke S, Narayanasamy S (2011)MLP aware heterogeneousmemory system. In: IEEE design, automation
& test in Europe conference & exhibition (DATE)

Poovey JA, Conte TM, LevyM, Gal-On S (2009) A benchmark characterization of the EEMBC benchmark
suite. IEEE Micro 29(5):18–29

Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization for pre-
dictability and temporal isolation. In: IEEE/ACM/IFIP international conference onHardware/software
codesign and system synthesis (CODES + ISSS)

Rosenfeld P, Cooper-Balis E, Jacob B (2011) DRAMSim2: a cycle accurate memory system simulator.
IEEE Comput Architect Lett (CAL) 10(1):16–19

Soliman MR, Pellizzoni R (2017) WCET-driven dynamic data scratchpad management with compiler-
directed prefetching. In: Euromicro conference on real-time systems (ECRTS)

Toal C, Burns D, McLaughlin K, Sezer S, O’Kane S (2007) An RLDRAM II implementation of a 10Gbps
shared packet buffer for network processing. In: NASA/ESA conference on adaptive hardware and
systems (AHS)

Valsan PK, Yun H (2015) MEDUSA: a predictable and high-performance DRAM controller for multicore
based embedded systems. In: Cyber-physical systems, networks, and applications (CPSNA), pp 86–93

Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann
R, Mitra T et al (2008) The worst-case execution-time problem-overview of methods and survey of
tools. ACM Trans Embed Comput Syst (TECS) 7(3):1–53

Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor systems. In:
Real-time systems symposium (RTSS), pp 372–383

Xilnix (2018) VCU110 evaluation board, user guide. https://www.xilinx.com/support/documentation/
boards%5Fand%5Fkits/vcu110/ug1073-vcu110-eval-bd.pdf. Accessed 12 Sept 2018

Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2013) Memguard: memory bandwidth reservation sys-
tem for efficient performance isolation in multi-core platforms. In: IEEE real-time and embedded
technology and applications symposium (RTAS)

Yun H, Mancuso R, Wu ZP, Pellizzoni R (2014) PALLOC: DRAM bank-aware memory allocator for
performance isolation on multicore platforms. In: IEEE real-time and embedded technology and
applications symposium (RTAS)

123

http://www.latticesemi.com/view%5Fdocument?document%5Fid=18926
https://www.micron.com/~/media/documents/products/data-sheet/dram/576mb_rldram3.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/576mb_rldram3.pdf
https://www.micron.com/%7E/media/documents/products/product-flyer/rldram3%5Fproduct%5Fflyer.pdf
https://www.micron.com/%7E/media/documents/products/product-flyer/rldram3%5Fproduct%5Fflyer.pdf
https://nwlogic.com/products/docs/RLDRAM%5F3%5FController%5FCore.pdf
https://nwlogic.com/products/docs/RLDRAM%5F3%5FController%5FCore.pdf
https://www.xilinx.com/support/documentation/boards%5Fand%5Fkits/vcu110/ug1073-vcu110-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards%5Fand%5Fkits/vcu110/ug1073-vcu110-eval-bd.pdf

Real-Time Systems

Yun H, Pellizzon R, Valsan PK (2015) Parallelism-aware memory interference delay analysis for COTS
multicore systems. In: IEEE Euromicro conference on real-time systems

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Mohamed Hassan is an Assistant Professor in the Electrical and
Computer Engineer Department at the McMaster University, Canada.
Previously, he worked as an assistant professor at University of
Guelph and as an R&D SoC Lead Engineer at Intel. He received his
MSc from Cairo University in 2012 and his PhD from University
of Waterloo in 2017. Mohamed’s research interests include real-time
embedded systems, systems-on-chip architectures, hardware valida-
tion and security.

123

	Reduced latency DRAM for multi-core safety-critical real-time systems
	Abstract
	1 Introduction
	1.1 Extended version

	2 Related work
	3 DDRx limitations
	3.1 DDRx DRAM basics
	3.2 Predictability considerations
	3.2.1 Targeting an open row
	3.2.2 Targeting a closed row
	3.2.3 Targeting a conflict row
	3.2.4 Variability window for the read request
	3.2.5 Variability window for the write request
	3.2.6 A concluding remark

	3.3 Variability window in predictable memory controllers
	3.3.1 Worst-case latency
	3.3.2 Best-case latency
	3.3.3 Variability window

	4 RLDRAM for real-time systems
	4.1 Multiplexed vs non-multiplexed addressing in RLDRAM
	4.1.1 Effects of multiplexed addressing on RLDRAM access latency
	4.1.2 Advantages of multiplexed address mode

	4.2 RLDRAM variability window
	4.2.1 Variability window
	4.2.2 VW for different addressing modes and burst lengths

	5 Predictable RLDRAM controller
	5.1 Bank partitioning vs bank sharing
	5.2 Predictable arbitration
	5.3 Latency analysis

	6 Evaluation
	6.1 Worst-case latency
	6.1.1 Observations

	6.2 Variability in total request latency
	6.2.1 Observations

	6.3 Execution time
	6.3.1 Observations

	6.4 Scalability: sensitivity to number of interfering PEs
	6.4.1 Observations

	6.5 Effects of addressing mode and burst length
	6.5.1 Observations

	7 Other considerations: a discussion
	7.1 Cost
	7.2 Density
	7.3 Adoption
	7.4 Task-level analysis

	8 Conclusions
	References

