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Abstract—We explore techniques to reverse-engineer proper-
ties of DRAM memory controllers (MCs). This includes page
policies, address mapping schemes and command arbitration
schemes. There are several benefits to knowing this information:
they allow analysis techniques to effectively compute worst-case
bounds, and they allow customizations to be made in software for
predictability. We develop a latency-based analysis, and use this
analysis to devise algorithms for micro-benchmarks to extract
properties of MCs. In order to cover a breadth of page policies,
address mappings and command arbitration schemes, we explore
our technique using a micro-architecture simulation framework
and document our findings.

I. INTRODUCTION

Real-time platforms consist of memory hierarchies with
a combination of on-chip scratchpads, caches, and dynamic
random-access memories (DRAMs) [1]. It is imperative for
the memory hierarchy to be predictable to allow worst-case
execution time (WCET) analysis techniques to account for
latencies incurred during memory accesses. While there is
ample of research developing WCET analyses for various
organizations of caches, recent works related to DRAMs have
largely focused on re-designing the hardware for MCs to
deliver predictability [2], [3], [4], [5], [6]. These approaches
achieve predictability, but at the price of hardware customiza-
tions. This means that specialized hardware is necessary for
real-time applications, which renders the specialized plat-
forms unusable for applications that have high performance
requirements due to competing goals for predictability and
performance. Furthermore, these specializations do little to
enable the use of existing embedded platforms for real-time
systems where hardware customizations are not possible. Our
vision is to develop techniques to use existing DRAM MCs
without hardware modifications to deliver predictability when
deploying real-time embedded applications, and to deliver high
performance for applications that are non-real-time. However,
there are certain vital pieces of information about the DRAM
MC, which must either be provided by the vendor or reverse-
engineered. For this reason, our focus in this work is to
reverse-engineer certain important properties of the MCs via
a latency-based analysis. The benefits of successfully reverse-
engineering properties of the MC are that they allow software
customizations to be made based on these properties to offer
either predictability or high performance, and static worst-
case execution time analysis tools can incorporate the DRAM
latencies accurately.

There are several research efforts that reverse-engineer
cache properties [7], [8], [9], [10], [11], [12], [13], but, there is
limited work that does the same for MCs [14], [15]. These two

works [14], [15] partially reverse-engineer properties of the
MC. In particular, they discover the address mapping schemes,
and use them to customize software to offer novel memory-
page allocations. However, they do not discover page policies
or command arbitration schemes that can provide further
opportunities for software customizations. Authors in [16]
assume that all properties of the MC are known a priori.
They use this information to provide bounds on memory
interferences in multi-core systems. This provides evidence of
the advantages of knowing properties of the MCs. However,
the techniques to reverse-engineer important properties of MCs
remains an unexplored challenge.

In response to this challenge, we develop a latency-based
analysis to reverse-engineer essential properties of the MC.
We discover commonly used page policies, address mapping
schemes, and command arbitration schemes. Our technique
relies on deriving best- and worst-case latency equations for
memory accesses to the MC. We use this analysis to develop
algorithms for micro-benchmarks that can elicit properties of
the MC. Since most hardware platforms typically fix their page
policies, address mapping schemes, and command arbitration
schemes, we deliberately experiment with a micro-architectural
simulation framework MacSim [17] interfaced with a compre-
hensive DRAM simulator called DRAMSim2 [18] to enable a
thorough exploration of MC configurations.

II. BACKGROUND

A dynamic random-access memory (DRAM) is a three-
dimensional array of memory cells consisting of banks with
each bank organized by rows and columns. Figure 1 shows the
architecture of a single rank DRAM. A DRAM rank contains
multiple banks, and multiple ranks form a DRAM channel.
Each bank uses a temporary buffer to access bits of data, which
is called the row-buffer. The row of data in the row-buffer is
known as the open row. Column accesses (reads or writes)
only access the open row. Requests to different banks and/or
ranks can be interleaved, which increases the bandwidth and
decreases the access latency of requests.

An MC manages accesses to the DRAM by honouring low-
level temporal characteristics of the DRAM by implementing a
page policy, an address mapping scheme, and a command arbi-
tration scheme [19]. Page policy dictates the liveness of data in
the row-buffer. For example, open-page policy allows requests
to exploit row locality by keeping data available in the row-
buffer for a given period of time. Hence, memory accesses to
the most recently accessed row are faster than those to different
rows. Close-page policy, on the other hand, writes back data
in the row-buffer to the memory cells after each access. Thus,
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ensuring that every memory access incurs the same access
latency. Modern MCs provide a combination of open-page
and close-page policies known as hybrid-page policy to exploit
higher performance. Hybrid-page policy uses the access history
to dynamically switch between the page policies. The address
mapping scheme converts the logical memory address supplied
by the processor to a physical address identifying channel,
rank, bank, row and column indices to access the DRAM.
Throughout this paper, we refer the number of bits assigned
to channel, rank, bank, row and column indices as CNW, RKW,
BKW, RWW, and CLW, respectively. This makes the physical
address PW = CNW + RKW + BKW + RWW + CLW bits.
The command arbitration scheme schedules low-level DRAM
commands to perform memory accesses. These commands are
RAS, CAS, CASP, and REF.

Rank Banks

2-D arrangement
of rows and 

columns

Row-buffer

Activate row
into row-buffer

Precharge row
into array

DRAM 
device

Fig. 1: DRAM architecture.

RAS performs a row access. CAS performs a column access
(read or write) within the row. PRE closes the row in the row-
buffer and writes back the data to the memory cells. CASP

performs a read or a write with an automatic PRE command.
Close-page policy typically employs CASP. The REF command
refreshes the DRAM necessary for its correct operation. To
distinguish read operations from write operations, we use
WCAS and WCASP for data write CAS commands, and RCAS

and RCASP for data read CAS commands. The issuance of these
commands has to honour the timing constraints defined by
the JEDEC-DDR standards [20]. Table I shows these timing
constraints, and their description for a DDR3-1600 model.
Each constraint in Table I has a number starting from C.1
to C.14.

We use Figure 2 to illustrate the meaning of these con-
straints. It shows a write access followed by a write or read ac-
cess targeting the same bank and rank for an MC implementing
close-page policy. Hence, CAS commands are issued with auto
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Fig. 2: A write access followed by a write or read access
targeting the same bank and rank for close-page policy.

TABLE I: DDR3-1600 timing constraints. [20]

No. Symbol Description Cycles
C.1 tRRD Minimum time between two RAS 4

to same device.
C.2 tRCD RAS to CAS constraint to bring 10

data into row-buffer.
C.3 tCL Minimum time between CAS and 10

start of data transfer.
C.4 tRL Minimum time between RCAS and 10

start of data transfer.
C.5 tWL Minimum time between WCAS and 9

start of data transfer.
C.6 tBUS Time to transfer data on the bus. 4
C.7 tRTW Time to change bus direction from 6

read to write.
C.8 tWTR Time to change bus direction from 18

write to read.
C.9 tRTRS Time to switch from rank to rank. 1
C.10 tRAS RAS to PRE to access row 24

and restore data in row.
C.11 tRC Minimum time between two RAS 34

commands to same bank.
C.12 tRTP Minimum time between RCAS and PRE. 10
C.13 tRP The minimum time between PRE 10

and the following RAS command,
required to precharge the row.

C.14 tWR Minimum time between end of 10
data writing and PRE. Required
to restore written data to DRAM.

PRE commands to close the row after each access. Notice that
tWL cycles are required between the issuance of WCASP1 and
the start of writing data to the DRAM. Then, the data transfer
takes tBUS cycles. tWR cycles are necessary between the end
of the data transfer, and the auto PRE1 command. These are
timing constraints set by the physical properties of the DRAM.
The ti, fi and li in Figure 2 denote the arrival time, finish time,
and the latency of a physical request pri, respectively.

III. RELATED WORK

There are several research efforts that infer properties
of caches using measurement-based analysis [7], [8], [9],
[10], [11], [12], [13]. We broadly classify these approaches
into those that use performance counters present in the plat-
forms [7], [8], [9], [10], and those that rely on latency
analysis [11], [12], [13].

The approaches proposed in [7], [8], [9], [10] make use
of performance counters available in current platforms to infer
properties of the cache hierarchy. While [8], [10] identify LRU
replacement policies and variants of LRU such as pseudo-LRU
and fill PLRU, a recent work by Abel and Reineke [7] uses
block order maintained in the cache sets due to cache hits
and misses to distinguish between LRU, FIFO, and random
replacement policies. Latency analysis approaches [12], [13],
[11] measure access latencies to the memories to discover
their properties. This approach is necessary when performance
counters are either unavailable or do not provide sufficient
statistics for inference. For example, authors in [11] infer cache
properties of an NVIDIA GT200 GPU via latency analysis
because performance counters were unavailable.

Recent works such as [14], [15] infer certain properties of
the MC in an effort to propose novel virtual-to-physical page
allocations. Yun et al. [14] propose a new virtual-to-physical
memory allocation scheme by first inferring the mapping
between virtual address bits and physical bank bits for the Intel
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Xeon processor using latency-based analysis. Park et al. [15]
employ similar latency based analysis to identify channel, rank,
and bank bit mapping between virtual and physical addresses.
However, we find the approach followed by [15] is suitable for
mappings where all the bits assigned to a certain group (such
as bank, ranks or channels) are contiguous. This approach will
not be able to reveal details of distributed address mapping
schemes. In addition, [14], [15] do not infer other important
properties of the MC such as the page policy, and command
arbitration schemes that are essential in understanding the
temporal behaviour of the MC. In our work, we attempt to
do this for the most common page policies, address mappings,
and command arbitration schemes.

IV. MEMORY LATENCY ANALYSIS

When the MC grants the logical memory requests (Defini-
tion 1) access to the DRAM, it converts the logical memory
requests into physical memory requests. A physical memory
request (Definition 3) consists of two components: the physical
address (Definition 2), and a sequence of low-level DRAM
commands. The address mapping policy translates the logical
memory address to the physical memory address.

Definition 1: A logical memory request is a 2-tuple lr =
〈la, o〉 where la is a LW bits wide logical memory address
la ∈ {0, 1}LW and o ∈ {R,W} designates a read or write
access operation.

Definition 2: A physical address pa = 〈cn, rnk, bnk, rw,
cl〉 is PW bits wide. It is composed of CNW channel bits, RKW
rank bits, BKW bank bits, RWW row bits and CLW column bits,
respectively.

Definition 3: A physical memory request is a 2-tuple pr
= 〈pa, cs〉 such that pa is the physical address and cs is a
sequence of DRAM commands.

Definition 4: The arrival time ti is the time-stamp at which
the first DRAM command of pri arrives at the command
queue.

Definition 5: The finish time fi of a physical request pri
is the time-stamp at which pri starts its data transfer.

Definition 6: The access latency of the ith physical request
pri is defined as li = fi − ti.

The commands issued by the MC to the DRAM adhere to
certain timing constraints based on a DRAM access protocol.
These timing constraints affect the access latency of any
request to the DRAM.

If the arrival time of pri is such that pri will not incur any
waiting latency due to timing constraints between commands
of pri and commands of previous requests, then pri will
incur the best-case access latency. Figure 2 illustrates two
physical requests, pr1 and pr2 with their arrival times t1 and
t2, latencies l1 and l2 and finish times f1 and f2. Let the MC
be initially idle and pr1 arrives at time-stamp 0 (t1=0). Hence,
in Figure 2, pr1 satisfies the timing constraints from Table I
trivially and the MC issues RAS1 immediately. However, t2
does not satisfy the timing constraints as pr2 arrives before
the PRE1 is issued; therefore, the MC must delay issuing RAS2

to satisfy the timing constraints.

The arrival time ti depends on several factors that the
MC cannot control. For example, delays incurred due to
pipeline stalls or the interconnect. As a result, we study the
effect of arrival times on access latencies experienced by
physical requests. Let pr1 = 〈pa1, cs1〉 and pr2 = 〈pa2, cs2〉
be two successive physical requests. Our approach presents an
analysis to derive the access latency for pr2, its best- (lBEST

2 ),
and worst-case access (lWORST

2 ) latency bounds. The analysis
is done under the assumption that the DRAM MC is initially
in an idle state; hence, there are no active rows in the row-
buffers. Recall that we use RCAS command for a read CAS and
WCAS command for a write CAS. If the access latency analysis
is agnostic to the request type, then RCAS and WCAS have the
same effect on the latency. Therefore, we denote the access
command simply as CAS, and the timing constraint between
the CAS and the start of the data transfer as tCL. Since tBUS
constraint includes the tCCD constraint in all DDR modules,
throughout this paper we let tBUS ≥ tCCD.

A. Proof Strategy

We highlight the strategy we follow to obtain the best- and
worst-case access latencies. We then introduce an example to
apply this strategy for two accesses with same access type to
two different banks in the same rank.

RAS1

RAS2

tRCD

Data1 Data2

tCL

tBUS 

Command 
Bus

Data Bus

pr1

pr2

CAS1

CAS2

0 Time

Fig. 3: The two conditions controlling the issuance of the first
command of pr2.

Theorem 4.1: The best-case latency for pr2 occurs when
t2 ≥ t̂2, where t̂2 = MAX(cond1, cond2).

Proof: Let pr1 and pr2 be successive requests to an MC
in the idle state, and pr1 arrives at 0 (t1 = 0). Hence, the first
command of pr1 (RAS1) can be issued immediately. However,
pr2 has to satisfy the timing constraints between commands
of pr1 and pr2 before it can issue its first command. The
observation we make in this proof strategy is that these timing
constraints can be combined into two conditions. These two
conditions, denoted as cond1 and cond2, must be satisfied
before the first command of pr2 can be issued. Figure 3
depicts an example of these two conditions. cond1 in Figure 3
represents the timing constraints between RAS1 and RAS2

commands, while cond2 represents the constraints between
CAS1 and CAS2 commands. Suppose that cond1 ≥ cond2, then
t̂2 = cond1. There are two cases based on the arrival time of
pr2.
Case 1a: When t2 ≥ t̂2, then cond1 is satisfied. Since
cond1 ≥ cond2, cond2 is also satisfied. Therefore, commands
of pr2 will not incur any latency due to commands of pr1. Let
the latency of pr2 in this case be l1a2 .
Case 2a: When t2 < t̂2, then cond1 is not satisfied. Hence,
the MC delays the issuance of the first command of pr2 by
t̂2 − t2 resulting in an access latency of l2a2 = (t̂2 − t2) + l1a2 .

299



TABLE II: Best and worst-case latencies.

Latency Equation Configuration Reference t̂2

lWORST
2 = t̂2 + tRCD + tCL

Different Ranks t̂2 = tBUS + tRTRS
Different Banks and RR/WW t̂2 = MAX(tRRD, tBUS)

lBEST
2 = tRCD + tCL

Different Banks and RW t̂2 = MAX(tRRD, tBUS + tRTW )
Different Banks WR t̂2 = MAX(tRRD, tWL + tBUS + tWTR)

lWORST
2 = t̂2 + tCL OP: Different Columns and RR/WW t̂2 = tRCD + tBUS
lBEST
2 = tCL

lWORST
2 = t̂2 + tWL OP: Different Columns and RW t̂2 = tRCD + tBUS + tRTW
lBEST
2 = tWL

lWORST
2 = t̂2 + tRL OP: Different Columns and WR t̂2 = tRCD + tWL + tBUS + tWTR
lBEST
2 = tRL

lWORST
2 = t̂2 + tRP + tRCD + tCL OP: Different Rows and RR/RW t̂2 = MAX(tRAS, tRCD + tRTP )

lBEST
2 = tRP + tRCD + tCL OP: Different Rows and WW/WR t̂2 = MAX(tRRD, tRCD + tWL + tBUS + tWTR)

lWORST
2 = t̂2 + tRCD + tCL CP: Same Bank and Rank and RR/RW t̂2 = MAX(tRC, tRCD + tRTP + tRP )

lBEST
2 = tRCD + tCL CP: Same Bank and Rank and WW/WR t̂2 = MAX(tRC, tRCD + tWL + tBUS + tWR + tRP )

Now, Suppose that cond1 < cond2, then t̂2 = cond2.
There are again two cases based on the arrival time of pr2.
Case 1b: When t2 ≥ t̂2, then cond2 is satisfied. Since
cond2 > cond1, cond1 is also satisfied. Therefore, commands
of pr2 will not incur any latency due to commands of pr1. Let
the latency of pr2 in this case be l1b2 . Note that l1b2 = l1a2 .
Case 2b: When t2 < t̂2, then cond2 is not satisfied. Hence, the
MC delays the issuance of the first command of pr2 by t̂2− t2
resulting in an access latency of l2b2 = (t̂2 − t2) + l1b2 . Note
that l2b2 = l2a2 . Since l1a2 < l2a2 and l1b2 < l2b2 , the arrival time
for pr2 producing the best-case latency occurs when t2 ≥ t̂2
with t̂2 = MAX(cond1, cond2).

The following corollary uses results of Theorem 4.1 to
compute the access latency l2.

Corollary 4.1: The latency of pr2 at any given arrival time
t2 when t̂2 = MAX(cond1, cond2) is given by:

l2 = MAX(t̂2 − t2, 0) + l1a2 .

Substituting t2 ≥ t̂2 in Corollary 4.1 will give the best-case
latency lBEST

2 = l1a2 , while substituting t2 = 0 will give the
worst-case latency lWORST

2 = t̂2 + l1a2 .

B. Example: Two accesses with same access type to two
different banks in the same rank

RAS1

RAS2

tRCD

tRRD tBUS 

Data1 Data2

tCL

tBUS 

Command 
Bus

Data Bus

pr1

pr2

CAS1

CAS2

0 Time

Fig. 4: Two accesses with same access type to two different
banks in the same rank.

For two requests with the same access type, cs1 = CAS1
and cs2 = CAS2 such that CAS1 and CAS2 are of the same type
(both should be either RCAS or WCAS), Figure 4 shows the
timing diagram for this sequence.

Theorem 4.2: The best-case latency for pr2 occurs when
t2 ≥ t̂2, where t̂2 = MAX(tRRD, tBUS).

Proof: This proof is obtained by substituting cond1 =
tRRD and cond2 = tBUS in the proof strategy in subsec-
tion IV-A. Given that the MC is initially idle, and pr1 arrives
at 0 (t1 = 0), the DDR specifications state that C.1, C.2, C.3
and C.6 in Table I should be satisfied before issuing RAS2 and
CAS2. These constraints are shown in Figure 4. Suppose that
tRRD ≥ tBUS, then t̂2 = tRRD. There are two cases based
on the arrival time of pr2.
Case 1a: When t2 ≥ t̂2, RAS2 command can be issued
immediately and after tRCD cycles the MC issues CAS2. Then,
l1a2 = tRCD + tCL, where tCL cycles are necessary before
the starting of data transfer.
Case 2a: When t2 < t̂2, l2a2 = (t̂2 − t2) + tRCD + tCL.

Now, suppose that tBUS > tRRD such that t̂2 = tBUS.
There are again two cases based on the arrival time of pr2.
Case 1b: When t2 ≥ t̂2, l1b2 = tRCD + tCL.
Case 2b: When t2 < t̂2, l2b2 = (t̂2 − t2) + tRCD + tCL.

Since l1a2 < l2a2 and l1b2 < l2b2 , the arrival time for pr2
producing the best-case latency occurs when t2 ≥ t̂2 with
t̂2 = MAX(tRRD, tBUS).

Corollary 4.2: The latency of pr2 at any given arrival time
t2 when t̂2 = MAX(tRRD, tBUS) is given by:

l2 = MAX(t̂2 − t2, 0) + tRCD + tCL.

Substituting t2 ≥ t̂2 in Corollary 4.2 will give the best-case
latency lBEST

2 = tRCD + tCL, while substituting t2 = 0
will give the worst-case latency lWORST

2 = t̂2+tRCD+tCL.
Similarly, we calculate the best and worst-case latency suffered
by any request accessing the DRAM as well as the arrival times
that cause these latencies. Table II tabulates these latencies.

V. REVERSE-ENGINEERING PROPERTIES OF THE MC

The best- and worst-case latencies presented in Section IV
allow us to reverse-engineer properties of the MC. For example
Figure 5 presents l2 bounds for the case of two read requests,
while Figure 6 presents the l2 bounds for a write followed by
a read. bj and cj in Figures 5 and 6 represent the best- and
worst-case bounds for different sequences. These bounds aid
in reverse-engineering the properties of the MC. We refer to
open- and close-page policies by OP and CP respectively.
We also refer to channels, ranks, banks, rows and columns by
chn, rk, bk, rw and cl respectively. We perform a step-by-step
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procedure to reverse-engineer MC properties. We first reverse-
engineer the page policy. Based on the page-policy, we reverse-
engineer the address mapping implemented by the MC. Finally,
using knowledge about both page policy and address mapping,
we reverse-engineer the command arbitration scheme.

CP: same bk

OP: diff rwOP: diff cl

diff rk
diff bk

Cycles

b1 = tCL, b2 = tRCD + tCL, b3 = tRCD + tCL + tBUS,
b4 = tRCD+ tCL+ tBUS+ tRTRS, b5 = tRP + tRCD+ tCL,
and b6 = tRC + tRCD + tCL

Fig. 5: Latency bounds for a sequence with two consecutive
reads (test1).

CP: same bk

OP: diff rwOP: diff cl

diff rk
diff bk

Cycles

c1 = tCL, c2 = tRCD + tCL, c3 = tRCD + tCL + tBUS +
tRTRS, c4 = tRCD + tCL + tWL + tBUS + tWTR, c5 =
tRP + tRCD+ tCL and c6 = tRCD+ tWL+ tBUS + tWR+
tRP + tRCD + tCL

Fig. 6: Latency bounds for a sequence of two requests: write
followed by read (test2).

A. Reverse-engineering page policy and address mapping

We use two tests to reverse-engineer both the page
policy, and the address mapping. The first test performs two
consecutive reads, while the second test consists of a write
request followed by a read request. Both these tests are a
sequence of two logical requests, lr1 followed by lr2 (which
the MC will translate to pr1 and pr2, respectively) as shown
in Algorithm 1. The function flipBit(addr, bitPos) takes as
input a logical/physical address (addr) and a bit position
(bitPos), and returns a logical/physical address that differs
from the input logical/physical address by a single bit position
defined by bitPos. Therefore, logical address la2 differs from
la1 by a single bit position (ith bit). Recall that we use the
best-case and worst-case latencies to reverse-engineer the MC
properties. In order to achieve such latencies, some time delay
is necessary between the arrival times of the memory requests
to the MC. We achieve this delay by inserting a number
of NOP instructions between the requests (insertNOPs()
function). We execute the tests and record the observed
latencies. We repeat this for PW number of times to record

the latencies observed for each bit of the logical address.
Based on the latency analysis, we present inference rules for
reverse-engineering the page policy and address mapping.

Step 1: Reverse-engineering the page policy.

Algorithm 1: Reverse-engineering page policy and ad-
dress mapping.

forall i in [0,PW − 1] do
Let test1 = [lr1 = 〈la1, R〉, insertNOPs(),

lr2 = 〈flipBit(la1, i), R〉]
Let test2 = [lr1 = 〈la1,W 〉, insertNOPs(),

lr2 = 〈flipBit(la1, i), R〉]
resetMC(); runTest(test1);
resetMC(); runTest(test2);

end

We denote the latency of the second request with the ith bit
flipped as li2. Then, the following inference rules reverse-
engineer the page policy.

(I1) ∃i ∈ [0,PW − 1] : b4 < li2 < b5 ⇒ close-page

(I2) ∃i ∈ [0,PW − 1] : b1 ≤ li2 < b2 ⇒ open-page

(I3) ∀i ∈ [0,PW − 1] : li2 = b2 ⇒ close-page

It is clear from Figure 5 that the ranges used in I1 and
I2 do not overlap with any other range. Therefore, we can
reverse-engineer the page policy. If the observed latencies
do not satisfy the conditions of I1, I2, and I3, we repeat
the tests with different number of NOP instructions. One
key observation we make from Figures 5 and 6 is that the
close-page policy has a fixed best-case latency. I3 states that if
the observed l2 is fixed for all bits and equal to tRCD+ tCL
cycles, then the page policy is close-page. This case happens
when the second request always arrives after t̂2 for all cases.

Hybrid-page policy: An MC implementing a hybrid-
page policy dynamically adapts to either close-page or open-
page behaviour based on the access pattern in order to maintain
a standard of performance [21]. In order to detect hybrid-page
policy implementations, an additional test is necessary, which
is shown in Algorithm 2. test3 is a sequence of 2n requests
where the first n requests target different rows to the same bank
and rank, and the last n requests target different columns to the
same row, bank, and rank. n is a sufficiently large number to
influence the row-hit and miss counters that are checked by the
MC to adjust the page policy. If the MC implements a hybrid-
page policy, then on executing the first n requests of test3, the
MC gradually adapts to close-page policy to reduce the DRAM
access latency as they target different rows to the same bank.
On the other hand, the MC adapts from close-page policy to
open-page policy on executing the next n requests of test3
to reduce the access latency of the requests targeting the same
row. From Figure 5, it is observed that in an MC implementing
a close-page policy, the minimum access latency of a request
is b2. On the other hand, in an MC implementing open-page
policy, the minimum access latency of a request targeting a
row different from the row opened in the row-buffer is b5.
The latter case is captured by the second access sequence in
test3 where requests n + 1 and 2n target different rows to
the same bank. Hence, if there exists access latencies that are
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below b5 and b2, then the page-policy implemented is hybrid-
page policy. Inference rule I4 is based on these observations
for reverse-engineering hybrid-page policy.

(I4) ∃k ∈ [1, n],∃j ∈ [n+ 1, 2n] :

(lk < b5) ∧ (lj < b2)⇒ hybrid-page

Algorithm 2: Reverse-engineering hybrid-page policy.
Let lrk = 〈lak, R〉, k ∈ [1, n]
where (bnkl = bnkm) ∧ (rwl 6= rwm), ∀l ∀m ∈ [1, n]
Let lrj = 〈laj , R〉, j ∈ [n+ 1, 2n]
where (bnkl = bnkm) ∧ (rwl = rwm),
∀l,∀m ∈ [n+ 1, 2n]
Let test3 = [lr1, insertNOPs(), ..., lrn, insertNOPs(),

lrn+1, insertNOPs(), ..., lr2n]
resetMC(); runTest(test3);

Step 2: Reverse-engineering the address mapping.
Open-page or Hybrid-page. Assuming that the page policy
inferred is open-page or hybrid-page, the address mapping
scheme is reverse-engineered in the following way.

Column and row bits: It can be observed from Figure 5
that the access latency range on executing test1 for column and
row bits do not overlap, resulting in the following inferences.

(I5) ∀i ∈ [0,PW − 1] : b1 ≤ li2 < b2 ⇒ i is a column bit.

(I6) ∀i ∈ [0,PW − 1] : b5 ≤ li2 ≤ b6 ⇒ i is a row bit.

Rank, bank and channel bits: Rank and bank bits are
inferred using test2 of Algorithm 1. A write followed by
a read request that target different banks to the same rank
causes the MC to reverse the direction of the shared data bus.
This switching overhead distinguishes the worst-cast access
latencies of requests targeting different banks in the same rank
from those targeting different ranks. Inference rules I7 and I8
are based on this observation. The channel bits are simply the
remaining bits.

(I7) ∀i ∈ [0,PW − 1] : (i is not a column bit) ∧
(c3 < li2 ≤ c4)⇒ i is a bank bit.

(I8) ∀i ∈ [0,PW − 1] : (i is not a column or bank bit) ∧
(c2 < li2 < c3)⇒ i is a rank bit.

Close-page. Suppose the MC implements close-page policy.

Column and row bits: From Figure 5, the access latency
range between b4 and b5 is unique to close-page policy and
moreover, unique to either a row or column access under close-
page policy. Inference rule I9 uses this observation to reverse-
engineer the row or column bits.

(I9) ∀i ∈ [0,PW − 1] :

b4 < li2 < b5 ⇒ i is a row or column bit.

This inference implies that under close-page it is not possible
to distinguish between row and column bits if the address
mapping scheme places them successively. For instance, the
row and column bits cannot be distinguished for the following
address mapping scheme 〈chn, rw, cl, rk, bk〉. However, they
are distinguishable for the following address mapping scheme
〈chn, rw, rk, bk, cl〉.

Rank, bank and channel bits: We use test2 to reverse-
engineer the rank, bank and channel bits for the reason
explained in the open-page policy as depicted using inference
rules I10 and I11. The remaining bits are the channel bits.

(I10) ∀i ∈ [0,PW − 1] : (i is not a column or row bit) ∧
(c3 < li2 ≤ c4)⇒ i is a bank bit.

(I11) ∀i ∈ [0,PW − 1] : (i is not a column, row or bank bit)
∧ (c2 < li2 < c3)⇒ i is a rank bit.

XOR address mapping: To reduce high access latencies
for requests targeting different rows to the same bank, some
modern MCs employ XOR bank interleaving [19], [22], [23]
to convert some of the requests targeting different rows to
the same bank to requests targeting different banks. XOR
bank interleaving is achieved by performing an XOR operation
between the bank bits and an equivalent number of row
bits. This results in more bank bits exhibiting similar access
latencies on executing test1 and test2 of Algorithm 1. Since
the number of bits assigned to each group (channel, rank,
bank, row and column) is known from the specifications, the
following inference rule detects an XOR address mapping.
Initial bank bits refer to the bits detected by inference rule
I7 or I10 as bank bits.

(I12) ∀i ∈ [0,PW − 1] :

number of initial bank bits ≥ BKW⇒ XOR mapping

B. Reverse-engineering the command arbitration scheme

Algorithm 3: Reverse-engineering arbitration schemes.
Let lr1 = 〈la1, o1〉, lr2 = 〈la2, o2〉, and lr3 = 〈la3, o3〉
Let test5 = [lr1, insertNOPs(), lr2, insertNOPs(), lr3]
where (bnk1 = bnk2 = bnk3) ∧ (rw1 = rw3 6= rw2)
Let test6 = [lr1, insertNOPs(), lr2, insertNOPs(), lr3]
where (bnk1 = bnk2 6= bnk3) ∧ (rw1 6= rw2 6= rw3)
resetMC(); runTest(test5); resetMC(); runTest(test6);

Based on the page policy and address mapping scheme
inferred from steps 1 and 2, we reverse-engineer three common
arbitration schemes First-In-First-Out (FIFO), Round Robin
(RR) and First-Ready-First-Come-First-Serve (FR-FCFS) us-
ing the following procedure. Algorithm 3 uses two tests
denoted as test5 and test6 to reverse-engineer the arbitration
scheme. In test5, lr1 and lr3 target the same rank, bank, and
row, and lr2 targets a different row to the same rank and bank.
In test6, lr1 and lr2 target different rows to the same rank
and bank, and lr3 targets the same rank, but a different bank.
These tests are designed based on the characteristics of the
above mentioned command arbitration schemes, and can be
inferred based on the reordering of data returned by the MC
due to these requests. We execute the tests, and record f1, f2
and f3.

FR-FCFS and RR: We use the results from the tests to
define the following inference rules.

(I13) When using test5, (f3 < f2)⇒ scheme is FR-FCFS.
(I14) When using test6, (f3 < f2)⇒ scheme is RR.
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I13 states that if the data transfer for lr3 begins before that
of lr2, then the MC implements FR-FCFS. This is because FR-
FCFS favours requests accessing the open row. I14 indicates
that f3 < f2 happens when the MC selects lr3 over lr2
after servicing lr1 because the MC grants access to a request
accessing a bank that is different than that of lr1’s. This shows
that the MC implements RR between banks.

FIFO: If the observed finish times are in FIFO order
f1 < f2 < f3, then either the MC implements FIFO arbitration
scheme or the requests arrive to the MC command queue such
that the command for the next request arrives after the first
command of the previous request is issued. Therefore, in order
to reverse-engineer FIFO command arbitration scheme cor-
rectly, the requests have to access the MC such that request lr3
arrives to the MC before the issuance of lr2’s first command,
and no re-orderings are observed in both tests.

Algorithm 4: Reverse-engineering FR-FCFS threshold
depth.

Let RDY be a counter, and RDY = 2.
repeat

Let lri = 〈lai, R〉, ∀i ∈ [1, RDY ]
Let test7 = [lr1, insertNOPs(), lr2,

insertNOPs(), ....., lrRDY ]
where (bnk1 = bnki) ∧ (rw1 = rwi),
∀i ∈ [2, RDY ]
resetMC(); runTest(test7); increment(RDY );

until (∃ l2 : l2 ≥ b2)

FR-FCFS threshold: FR-FCFS arbitration scheme pri-
oritizes ready requests (row-buffer hits) over non-ready re-
quests (requests that target different rows). This prioritization
decreases the average-case access latency to the DRAM and
starves the non-ready requests. Therefore, MCs often enforce
a hardware threshold to bound the number of prioritized ready
requests serviced. On achieving this threshold, a PRE command
is sent to close the row in the row-buffer. We introduce
Algorithm 4 to reverse-engineer this threshold. We issue a
sequence of RDY requests that target the same rank, bank,
and row, and increment RDY until a request with latency
l2 ≥ b2 is observed. This occurs only when the row-buffer is
precharged by the MC due to reaching the threshold set by
the arbitration scheme on the number of row-buffer hits to be
serviced. Hence, the number of requests serviced before this
latency is inferred as the FR-FCFS threshold.

C. MC monitoring units

In order to reverse-engineer the architecture of MCs, we
require customized MC monitoring units. Although there exist
certain MC performance monitoring units (PMUs) on the Intel
Xeon and Intel Core i7 platforms [24], we believe that these
are insufficient for reverse-engineering the architectures of
MC. This is because existing PMUs count the number of a
specific type of MC command such as RAS, CAS, CASP,
PRE, and REF, and do not capture the time-stamp at which
these commands are issued. Therefore, in order to accurately
reverse-engineer the MC, we assume that we have monitoring
probes that can track the time-stamps of the requests when
they access the MC and are retired by the MC in real-time.

TABLE III: System configuration.

Core specifications 3 GHz, 5 stages out-of-order pipeline, 256-entry reorder buffer
Cache specifications L1 I-cache: 4 KB, 8-way 8-set, 64B line size

L1 D-cache: 16 KB, 4-way 64-set, 64B line size
L2 D-cache: 32 KB, 8-way 64-set, 64B line size
Physically indexed and tagged, write-back, write-allocate caches

DRAM specifications Single channel, 1600 MHz DDR3, 64-bit data bus
BL=8, 2 ranks, 8 banks per rank, 16 KB row-buffer size

VI. EXPERIMENTAL EVALUATION

We evaluate the reverse-engineering algorithms proposed
in Section V using MacSim [17], a full x86 system simulator
integrated with DRAMSim2 [18], a comprehensive DRAM
simulator.

A. System specifications

We reverse-engineer three different MC specifications
keeping the processor configuration and DRAM memory mod-
ule timing parameters constant. The DRAM memory module
specifications and processor configuration are shown in Tables
I and III respectively. In addition to experimenting with an out-
of-order processor, we also experiment with in-order processor
configurations, and detail our observations in Section VI-D. We
assume that all the addresses accessed by a user application
refer to the physical addresses on the DRAM memory module,
and the application has access to the entire address space of
the DRAM memory module. The specifications of the three
MC configurations used are tabulated in Table IV.

B. Methodology

We design micro-benchmarks based on Algorithms 1-4
in C with inline assembly code. We compile the micro-
benchmarks with no optimization flags to ensure that the
reverse-engineering requests are not optimized in any way that
might change the order of requests accessing the DRAM. We
execute the memory requests intended for reverse-engineering
the MC for a sufficiently large number of iterations in order to
offset the effects of DRAM refreshes, and elicit stable latencies
of the requests intended for reverse-engineering. In order to
ensure that these requests access the DRAM, a sequence of
memory instructions based on the cache hierarchy is executed
on each iteration such that the reverse-engineering requests are
evicted from the cache. We rely on the methods proposed in [7]
to determine the cache structure and replacement policy to gen-
erate the cache eviction requests. We measure latencies of the
memory requests used in the reverse-engineering. Afterwards,
we apply the inference rules proposed in Section V on these
measured latencies to reverse-engineer the MC properties.

Recall that the algorithms specified in Section V insert
NOP instructions between the requests intended for reverse-
engineering to achieve specific access latency ranges necessary
to reverse-engineer the properties of the MC. In addition, we
also execute a number of NOP instructions after performing
the cache evict requests in order to ensure that they are com-
pleted, and no requests occupy the store buffer or instruction
buffer. The number of NOPs used is determined based on the
frequency scaling factor between the processor and MC, the
length of instruction/reorder buffer, and cache miss penalties.

303



TABLE IV: MC configurations.

Parameter MC A MC B MC C

Address mapping scheme 〈chn, rw, cl, rk, bk〉 〈chn, rk, rw, bk, cl〉 〈chn, rk, rw, cl, bk〉
Page-policy Close-Page Open-Page Adaptive Open-Page

Arbitration Scheme Round-Robin FR-FCFS FIFO
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Fig. 7: Latency plots for page policy and address mapping inference tests.

The procedures for reverse-engineering the MC are listed
in Procedures StepA and StepB. Procedure StepA reverse-
engineers the address mapping scheme and page policy based
on the algorithms and inference rules listed in Section V-A, and
Procedure StepB reverse-engineers the command arbitration
scheme based on the algorithms and inference rules listed
in Section V-B. Information about the number of sets and
the ways in each set in the different cache levels, replace-
ment policy, and cache type (direct-mapped, set-associative,
or fully-associative) is necessary in order to generate the
cache preparatory requests for evicting the reverse-engineering
requests from the cache. This information is denoted as the
cacheHierarchy argument to the Procedures StepA and
StepB. The function genCacheEvictAccesses takes as in-
put a logical address (la1 or la2) and the cache hierarchy
information, and generates a sequence of memory accesses
to the cache set targeted by the input logical address such
that they are evicted. In order to avoid any reordering of
reverse-engineering requests by the requestor, we create data
hazards between the reverse-engineering requests. In test8 of
Procedure StepA, the load operation writes the value in the
logical addresses (la1 and la2) into the same register R3. This
is also observed for test9 of Procedure StepB where all the
load operations write into the same register R4. This write-
after-write hazard on R3 and R4 enforces ordering between
the reverse-engineering requests in both tests. For inferring
bank and rank bits, we substitute the second load operation in
test8 with a store operation of the form store([R2], R3). This
causes a read-after-write hazard on R3, which again enforces
ordering on the reverse-engineering requests.
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Fig. 8: Latency plot for hybrid-page policy.

Procedure StepA(bitPos, iterations, cacheHierarchy)
Let la1 and la2 be logical addresses where
la2 = flipBit(la1, bitPos).
Let R1, R2, and R3 be physical registers such that R1
= la1 and R2 = la2.
Let test8 = [load(R3, [R1]), insertNOPs(),

load(R3, [R2]), insertNOPs()]
while i ≤ iterations do

genCacheEvictAccesses(la1, cacheHierarchy);
genCacheEvictAccesses(la2, cacheHierarchy);
insertNOPs();
runTest(test8);

end

Procedure StepB(iterations, cacheHierarchy)
Let la1, la2, and la3 be logical addresses defined by
Algorithm 3.
Let R1, R2, R3, and R4 be physical registers such that
R1 = la1, R2 = la2, and R3 = la3.
Let test9 = [load(R4, [R1]), load(R4, [R2]),

load(R4, [R3])]
while i ≤ iterations do

genCacheEvictAccesses(la1, cacheHierarchy);
genCacheEvictAccesses(la2, cacheHierarchy);
genCacheEvictAccesses(la3, cacheHierarchy);
insertNOPs();runTest(test9); insertNOPs();

end

C. Results

We first reverse-engineer the address mapping and page
policy implemented by the MC. Figures 7a-7c show the access
latencies for different MCs on executing test1 and test2 of
Algorithm 1 The figures are annotated with the inference rules
discussed in Section V. On executing test1, MCs B and C
implement an open-page policy from inference rule I2 (tCL).
Applying inference rule I3, MC A implements a close-page
policy as all the bits have the same latency (tRCD + tCL
cycles) on executing test1. The column and row bits for the
MCs implementing an open-page policy are inferred based on
inference rules I5 and I6 respectively. The bank and rank bits
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Fig. 9: Latency plots for command arbitration scheme inference tests.

for all the MCs are identified by executing test2, and applying
inference rules I7 and I8 for open-page policy and I10 and I11
for close-page policy respectively. In Figure 7b, we observe
that requests resulting from flipping any bit of 13 to 18 exhibit
latencies in the range 24 cycles (tRCD + tCL + tBUS +
tRTRS) and 51 cycles (tRCD + tCL + tBUS + tWL +
tWTR). Using inference rule I7, bits 13 to 18 are identified
as bank bits. However, this contradicts the DRAM memory
module specifications of 8 banks or 3 bank bits. Applying
inference rule I12, the 6 bank bits can be inferred as an XOR
combination of the three bank bits and three lower significant
row bits.

Figure 8 shows the latencies of the reverse-engineering
requests for one iteration on executing test3 of Algorithm 2 for
MC C. Note that we execute test3 for all MC configurations,
and show only the MC configuration that exhibited latencies
aligning with the latencies in inference rule I4. Recall that
test3 executes a sequence of n requests targeting different rows
in the same bank followed by another sequence of n requests
targeting the same row It is observed from Figure 8 that some
of the initial accesses targeting different rows to the same rank
and bank incur a precharge overhead resulting in an access
latency of tRP + tRCD+ tCL cycles (30 cycles). However,
the page policy adapts to the incoming access sequence and
precharges the row-buffer soon after the previous request
has completed its operation resulting in subsequent accesses
targeting idle row-buffers. This is observed in the change in
latency for accesses targeting different rows to the same rank
and bank from tRP + tRCD+ tCL to tRCD+ tCL cycles
(20 cycles). On executing the next access sequence that target
different columns to the same row, bank, and rank, the latency
for the requests remains at tRCD+ tCL cycles as the current
state of the hybrid-page policy precharges the row-buffer soon
after a request has completed it operation. Therefore, despite
accesses targeting different columns to the same rank, bank,
and row, each access incurs the latency of activating the row-
buffer. Again, the hybrid-page policy adapts to favour the
row-buffer hits by delaying the precharge to the row-buffer
after each access. This is observed in the latency change for
requests in the second access sequence from tRCD + tCL
to tCL cycles (10 cycles). On repeating these two sequences,
as Figure 8 shows, MC adapts between close- and open-page
policies to reduce the DRAM access latency. Notice that some
requests have access latencies higher than the possible access
latency, which is b6 = 54 cycles. It is likely that these requests
arrived when the MC was refreshing the DRAM banks, and
therefore stalled until the refresh completed.

Figure 9 highlights the reordering of requests by the MCs
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Fig. 10: Latency plot for FR-FCFS threshold test.

under the influence of the command arbitration schemes. We
plot the time-stamps at which the memory requests access
the MC, and the time-stamps at which the data for these
requests are returned by the MC. The requests are plotted in
the order in which they access the DRAM. Figure 9a shows
the reordering of requests by MC A on executing test6 of
Algorithm 3. In test6, the first and second request target
different rows to the same bank and rank, and the third request
targets a different bank. Notice that although the third request
arrives later than the second request, the data for the third
request is returned before the second request. This indicates
the implementation of RR command arbitration scheme from
inference rule I14. Figure 9c shows the time-stamp plot of
MC B on executing test5 of Algorithm 3. For test5, an
MC implementing FR-FCFS command arbitration scheme will
service the third request before the second request in order to
improve row-buffer hits as the first and third requests target
the same row. This reordering can be observed in Figure 9c,
where the data for the third request is returned earlier than that
of the second request. Therefore, MC B implements FR-FCFS
command arbitration scheme. Figure 9b shows the time-stamp
plot of MC C on executing test5 and test6 of Algorithm 3. It is
observed that the data for the reverse-engineering load requests
arrives in the order of the requests to the MC. Therefore, on
applying inference rules I13 and I14, the command arbitration
scheme implemented in MC C is inferred as FIFO. We make
this inference based on the fact that we know the arrival
sequence of requests as shown in Figure 9b.

test7 in Algorithm 4 exposes the threshold enforced by the
MC to limit the number of row-buffer hits before pre-charging
the row-buffer for FR-FCFS arbitration scheme. The latency
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plot for this test is shown in Figure 10. From Figure 10, the
threshold enforced by the MC is 4 as after every 4 accesses to
the same row, bank, and rank, the row-buffer is pre-charged.
This results in every n ∗ 4 + 1th request to incur the penalty
of re-activating the row-buffer.

D. Hardware considerations for reverse-engineering MCs

To reverse-engineer MCs, the system architecture should
allow memory requests to queue up at the MC. This is
possible in a multi-core architecture, an out-of-order single
core architecture, or an in-order single core architecture with
load-store buffers. Load-store buffers allow in-order cores to
place store instructions in the buffer and continue execution
without stalling for the stores to commit. These buffers aid in
accumulating DRAM requests and dispatch them to the MC
in relatively short periods of time. Single-core architectures
that stall on every memory access are ill-suited for reverse-
engineering DRAM MCs as such architectures restrict requests
from queuing at the MC.

VII. CONCLUSION

We investigate opportunities to reverse-engineer properties
of DRAM MCs using latency-based analysis. The analysis
provides us with the best and worst-case bounds on access
requests to the DRAM, on which we base our inference rules
for reverse-engineering MC properties such as the page policy,
address mapping scheme, and command arbitration scheme.
We implement our algorithms for reverse-engineering these
properties into a software tool, and our experimental evaluation
confirms that we can discover the targeted properties of the
MCs. An important aspect we reserve for future work involves
collecting a suite of embedded platforms with varying MC
configurations, and evaluating further practical benefits of the
proposed work on them.
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