
A Framework for Scheduling DRAM Memory
Accesses for Multi-Core Mixed-time Critical

Systems

Mohamed Hassan, Hiren Patel and Rodolfo Pellizzoni

{mohamed.hassan, hiren.patel, rpellizz}@uwaterloo.ca

University of Waterloo, Waterloo, Canada

Abstract—Mixed-time critical systems are real-time systems
that accommodate both hard real-time (HRT) and soft real-
time (SRT) tasks. HRT tasks mandate a gurantee on the worst-
case latency, while SRT tasks have average-case bandwidth (BW)
demands. Memory requests in mixed-time critical systems usually
have different transaction sizes based on whether the issuer task
is HRT or SRT. For example, HRT tasks often issue requests with
a cache line size. On the other side, SRT tasks may issue requests
with a size of KBs. Requests from multimedia cores, cores con-
trolling network interfaces and direct memory accesses (DMAs)
are obvious examples of these large-size requests. Based on these
observations, we promote in this work a new approach to schedule
memory requests. This approach retains locality within large-size
requests to minimize the worst-case latency, while maintaining
the average-case BW as high as required. To achieve this target,
we introduce a novel and compact time-division-multiplexing
scheduler that is adequate for mixed-time critical systems. We
also present a novel framework that constructs optimal off-
chip DRAM memory controller schedules for multi-core mixed-
time critical systems. These schedules are loaded to the memory
controller during boot-time. Based on the proposed schedule, we
provide a detailed static analysis that guarantees predictability.
We compare the proposed controller against state-of-the-art real-
time memory controllers using synthetic experiments as well as
a practical use-case from multimedia systems.

I. INTRODUCTION

Mixed-time critical systems contain a mix of hard real-
time (HRT) and soft real-time (SRT) tasks. HRT tasks mandate
strict assurances that their temporal requirements are never
violated such that their worst-case latencies should always be
no greater than their deadlines. Since a violation in tempo-
ral requirements of a HRT task may result in unacceptable
loss of lives and/or increase of costs, a detailed worst-case
execution time (WCET) analysis of the task’s execution on
the designated hardware platform is necessary. However, to
compute tight WCET estimates, the hardware platforms must
be predictable; thereby, leading itself to accurate WCET anal-
ysis. This means that speculative features such as out-of-order
execution, complex cache hierarchies, and branch prediction
are often eliminated [1]. Contrarily, SRT tasks require a
minimum bandwidth (BW) at the expense of infrequent misses
of deadlines. To accomplish this, hardware platforms often
use architectural features such as those disallowed for the
purposes of predictability. The requirements of predictability
for HRT tasks and minimum bandwidth for SRT are in conflict.
This poses an increasingly difficult challenge for designers of
mixed-time critical systems.

One response to this challenge is in utilizing temporal
isolation [2]–[4], which requires the designer to deploy the
application such that resources used by tasks with strict tem-
poral requirements are distinct. Heterogeneous multi-cores [5]
with a combination of predictable and conventional processors
offer an appealing hardware platform for deploying mixed-time
critical applications. This is because HRT tasks can execute
on predictable cores while SRT tasks on conventional cores.
However, providing distinct off-chip memories to the cores is
prohibitively costly. Thus, researchers recognize that access
to off-chip memories must be shared. This has generated a
considerable volume of research in the re-design of memory
controllers (MCs) [6]–[9] to control accesses to off-chip dy-
namic random-access memories (DRAMs). The key technique
used in these works is to write back the data in the DRAM
row buffer after each access. This is known as close-page
policy, which ensures that every DRAM access consumes the
same number of cycles and thereby achieves predictability.
However, row locality between successive requests is not ex-
ploited. While this is apt for HRT tasks, SRT tasks experience
significant bandwidth degradation. This makes such MCs ill-
suited for SRT tasks. Goossens et al. [10] address this issue
by keeping the data in the row buffer available for any further
access within a designated time window. To exploit this for
performance benefits, there must be multiple requests targeting
the same row within a short time window. To address this
limitation, Wu et al. [11] assign private DRAMs to each core to
utilize the fact that accesses from the same core have a higher
likelihood of exploiting row locality. Their approach prohibits
sharing of data across the cores, and it requires assigning a
DRAM bank per core, which may not be possible with a
large number of cores. As a result, we find that designers are
still faced with the difficult challenge of designing DRAM
MCs that allow HRT and SRT tasks to share off-chip DRAMs
while maintaining their respective temporal and bandwidth
requirements.

We directly address this challenge by proposing a pro-
grammable DRAM MC (PMC), and a framework that con-
structs optimal schedules honouring both temporal and band-
width requirements. The key novelties in this work are the
following. (1) We make the observation that SRT tasks usually
issue large-size memory requests. Based on this observation,
we introduce a novel approach to schedule memory accesses
in mixed-time critical systems. This approach retains locality
within large-size requests to minimize the worst-case memory
latencies of HRT tasks while satisfying the BW require-

307978-1-4799-8603-3/15/$31.00 ©2015 IEEE

ments of SRT tasks. Since this paper is only concerned with
DRAM memory latency, we will refer to this worst-case
memory latency by just worst-case latency (WCL). (2) A
novel harmonic distributed time-division-multiplexing (TDM)
scheduling scheme with low cost implementation adequate for
mixed-time critical systems. (3) A deployment framework to
generate optimal schedules for PMC. The proposed framework
is a tool to explore the trade-offs between requirements of SRT
and HRT tasks to provide the optimal MC behaviour satisfying
these requirements. (4) A detailed static analysis for accesses
to the DRAM managed by PMC in multi-core systems to
guarantee meeting all requirements under all circumstances.
The remaining contributions of the PMC include the following.
(5) PMC: a programmable memory controller that can be
programmed with the optimal schedule at boot-time to meet
varying requirements of different applications in mixed-time
critical systems. (6) Using a mixed-page policy that dynami-
cally switches between close- and open-page policies to exploit
the locality in large-size requests. (7) Experimental evaluation
against prior competing MC policies [9], [10], [12].

II. DRAM BACKGROUND

A DRAM is a three-dimensional array of memory cells
consisting of banks with each bank organized by rows and
columns. DRAM can be divided into multiple ranks such
that each rank contains multiple banks. The amount of data
that a DRAM can transfer in one access is known as the
memory granularity. An MC accesses one DRAM through
a channel. In a multi-channel DRAM, the MC may have
distinct channels to access each individual DRAM. DRAM
accesses are controlled by the MC that arbitrates amongst
different requests from different cores and DMAs, generates
memory access commands and translates physical addresses
into channel, rank, bank, row and column addresses. The MC
generates five types of commands: RAS, CAS, PRE, REF
and NOP. Different names are used for these commands in
different contexts. For example, the first command is named
RAS or ACT. Throughout this paper, we will stick to the
aforementioned five notations for the MC commands. The RAS
command uses the row address to index a particular row in a
bank, and places the data in the row buffer. The row buffer
temporarily holds the data of the accessed row for further
reads and writes. A CAS command reads or writes the required
portion of data in the row buffer. To update the memory
cells, the row buffer is written back to the appropriate row
via a pre-charge command (PRE). DRAM must be refreshed
periodically in order to retain the stored information. Refreshes
are done via the refresh command (REF). All these commands
have strict timing constraints that must be satisfied by all
memory controller designs. A NOP command inserts an empty
cycle to satisfy these requirements. Throughout this paper,
we use a single-channel and single-rank DDR3-1333 DRAM
module [13], where the rank is composed of two ×8 devices
to compose a 16-bit data bus width, where ×8 means that
each device has a column width of 8 bits. Note that the
proposed approach is not specific for this DRAM module, and
is applicable to any type of DRAM.

A. Memory Page Policies

There are two main page policies for accessing DRAMs:
close-page and open-page. These page policies manage the

duration during which the data is available in the row buffer.
Close-page policy writes back the data in the row buffer and
flushes the row buffer after each access. MCs deploying close-
page policy issue every CAS command with an implicit PRE
command. Hence, every access takes the same amount of ac-
cess time. Open-page policy on the other hand, leaves the data
in the row buffer to allow future accesses for data within the
buffer to be accessed faster than having to read the data from
the memory cells into the row buffer again. MCs deploying
open-page policy separate CAS and PRE commands. They
keep the row open until a request to another row arrives. Then,
they issue an explicit PRE command. This enables open-page
policy to be faster than close-page in the average-case. The
primary drawback of open-page policy is that requests have a
larger WCL. This WCL occurs when a request target different
rows than the opened row, which requires pre-charging the
opened row before loading the requested row in the row buffer.
For these reasons, MCs in high-performance architectures of-
ten use open-page policy [14], while predictable MCs typically
use close-page policy [9].

III. RELATED WORK

A. Real-time Memory Controllers

There are several efforts that propose predictable MCs [6]–
[12], [15], [16]. Most of these efforts [6]–[9] use close-page
policy. Hence, available locality in the row buffer (known
as row locality) is not exploited for performance benefits.
The solution proposed by Goossens et al. [15] presents a
configurable architecture where the MC can be reconfigured
with different TDM schedules that satisfy new run-time re-
quirements. Gomony et al. [12] propose an optimal mapping
of requestors to channels for a multi-channel MC. However,
the latter two solutions also deploy a close-page policy, and
do not exploit row locality.

In contrast, Wu et al. [11] utilize the open-page policy;
however, they require each core to be assigned its own private
DRAM bank. This makes their approach inapplicable when
there is shared data between cores or the number of cores is
greater than the number of DRAM banks. Goossens et al. [10]
offer a compromise with a page policy termed conservative
open-page policy. This policy exploits row locality for SRT
requestors while maintaining tight WCL bounds on HRT
requestors. The proposed MC in [10] retains the data in the row
buffer for a specified time window. When a request targets the
same row in the row buffer arrives within this window, it takes
advantage of the row locality . While this approach allows SRT
tasks to leverage performance benefits from open-page, It has
the same WCL as close-page policy. Furthermore, the proposed
policy depends on the arrival time of requests. As noted by
Wu et al. [11], non-trivial applications deployed on multi-core
systems often require the designer to make no assumptions on
the arrival times of memory requests due to multiple requests
arriving from various cores. Recently, Li et al. [16] proposed
an MC back-end that dynamically schedules DRAM access
commands and supports different transaction sizes. Based on
the transaction size, the numbers of interleaved banks and
data bursts are determined through a look-up table. The back-
end issues DRAM commands on a FCFS basis. The dynamic
command scheduling approach is promising for mixed-time

308

critical systems. However, it has a larger worst-case latency
than the statically defined access commands.

In contrast to [10], we require no assumptions on the arrival
time of memory requests. In addition, unlike [11], we allow for
shared data across cores. Finally, contrary to [16], we propose
a complete MC with novelties at both the frontend and the
backend. At the frontend, we propose a novel configurable
TDM scheduler and impose a rate regulation mechanism to
meet the conflicting requirements of different requestors. At
the backend, we use statically-defined command groups that
deploy a mixed-page policy to minimize the WCL of HRT
tasks while keeping the BW of SRT as high as demanded.

B. Scheduling schemes

A variety of scheduling schemes has been deployed by
researchers for shared resources in real-time systems. Exam-
ples include round robin (RR) [9], harmonic round robin [17]
and TDM [8], [15]. Although the RR scheme is simple and
efficient to implement, it shares the resource equally among
different requestors regardless their type; and hence, it does
not suit mixed-time critical systems. Yoon et al. [17] proposed
harmonic RR (HRR) to address this problem by assigning
different periods to different tasks. They use HRR to maximize
system utilization and not to minimize WCL. TDM scheduling
is able to provide different services to different requestor types.
Nonetheless, conventional TDM does not provide tight WCL.
This is further discussed in Section V.

IV. THE PROPOSED SOLUTION

We define the input to the PMC as memory requests from
a set of m requestors, R = {r1, r2, ...rm}. A requestor ri∈ R
is defined by the tuple: 〈pri, LRi, BWLi〉. pri is ri’s relative
priority. LRi and BWLi are the memory access latency and
BW requirements of ri. Figure 1 illustrates the proposed PMC
framework. The framework takes as input the system require-
ments provided by the designer as the set of requestors R, in
addition to the optimization objective of the system determined
by the designer. The designer can choose to optimize for the
overall memory access latency, the access latency incurred
by some of the requestors (HRT requestors for example), the
overall BW provided by the DRAM, or the BW provided to
some of the requestors (SRT requestors for example). The
optimization framework determines the schedule parameters
that satisfy system requirements and optimize for the designer
target. These parameters are provided to the PMC at boot-time.
The PMC executes the arbitration schedule.

A. PMC Architecture

We depict the proposed PMC architecture in Figure 1.
Requests from HRT and SRT tasks to the PMC are queued
in the Interface Buffers. Each requestor is assigned a distinct
interface buffer. Interface Buffers are typically part of the
requestors architecture as load/store queues [18] or part of
the network-on-chip architecture known as transaction queues
[19].

The Schedule Parameters block in Figure 1 is a look-up
table to store the schedule parameters necessary to execute the
schedule. These parameters are provided by the optimization
framework. The Arbiter executes the schedule identified by

�

�

�

�

�

�

�

�

�

�

�

�

Interface�
Buffers�

�

�

R
eq
ue
st
s

Arbiter�

Address�
Translator�

Bundle�
Generator�

�

�
cmds

store�
data

memory�
address

req.�
address�

load�
data

.�.�.�.�.�.�.�.�.�.�.�.�.�

� �
�

�

Rows

Co
lu
m
ns�

Row�Buffer

Banks

DRAM

Schedule�

re
qu

es
ts

Arbiter�

M
ux

Parameters

PMC

Optimization
Framework

set of requestors: R

period, starting slot, order, kmax

system objective

Fig. 1. Overview of PMC architecture.

these parameters, and it also regulates the rate of service
provided to requests. Once a requestor is scheduled to access
the DRAM by the Arbiter, the Requests Mux retrieves the
memory request from the Interface Buffers and supplies its
address to the Address Translator. The Address Translator maps
the physical address of the request to low-level addresses of
the DRAM (channel, rank, bank, row, and column addresses).
The Bundle Generator generates low-level access commands to
perform the access to the DRAM.

B. Formulating Bundles

� � ��� �� � � ������ ��
� � ��

�� �� �� ��� �� �
� 	 �

� � � �� �� �
� 	 �

�������

	�
��

�������

	�
��

�������

	�
��

����������������

����������������� ����������������

���

���

��� ���

��� 	� �

�

�	

� � ��� �� � � ������ ��
� � ��

�������

	�
��

����������������

��� 	� �

�

�	
�
�

����

�

6

����

�

6

Fig. 2. Command arrangements of the four bundles interleaving across 4
banks of DDR3-1333. (a) Bundle 1 (b) Bundle 2 (c) Bundle 3 (d) Bundle 4.
R: RAS command, C: CAS command, CP: CASp command, and N: NOP
command.

We combine DRAM commands in statically defined groups
with predictable behaviours that we call bundles. We construct
four bundles of commands similar to the groups proposed
by Goossens et al. [10]. Figure 2 describes the command
arrangement for the four bundles in case of interleaving across
four banks. There are two numbers in the figure. The one at
the bottom is the number of the bank being addressed, and
the one at the top is the number of NOPs placed to satisfy the
timing constraints. We use the command CASp to identify a
CAS command with an automatic PRE command following it.
Close-page policy uses CASp commands. Figure 2 illustrates
the following information about bundles. Bundles 1 and 4
have CASp commands, which denote close-page policy while

309

bundles 2 and 3 use CAS commands, which denote open-page
policy. Bundles 1 and 2 begin with a RAS command as they
access the DRAM when the row is closed by a prior access.
Conversely, bundles 3 and 4 begin with a CAS or a CASp
command as they access the DRAM when their targeted row
is already opened via prior bundles. A mix of these bundles
promotes a run-time switching between close- and open-page
policies.

The controller proposed by Goossens et al. [10] supports
requests with transaction sizes less than or equal to the
memory granularity. Thus, a large requests is split by the
requestor into multiple accesses that are sent to the controller
which arbitrates among accesses from different requestors.
This process destroys the inherent locality among accesses of
these large-size requests; and hence, the worst-case analysis
has to assume no locality is present. In contrast, PMC allows
large requests to stay mostly in tact even after arbitration (up
to a predefined threshold); hence, preserving the locality. To
achieve this target, the Bundle Generator generates different
bundle combinations for different requests based on their
transaction sizes. For a request with a transaction size that can
be completed in one memory access, the Bundle Generator
generates bundle 1 that implements close-page policy (Figure
3(a)). On the other hand, a request with a transaction size
greater than the memory granularity is divided by PMC into
multiple sub-requests, where each sub-request consists of a
number of bundles. The number of sub-requests and the
number of bundles granted to a sub-request are determined
by the rate regulator as explained in the next subsection. For a
general sub-request, the Bundle Generator generates bundle 2
to open the targeted row, followed by a sequence of bundle 3
that deploys an open-page policy accesses, and finally bundle
4 at the end to close the row (Figure 3 (b)). The PMC analysis
method (Section V) exploits this behaviour for tighter worst-
case latency bounds while satisfying BW requirements.

�1

�2 �3 ….. �3 �4

(a)

(b)

Fig. 3. Bundles usage: (a) 1-bundle size sub-request (b) multi-bundles size
sub-request.

C. Arbitration Logic

The Arbiter executes the schedule based on the schedule
parameters to arbitrate accesses among requests. In addition,
the Arbiter performs a rate regulation mechanism to prevent
any single requestor from saturating available resources. For a
requestor ri ∈ R, a maximum number of bundles that can be
serviced per access is defined as kmaxi. The Arbiter receives
the request information (data size and requestor identifier)
and computes the total number of bundles needed by the
request (ki). If ki > kmaxi, the Arbiter splits the request

into
⌈

ki

kmaxi

⌉
sub-request accesses. kmaxi is calculated by

the optimization framework for each requestor based on the
system requirements. When a sub-request of data size RSi

bytes from requestor ri is granted access to the DRAM, the
Bundle Generator computes the number of bundles needed as
ksubi =

⌈
RSi

BS

⌉
, where BS = BL × nbanks × DW denotes

the bundle data size. BL is the burst length that can be 4
or 8, nbanks is the number of banks the access interleaved
across, and DW is the data bus width in bytes (2B in our
used DRAM). Hence, assuming BL = 8, BS is 128B in case
of interleaving across all the eight banks of DDR3 and 64B
when interleaving across four banks only.

V. SCHEDULE GENERATION

A. Motivation

There are two common types of TDM schedules: contigu-
ous TDM and distributed TDM [20]. They are distinguished
based on how the slots are assigned. Figure 4 shows an
example of four requestors (r1, r2, r3 and r4) scheduled by
contiguous (Figure 4(a)) and distributed TDM (Figure 4(b)),
where r1, r2, r3 and r4 are assigned 4, 2, 2 and 2 slots, re-
spectively. In contiguous TDM, each requestor is consecutively
assigned its slots. In Figure 4(a), for a total of 10 slots, the
first four are assigned to r1. Let the WCL be the time elapses
from the arrival of the request until it is completed. Then,
the WCL of r1 is 7 slots, which allows all other requests to
access the resource before granting access to r1. The advantage
of contiguous TDM is that it is quite easy to implement, just
the order of served requestors needs to be stored. However, the
downside of this assignment is that the WCL of each requestor
is larger compared to distributed TDM. For example, although
r1 gets 4 slots out of 10, in the worst case, it has to wait for
6 slots before it can get an access.

In contrast, distributed TDM as shown in Figure 4(b) does
not require slots to be assigned contiguously. Accordingly,
the WCL of requestors in the distributed TDM schedule is
less than that of the contiguous TDM. For example, r1 in
Figure 4(b) gets assigned after every two slots. This results
in a WCL of 3 slots. Nonetheless, distributed TDM is more
difficult to implement as in general the whole schedule has to
be stored. This is because it is hard to get the slots assigned
to a requestor equally spaced in the schedule. This is owing
to two challenges. First, it is unlikely to have the number of
allocated slots to a requestor to be evenly divisible by the total
number of slots in the schedule, known as the frame size. For
example r1 in Figure 4(b) needs 4 slots while the frame size
is 10. Second, we may face the situation where two requestors
have to be assigned the same slot.

B. Proposed Implementation

To overcome the above-mentioned limitation, we propose
a novel method to implement the distributed TDM schedule
by applying two modifications. First, we set the frame size
as a variable whose value is determined by the optimization
framework based on the system requirements. Hence, we
set the framework constraints such that the number of slots
assigned to each requestor is divisible by the frame size; hence,
we avoid the first challenge. Second, we propose the term sub-
slot such that the framework can assign multiple requestors to
the same slot one after the other in successive sub-slots. As a
result, unlike conventional TDM schedules, the slot width is
not constant any more. The order of requestors within a slot
is also determined by the optimization framework that takes
into account the relative priorities of requestors (if exist). This
addresses the second challenge. Using our approach we need

310

����� �� �� � 	�
� �� �� � �� ���
� ��� �� ��� ��� ��� ��� ��� ��� �	 �	

� ����� ������ ������ ����	�
�������� �� �� �� �� �� �� �� � �� ��
� ��� �� ��� ��� �	� ��� ��� ��� �� �	�

(a)

(b)

(c)

����� �� �� � 	�
� �� �� � �� ���
� ��� ����

�

������ ������ ����	� �	

�

�

�

Fig. 4. Different versions of TDM scheduling: (a) contiguous TDM, (b)
distributed TDM and (c) proposed TDM.

to store for each request the following parameters: the period,
the starting slot and the order in the slot. These parameters
are explained in details in the next subsection. For example,
for r1 in Figure 4, the period is 1, the starting slot is 1 and
the order is 1 which means that r1 occupies the first sub-slot
in each slot. Figure 4(c) shows that for the presented example
we have four slots and these four slots have multiple requests
using the sub-slots concept. The details of the slot assignment
is discussed in section V-D.

The proposed scheduler is work-conservative. A slot will
not be idle unless no requestor has a ready request at this
slot. In non work-conserving TDM scheduling, the time slot
assigned to a requestor remains idle if there are no requests
from this particular requestor. This conservative approach may
be suitable for composable systems to force the latency to
be always equal to the WCL. However, it reduces system
utilization and increases access latency. On the other hand,
the proposed schedule grants access to the next scheduled
requestor in case there are no requests from the current
requestor. This is important to increase the utilization of shared
resources, and improve the average-case performance. In the
remaining of this section, we explain the details of the schedule
and the schedule parameters. Accordingly and based on these
parameters, we compute the WCL bounds for any request
accessing the DRAM using static analysis in section VI. For
clarity and space limit reasons, we tabulate all the terms used
in the remaining of the paper in Table I accompanied with
their explanation.

TABLE I. TERMS AND BRIEF DESCRIPTIONS.

Variable Description

R The set of requestors in the system.

ri Requestor number i in the system: ri ∈ R.

kmaxi Maximum number of bundles of a requestor ri that are serviced per
sub-request.

pri ri’s relative priority.

LRi The memory access latency requirement of ri.

BWLi The minimum bandwidth required by ri.

si Harmonic slots: total number of slots allocated to requestor ri.

pi Harmonic period: the interval (in slots) between two successive execu-
tions of i. It is equal to the total number of slots divided by si.

Yj The total number of requestors assigned to slot j.

wj The width of slot j in clock cycles.

W The scheduling window: the total number of cycles of all slots. After
W, the schedule is repeated.

UBLi The upper-bound latency incurred by a memory request from ri.

LBBi The lower-bound bandwidth delivered to a requestor ri.

C. Schedule parameters

The fact that mixed real-time systems execute tasks with
different temporal and bandwidth demands raises the impor-
tance of having a programmable memory controller. With the
exception of [15], existing predictable DRAM memory con-
trollers employ static schedules [6]–[9]; hence, they lack the
ability to meet these demands. In PMC, schedule parameters
are loaded at boot-time to the Schedule Parameters look-up
table, which allows PMC to execute a different schedule that
suits the running set of applications.

Area Overhead. The assignment of slots to requestors
is harmonic to increase the slot utilization. This is further
discussed in section V-D. Therefore, recalling that we have m
requestors, the number of slots in the schedule is at maximum
2m−1. For each requestor, we store the period (m−1 bits) and
the starting slot (m− 1 bits). Since multiple requestors can be
assigned the same slot, we store the order of the requestors
in the execution (log2 m bits). Finally, for purpose of rate
regulation, we store the maximum bundle limit kmaxi for
each requestor (log2(

2KB
64B) = 5 bits for a request of 2KB).

Consequently, the data size overhead is small. In the worst-
case, we need m×(2(m−1)+log2 m+5) bits. As an example,
a system with m ≤ 30 requestors, the PMC requires less than
256 bytes to store the parameters.

D. Schedule Slots

The deployment framework takes the requirements pre-
scribed by the requestors and the optimization objective of the
system, and produces a schedule that satisfies these require-
ments and optimizes for the selected objective. Figure 5 shows
a schedule example for seven requestors (R = {r1, r2, ..., r7})
with eight time slots. We use Figure 4 to illustrate the analysis
provided in this section and the next section. A requestor is
assigned one or more slots within a schedule based on its LR
and BWL requirements. For instance, r1 is assigned slots:
slot1, slot3, slot5 and slot7. This means that r1 is granted
permission to access the DRAM whenever its turn arises in
these slots. Notice that there is an order of requestors within
a slot which is based on priorities assigned to requestors. In
slot1, the schedule grants permission to r4 first, r1 next, and
r3 last. When there are no requests from a particular requestor
within a slot, the next requestor is granted permission. The as-
signment of slots to requestors is harmonic (si = 2q−1) where
q is a positive integer. The rationale behind the harmonic-slot
assignment is to schedule the requestors on a regular basis
as it achieves 100% slot utilization. It also requires a smaller
amount of memory to store the schedule in the controller. The
total number of slots in the schedule is n. This is a variable
that is defined based on the system requirements, generally
n = 2m−1. In order to discover the smallest n, the framework
selects a value of n. If it fails to generate a schedule satisfying
the requirements, n is increased until we obtain a schedule
that satisfies the requirements. To control the assignment of
slots to requestors, we define two binary variables xiq and yij .
In Equation 1, xiq = 1 only if ri is assigned a harmonic
number of slots, namely 2q−1. Consequently, if we ensure

that
∑
∀q

xiq = 1, as we will see in section VI-A, then we

guarantee the harmonic property of slots. In equation 2, yij

311

������� ������ ����	� ����
� ����� ����� ���� ������ �����
r � � � � � � � � �

�

� �
�� 8�of��	� �
�

Scheduling�window(W)

Period, ��� � �� �� �Period,��� � �

WC�for�R4 Slot�width�(��)

Execution�Delay�(������
Max�bundles,������ � ��

4 r4 r4 r4 r4 r4 r4 r4 r4r1 r1 r1 r1 r1r3 r3 r3 r3 r3r2r2 r5r5 r7 r6

Fig. 5. A schedule example.

identifies slots assigned to each requestor as it tracks whether
ri is assigned a particular slot j or not.

xiq =

{
1, if si = 2q−1 q ∈ Z

+.

0, otherwise.
(1)

yij =

{
1, if requestor ri is assigned to slot j.

0, otherwise.
(2)

Recall that the total number of requestors in the system is m.
Using Equation 2, the total number of requestors assigned to

slot j is calculated as Yj =
m∑
i=1

yij and the total number of

slots si assigned to a requestor ri is computed as si =

n∑
j=1

yij .

Based on the slots assigned to requestors, each requestor has
a harmonic period pi. For example in Figure 5, requestor r2
has p2 = 4 slots.

VI. STATIC ANALYSIS OF ACCESS LATENCIES

We provide the static analysis that introduces an upper-
bound on the latency incurred by any request to the DRAM,
as well as a lower-bound on the delivered BW to any requestor.
These bounds are necessary to achieve predictability. As
aforestated, a request is decomposed into a number of sub-
requests, where each sub-requst is a sequence of consecutive
bundle accesses. Figure 5 delineates that sequence for a sub-
request from r6 in slot8 which determines the execution
latency for this sub-request. Definition 1 formally defines the
execution latency.

Definition 1: The execution latency of a sub-request from
ri, (tEXi), is defined as the latency suffered by this sub-request
while it is performing the access to the DRAM. This latency
depends on the maximum number of consecutive bundles
granted to ri (kmaxi) and is calculated as:

tEXi =

{
tb1 , if kmax = 1

tb2 + (kmaxi − 2)× tb3 + tb4 , if kmaxi ≥ 2.

As the DRAM standard specifies an additional latency to
accomodate for the data bus switching between read and write
sub-requests and vice versa, we define the worst-case switching
latency in Definition 2.

Definition 2: The worst-case switching latency between
successive sub-requests within slot j (tSWj) is defined as the

maximum number of cycles required to switch from a read to
a write (tRTW) operation or vice verse (tWTR) during this
slot and is computed by:

tSWj = �(Yj/2)� × MAX(tRTW, tWTR)

+ 	(Yj/2)
 × MIN(tRTW, tWTR).

Since multiple requestors can be assigned to the same slot, the
proposed schedule has variant slot width. The width of slot j,
wj , is calculated in Equation 3. It is composed of the access
latencies of the sub-requests assigned in slot j in addition to the
switching latency between these sub-requests. Given that all
slot widths are calculated using Equation 3, the total schedule
window latency is computed in Equation 4.

wj = (

m∑
i=1

(yij × tEXi)) + tSWj (3)

W =
∑
∀j

wj (4)

Definition 3 formally defines the total access latency in-
curred by any sub-request to the DRAM.

Definition 3: The total access latency of a sub-request is
defined as the number of cycles from the arrival of this sub-
request at the head of the queue in the interface buffer until
all its bundles are issued.

This total latency has an upper bound, which we denote as the
upper-bound latency (UBL). The UBL of a sub-request from
ri is computed by Equation 5. In the worst case, a requestor
has to wait for pi slots and each slot has the maximum width.
pi is the harmonic period of ri as defined in Table I.

UBLsubi = pi × MAX∀j(wj) (5)

Recall that any request requires a number of bundles ki >
kmax is split into multiple sub-requests. Accordingly, the
UBL for a request is computed as the UBL of its sub-requests
multiplied by the number of sub-requests as shown in Equation
6. Notice that we do not take the latency resulting from the in-
terference of refresh commands into account within the context
of this paper. However, it can be easily incorporated since the
refresh operation is periodic and occurs every tREFI cycles.
A realistic approach to account for the refresh interference
is to incorporate the refresh latency every designated number

312

of requests. This can be done in a task-based analysis such
as [21].

UBLi =

⌈
(

ki
kmaxi

)

⌉
× UBLsubi (6)

LBBi is the lower-bound BW serviced to requestor ri
every W and is calculated by Equation 7, where kmaxi×BS
represents the minimum number of bytes transferred every pi.

LBBi = (kmaxi ×BS)/UBLsubi (7)

A. Problem Formulation

We formulate the schedule generation problem as a mixed-
integer non-linear optimization problem that can be solved
using any appropriate optimization solver such as Matlab [22].
As aforementioned, the framework enables the designer to
build a schedule that meets the requirements of HRT and
SRT requestors as well as optimizes for the system target
simultaneously. The designer has the ability to optimize for
one of four targets that we found interesting in mixed-time
critical systems: 1) the overall WCL, 2) the WCL incurred
by some of the requestors (HRT requestors for example), 3)
the overall BW provided by the DRAM, 4) the BW provided
to some of the requestors (SRT requestors for example). As
an example, the following formulation optimizes the schedule
for the first target which is minimizing the total WCL in the
system.
Target Function

min
m∑
i=1

UBLi

Constraints

∀i, l, k in [1,,m] :

∑
∀q

xiq = 1 (C.1)

m∑
j=1

yij = si (C.2)

prl < prk =⇒ pl < pk (C.3)
pi∑
j=1

yij = 1 (C.4)

pi∑
j=1

(yij ×
si−1∑
u=0

(yi,j+u×pi)) = si (C.5)

UBLi ≤ LRi (C.6)

LBBi ≥ BWLi (C.7)

The first constraint ensures the harmonic property of the
number of slots assigned to any requestor while the second
constraint asserts that the total number of assigned slots to
any requestor is consistent with the selected harmonic number
of slots chosen by the framework for that requestor. If the
system has priorities between requestors, we provide the higher
priority requestors with at least the same number of slots
provided to the lower priority ones. This is accomplished by
the third constraint. However, the priority is an optional system

parameter. Setting all priorities to 1, for example, makes the
framework agnostic to this constraint. Priorities are also used
to define the order of sub-requests within a slot. If no priorities
are defined, an arbitrary order is chosen. The fourth and
fifth constraints force the distributed-TDM characteristic in
the schedule. They determine how to spread each requestor ri
over the slots to have a separation between each two successive
executions to be exactly pi. This is important to have a realistic
guaranteed UBLi. Constraint C.4 pledges that a request will
get exactly one slot every pi; while constraint C.5 asserts that
the total number of assigned slots is equal to the harmonic
number of slots determined by the framework. Constraints
C.6 and C.7 assert that the LR and BWL requirements of
all requestors are satisfied. These are optional parameters. If a
requestor has no LR requirement, it can be set to infinity. If
a requestor has no BW minimum requirements, it can be set
to zero or one.

VII. EXPERIMENTAL EVALUATION

We extend MacSim, a multi-threaded architectural simu-
lator [23] with the proposed PMC to manage accesses to a
DDR3-1333 off-chip memory. To compare the effectiveness
of the proposed solution, we also implement two competitive
MCs, the first one employs the conservative open-page pol-
icy [10] (COP), and the second one is AMC and employs
the close-page policy [9]. In addition, we compare against
a configurable system that combines the optimized TDM
schedule in [12] and the COP. We use benchmarks from
EEMBC-auto benchmark suite [24]. We divide our evaluation
into two types of experiments: synthetic experiments and use-
case system requirements. In the synthetic experiments, in
order to show the tightness of the provided bounds by the
static analysis, we show both simulation results and analytical
bounds, while in the use-case experiment, we only show the
simulation results.

A. Synthetic Experiments

We perform two types of synthetic experiments. In the first
type, we verify the ability of the proposed solution to attain
different WCLs and BWs. We carry this out by tuning the
configurable parameters: the maximum number of consecutive
bundles (kmaxi) and the schedule slots (si) of each requestor
ri. In the second type, we study how the WCL of HRT tasks
scales with the number of SRT requestors in the system.
Since in the synthetic experiments, we do not have specific
system requirements and we want to study the effect of varying
different parameters, we do not use the optimization framework
in synthetic experiments.

1) Varying PMC parameters:

System Configuration. We deploy the following system
configuration in the MacSim simulator. We use a multi-core
architecture model composed of five x86 cores (r1 to r5),
private 16KB L1 and 256KB L2 caches, and a shared 1MB L3
cache. r1 is a HRT requestor with 64B memory transactions.
r2 to r5 are SRT requestors with 2KB memory transactions.
The used DRAM model is DDR-1333 [13]. Since the smallest
transaction size is 64B which can be obtained using four
banks, we interleave across only four banks in order to avoid
transferring useless data. MCs Configuration. AMC executes

313

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 8 16 32 1 8 16 32 1 8 16 32

1 2 4

W
CL

 [c
yc

le
s]

kmax (1,8,16,32) across s (1,2,4)
AMC_HRT AMC_SRT COP_HRT COP_SRT

PMC_HRT PMC_SRT PMC_HRT_UBL PMC_SRT_UBL

SRT SRT

Fig. 6. WCL with different kmax and s of SRT requestors.

a RR amongst the five requestors. COP executes a contiguous
TDM schedule such that each requestor is assigned two
consecutive slots. The 2-slot version of COP is chosen rather
than the 1-slot version (where each requestor is granted only
one slot) because it allows for locality exploitation among
requests of the same core [10]. AMC and COP only support
transactions up to the memory granularity. Hence, for both
MCs, the 2KB transactions from SRT requestors are chopped
into contiguous 64B transactions at the requestor side before
sending them to the MC. On the other side, since PMC
supports larger transaction sizes than the memory granularity,
all transactions are sent to PMC without chopping. Since r1
has 64B transactions, kmax1 is set to 1. For SRT requestors
(r2 to r5), we vary kmax (kmaxSRT in this context) to be 1,
8, 16 or 32. The PMC’s schedule consists of 4 slots. We grant
the first subslot in each schedule slot for the HRT requestor
(r1), s1 = 4. For SRT requestors, we vary s (sSRT in this
context) to be 1, 2 or 4. In case of sSRT = 1, the resulting
schedule is [r1 r2][r1 r3][r1 r4][r1 r5], where each bracket
pair represents a slot. Similarly, when sSRT = 2, the schedule
is [r1 r2 r3][r1 r4 r5]. Finally, for sSRT = 4, the schedule is
composed of the single slot [r1 r2 r3 r4 r5].

Observations. Figures 6 and 7 depict the WCL and BW
resulting from these synthetic experiments. Based on both
figures we make the following observations. (1) Both AMC
and COP have a fixed WCL since they have a fixed schedule
and a bounded transaction size. In contrast, PMC has the
capability of achieving different WCL and BW for different
use-cases or requirements. As Figures 6 and 7 show, this
is attained by the configurable parameters provided by the
proposed framework. (2) Both figures highlight the main
novelty of PMC: exploring the trade-off between SRT and
HRT requirements to provide the optimal MC behaviour. As-
signing a higher kmax for SRT requestors will improve their
BW. However, it will increase the WCL of HRT requestors.
Contrarily, a lower kmaxSRT will reduce the WCL of HRT
requestors by throttling the BW serviced to SRT requestors.
Similar effect results from changing the number of granted
slots to each SRT requestor sSRT . The optimal (kmax and
s) pair per requestor depends on the use-case requirements
and is determined by the optimization framework. (3) Any

0

100

200

300

400

500

600

700

800

900

1000

1 8 16 32 1 8 16 32 1 8 16 32

1 2 4

BW

kmax (1,8,16,32) across s (1,2,4)

AMC_HRT AMC_SRT COP_HRT COP_SRT
PMC_HRT PMC_SRT PMC_SRT_LBB PMC_HRT_LBB

SRT SRT

Fig. 7. BW with different kmax and s of SRT requestors.

system requirements that can be satisfied using AMC or the
COP, is necessarily satisfiable by the proposed mixed-policy
PMC. This is because PMC encompasses both behaviours of
AMC and COP. Setting kmax = 1 for all requestors and
assigning SRT requestors the same number of slots as HRT
ones (sSRT = 4 in Figures 6 and 7) will engender a behaviour
similar to AMC. Correspondingly, setting kmax = 2 and
assigning SRT requestors the same number of slots as HRT
ones will engender a behaviour similar to COP. (4) Figures 6
and 7 delineate the memory latency and BW bounds for
PMC (UBL and LLB) obtained from the static analysis
respectively. Results point out the safeness of the calculated
bounds since all obtained WCL measurements are less than
their corresponding UBL and all obtained BW measurements
are higher than their corresponding LBB.

2) Varying number of requestors in the system:

System Configuration. To study how the implemented
MCs scale with increasing number of requestors in the system,
we vary the number of SRT requestors co-existing with a single
HRT and two HRT requestors. We define the target of all
these system configurations as minimizing the WCL of HRT
requestors. Similar to the previous system configuration, the
HRT requestors issue 64B transactions and the SRT requestors
issue 2KB transactions.

Observations. We show the WCL of the HRT requestor(s)
and the BW of the SRT requestors on Figure 8. (1) Figure 8
demonstrates that PMC provides a fixed WCL for the HRT
requestor(s) regardless number of SRT requestors. This is by
virtue of the configuration capability of both the rate regulator
(kmax) and the arbitration schedule (s). We configure kmax
and s for all requestors such that each HRT requestor is
assigned a subslot in all schedule slots, while only one SRT
requestor is assigned a subslot in a schedule slot. In addition,
we set kmax = 1 for all SRT requestors. For instance, in
the case of a single HRT requestor (r1) and a single SRT
requestor (r2), the schedule is [r1 r2], while in case of one
HRT and eight SRT requestors (r2 to r9) the schedule is [r1
r2][r1 r3][r1 r4][r1 r5][r1 r6][r1 r7][r1 r8][r1 r9]. Obviously,
the WCL of r1 in both schedules is the same. In contrast, the
WCL of the HRT requestor increases by 352% and 166% in
AMC and 310% and 204% in COP for eight SRT requestors

314

56 85

14
1 25

3

85 11
2 16

8 22
6

10
1 15

2 24
3

41
4

15
1 19

3 28
5

45
9

56 56 56 56 83 83 83 83

18
59

86
2

44
0

25
8

17
95

86
7

43
2

29
8

19
47

95
1

48
8

28
7

18
71

96
0

48
0

33
1

18
59

86
0

43
5

25
1

17
95

86
6

42
7

29
0

0

500

1000

1500

2000

2500

1 2 4 8 1 2 4 8

1 2

BW
 [M

B/
se

c]

Number of SRT requestors (1,2,4,8) across number of HRT requestors (1,2)
AMC-HRT-WCL COP-HRT-WCL PMC-HRT-WCL
AMC-SRT-BW COP-SRT-BW PMC-SRT-BW

500

1000

1500

2000

2500

0

W
CL

 [c
yc

le
s]

Fig. 8. WCL and BW for different number of HRT and SRT requestors in
the system.

in comparison to a single SRT requestor in case of one and
two HRT requestors respectively.

(2) Another important observation from Figure 8 is that
for a system with more than one SRT requestors, the min-
imum BW delivered to the SRT requestors by PMC is less
than that delivered by AMC or COP MCs. This is because
we set the values of kmax and s to minimize the WCL
of HRT requestors. Hence, we sacrifice part of the service
delivered to SRT requestors. If the BW delivered by PMC
to SRT requestors is not satisfying their requirements, an-
other configuration should be presented by the optimization
framework that will relax the constraint of having a fixed
WCL of the HRT requestor to increase the BW delivered to
SRT requestors. Again, this emphasises the potential of the
proposed framework to have different schedules for different
system requirements.

(3) Finally, we observe that COP offers a higher bandwidth
for SRT requestors at the expense of higher WCL of HRT
requestors compared to AMC and PMC. This is because COP
is assigning two consecutive slots to each requestor. SRT
requestors usually utilize these slots and send requests that
exploit row locality as they are memory intensive due to the
large-size requests (each 2KB request is split into 32 successive
64B accesses). Therefore, the BW of SRT requestor increases.
On the other side, HRT requestors, in the worst case, have
to wait for two slots per SRT requestor which increases their
WCL.

B. Use-case: Multimedia System

TABLE II. MULTIMEDIA PROCESSING SYSTEM REQUIREMENTS.

Requestor benchmark transaction size LRi (cycle) BWLi (MB/s)

r1 a2time 128 ∞ 0

r2 aifftr 128 ∞ 384.9

r3 airfir 128 ∞ 46.65

r4 aiifft 256 ∞ 500

r5 basefp 256 816 250

r6 bitmnp 256 816 250

r7 cacheb 128 ∞ 75

System Configuration. We use a practical system with
requirements modelled after the multimedia system in [12].
The system has seven requestors, r1 to r7, with different
requirements. r1 is an input device that writes the encoded

media stream to the memory. r2 and r3 are the input and output
cores/requestors respectively for a media engine decoder that
decodes the media stream. r4 and r5 are the input and output
cores/requestors respectively for a graphical processing unit
(GPU). r6 is an HDLCD-screen controller. Finally r7 is the
central processing unit (CPU) of the system. We first map
these requirements to the DDR3 equivalent requirements and
then adapt it as it was originally proposed for a 4-channel
memory system. We run a benchmark from the EEMBC-auto
suite [24] on each requestor as shown in TableII. Table II also
tabulates the requirements of each requestor. LR = ∞ means
that the requestor has no LR requirements, while BWL = 0
models a requestor with no BW requirements.

MCs Configurations. To further validate the improve-
ments we get in both the WCL and the average-case per-
formance considering the proposed solution, we implement a
memory controller that combines both the COP policy [10]
and the optimized TDM schedule configuration in [12], which
we call optimal COP. Optimal COP is able to assign different
number of slots to the requestors based on the requirements.
to compare the proposed PMC against optimal COP. We
implement the proposed PMC as well as optimal COP in
MacSim simulator and run a different benchmark in each core.

Observations. Figures 9 and 10 show the experimental
WCL and minimum BW respectively for both PMC and the
optimized COP. Results show that both MCs are able to meet
the requirements. However, PMC shows better assignment
of the resource based on the requirements. In particular,
requestors r5 and r6 are the requestors that have LR require-
ments, meaning that they are sensitive to the latency. The
proposed framework captures this fact and hence, introduces
a schedule that has a lower WCL than the optimal COP.
Similarly, the proposed framework captures the fact that r4, r2
have tighter BWL requirements than other requestors; hence,
it introduces a schedule that provides them larger minimum
BW than the optimal COP MC. This is due to two factors.
First the differences between the proposed schedule and the
regular TDM schedule used in [12] as discussed in section
V. Second, the difference between the COP policy and the

 0

 200

 400

 600

 800

r1 r2 r3 r4 r5 r6 r7

 1000

 1200

 1400

Optimal COP PMC

W
C

L
(c

yc
le

s)

Fig. 9. WCL results for the multimedia processing system.

315

 0

 100

 200

 300

 400

 500

 600

 700

r1 r2 r3 r4 r5 r6 r7
Optimal COP PMC

M
in

im
um

 B
W

 (
M

B
/s

)

Fig. 10. Minimum BW results for the multimedia processing system.

proposed policy. COP relies on the arrival times of requests
to the DRAM which in the worst case will come after the
designated window causing COP to behave exactly as close-
page policy. On the other hand, as explained in section IV-B,
the proposed mixed-policy PMC allows variant transaction-size
requestors and exploit locality between sub-requests of large
transaction-size requests.

VIII. CONCLUSION

We present PMC, a programmable DRAM MC for mixed-
time critical systems, as well as an optimization framework
to provide optimal schedules for different set of applications
running on these systems. This framework has the ability
to honour requirements of memory requestors in mixed-time
critical applications. In addition, the framework optimizes the
schedule for different system targets such as total worst-case
latency or bandwidth. We also promote a novel implementation
of distributed TDM schedule that has lower area overhead.
PMC allows different requestors to issue memory requests
with different transaction sizes. This is important for practical
systems such as media processing systems specially with
multi-core architectures. Furthermore, we implement a mixed-
page policy scheme that dynamically switches between close-
and open-page policies. By exploiting row locality, the pro-
posed policy reduces the worst-case latency of requests while
increasing the average-case performance compared to state-of-
the-art predictable controllers. Finally, we present a complete
static analysis to provide upper bounds on the latency, and
lower bounds on the BW serviced to any requestor.

REFERENCES

[1] M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, p. 2, 2009.

[2] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves
for multimedia operating systems,” DTIC Document, Tech. Rep., 1993.

[3] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” Real-Time Systems, vol. 27, no. 2, pp. 123–167, 2004.

[4] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning real-time applications
over multicore reservations,” Industrial Informatics, IEEE Transactions
on, vol. 7, no. 2, pp. 302–315, 2011.

[5] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time task
scheduling in heterogeneous multicore system-on-a-chip,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 24, no. 1, pp. 118–130,
Jan 2013.

[6] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in IEEE/ACM international conference
on Hardware/software codesign and system synthesis (CODES+ ISSS),
2007, pp. 251–256.

[7] B. Akesson and K. Goossens, “Architectures and modeling of pre-
dictable memory controllers for improved system integration,” in IEEE
Conference on Design, Automation and Test in Europe (DATE), 2011,
pp. 1–6.

[8] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM
controller: Bank privatization for predictability and temporal isolation,”
in IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES+ ISSS), 2011, pp. 99–108.

[9] M. Paolieri, E. Quiñones, F. J. Cazorla, and M. Valero, “An analyzable
memory controller for hard real-time cmps,” Embedded Systems Letters,
IEEE, vol. 1, no. 4, pp. 86–90, 2009.

[10] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-
page policy for mixed time-criticality memory controllers,” in IEEE
Conference on Design, Automation and Test in Europe (DATE), 2013,
pp. 525–530.

[11] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram
latency in multi-requestor systems,” in IEEE Real-Time Systems Sym-
posium (RTSS), 2013, pp. 372–383.

[12] M. D. Gomony, B. Akesson, and K. Goossens, “A real-time multi-
channel memory controller and optimal mapping of memory clients
to memory channels,” ACM Transactions on Embedded Computing
Systems (TECS), 2014, to appear.

[13] “JEDEC DDR3 SDRAM specifications jesd79-3d,”
http://www.jedec.org/standards-documents/docs/jesd-79-3d, accessed:
2015-02-12.

[14] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in IEEE
International Symposium on Computer Architecture (ISCA), 2008, pp.
39–50.

[15] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens, “A reconfig-
urable real-time SDRAM controller for mixed time-criticality systems,”
in IEEE International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2013, pp. 1–10.

[16] Y. Li, B. Akesson, and K. Goossens, “Dynamic command scheduling
for real-time memory controllers,” in Proc. Euromicro Conference on
Real-Time Systems (ECRTS), 2014.

[17] M.-K. Yoon, J.-E. Kim, and L. Sha, “Optimizing tunable wcet with
shared resource allocation and arbitration in hard real-time multi-
core systems,” in IEEE Conference on Real-Time Systems Symposium
(RTSS), 2011, pp. 227–238.

[18] R. Kalla, B. Sinharoy, and J. M. Tendler, “Ibm power5 chip: A dual-
core multithreaded processor,” Micro, IEEE, vol. 24, no. 2, pp. 40–47,
2004.

[19] A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens, “An efficient on-chip NI offering guar-
anteed services, shared-memory abstraction, and flexible network con-
figuration,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 24, no. 1, pp. 4–17, 2005.

[20] B. Akesson and K. Goossens, Memory Controllers for Real-Time
Embedded Systems, first edition ed., ser. Embedded Systems Series.
Springer, 2011.

[21] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.
Rajkumar, “Bounding memory interference delay in cots-based multi-
core systems,” Technical Report CMU/SEI-2014-TR-003, Software
Engineering Institute, Carnegie Mellon University, Tech. Rep., 2014.

[22] C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for
function optimization: a matlab implementation,” NCSU-IE TR, vol. 95,
no. 09, 1995.

[23] H. Kim, J. Lee, N. Lakshminarayana, J. Lim, and T. Pho, “Macsim:
Simulator for heterogeneous architecture,” 2012.

[24] J. Poovey, “Characterization of the eembc benchmark suite,” North
Carolina State University, 2007.

316

