
Criticality- and Requirement-aware Bus Arbitration
for Multi-core Mixed Criticality Systems

Mohamed Hassan
Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, Canada.

Email: mohamed.hassan@uwaterloo.ca

Hiren Patel
Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, Canada.

Email: hiren.patel@uwaterloo.ca

Abstract—This work presents CArb, an arbiter for controlling
accesses to the shared memory bus in multi-core mixed criticality
systems. CArb is a requirement-aware arbiter that optimally
allocates service to tasks based on their requirements. It is also
criticality-aware since it incorporates criticality as a first-class
principle in arbitration decisions. CArb supports any number
of criticality levels and does not impose any restrictions on
mapping tasks to processors. Hence, it operates in tandem with
existing processor scheduling policies. In addition, CArb is able
to dynamically adapt memory bus arbitration at run time to
respond to increases in the monitored execution times of tasks.
Utilizing this adaptation, CArb is able to offset these increases;
hence, postpones the system need to switch to a degraded mode.
We prototype CArb, and evaluate it with an avionics case-study
from Honeywell as well as synthetic experiments.

I. INTRODUCTION

Mixed-criticality systems (MCS) consist of a set of in-
teracting software components, where the components may
operate under various criticality levels (CLs) [1]. Each CL
provides a degree of assurance against the software compo-
nent’s failure [2]. For instance, DO178C used in avionics
denotes five CLs ranging from critical to no effect. The
real-time research community is interested in using multi-
cores to deploy MCS, mainly because multi-cores offer small
sized, low weighted, and low-cost hardware platforms that are
mainstream nowadays. However, this requires consolidating
software components onto the multi-core platform, which
implies sharing hardware resources such as processors, buses,
caches and main memories among these components. Resource
sharing brings out a key challenge in the design of MCS: to
effectively schedule shared hardware resources so as to ensure
safety guarantees mandated by the CLs, and to deliver the
performance demanded by each software component.

Recent efforts addressing this challenge have focused on
proposing models and scheduling algorithms that schedule
tasks with CLs onto cores [3]–[7]. Earlier approaches proposed
methods to deploy MCS onto single core platforms [3], [4],
which were further advanced to multi-core platforms [5]–[7].
These efforts developed a standard model for MCS, where
each task is characterized by a criticality level, usually two
CLs: LO and HI . Each task has a worst-case execution time
(WCET)estimate, S, for each CL, S(LO) and S(HI) for the
two levels case. The system operates initially in a normal
mode, where it considers the S(LO) of each task and both
higher- and lower-critical tasks utilize the hardware resources.

If a critical task exceeds its S(LO), the system switches to
a degraded mode, where it suspends all lower-critical tasks
and considers the S(HI) of the higher-critical ones [8]. These
dynamic migrations between various modes is a key character-
istic of MCS as compared to single-criticality traditional real-
time systems. Since this model evolved initially for single-core
MCS, it suffers from two crucial weaknesses when applied to
multi-core MCS. 1) As observed by [9], approaches adopting
this model do not incorporate inter-task interferences arising
from accessing resources that are shared amongst cores such as
memory buses, caches, and main memories in their scheduling
or analysis. Experiments show that memory interferences can
contribute up to 300% to the WCET of a task [10], while the
memory bus interference in commercial-off-the-shelf (COTS)
systems can solely increase the WCET up to 44% [11]. As
a consequence, we find it is of unavoidable necessity to
account for these interferences for multi-core MCS. 2) These
approaches, upon switching to the degraded mode, do not
provide any guaranteed service to lower-critical tasks. Since
lower-critical tasks are still critical, industry criticizes this
action as it may result in safety issues [2].

Fortunately, recent works address interference in MCS due
to shared dynamic random access memories (DRAMs) [12],
[13] and shared caches amongst cores [14], [15]. Nonetheless,
there is a limited focus on addressing the interference problem
on shared buses in MCS. To our knowledge, [16] [9] are the
only approaches to incorporate the memory bus interference
in MCS modelling. However, both have certain limitations.
[16] is adequate only for two criticality levels and mandates a
particular mapping of tasks to cores. [9] comprises predictable
COTS bus arbiters such as round-robin (RR) and first-come-
first-serve (FCFS), which lack the criticality notion. As a
result, we find that the obtained bounds in [9] are pessimistic,
foremost because of lacking a criticality-aware arbitration
amongst different traffics on the memory bus. In addition,
we find that these limitations in [9], [16] disallow them from
exploring possible novel solutions at the arbiter level when it
comes to the dynamic mode migrations of MCS.

A. Contributions

We address the interference problem on the shared memory
bus in multi-core MCS by making the following contributions.
1) We expose strengths and inherent limitations of currently
used arbiters in traditional single-criticality systems upon their
applicability to MCS (Section V). 2) Hence, we introduce

978-1-4673-8641-8/16/$31.00 ©2016 IEEE

CArb, an arbitration mechanism for controlling accesses to
the shared memory bus in MCS (Section VI). CArb is a
hierarchical two-tier arbiter that is, to our knowledge, the
first to be criticality- and requirement-aware. This is necessary
for two reasons. First, it results in optimal service allocation
to tasks to meet their temporal requirements (Section VII).
Second, it prioritizes tasks of higher criticality if the current
set of memory requirements of all tasks is not schedulable.
This is a vital characteristic when moving to higher modes
in MCS (Section VIII). 3) We illustrate a methodology to
decompose worst-case (WC) memory access latencies from
the WC computation latencies experienced by a task. This has
the advantage of allowing various MCS scheduling policies on
cores to co-exist and operate in tandem with CArb; thereby,
not imposing any restrictions on processor scheduling. 3) We
propose two mechanisms to dynamically adapt the memory bus
arbitration at run time to respond to increases in the monitored
execution times of tasks. We show how these mechanisms can
mitigate these increases; thus, in some cases, postpone or even
eliminate the system need to switch to a degraded mode. We
believe that avoiding these switches is highly desirable because
of their notoriously huge overheads. In addition, the proposed
mechanisms prevent unnecessary suspension of lower-critical
tasks. 4) We experiment with a case-study from the avionics
domain as well as with synthetic experiments. Our results show
that CArb is well-suited for bus arbitration in multi-core MCS.

II. RELATED WORK

A. Scheduling Techniques

There are several research efforts that investigate schedul-
ing tasks with mixed criticalities on the same platform [3]–
[7]. While earlier works primarily focus on single-core plat-
forms [3], [4], recent efforts propose strategies for deploying
MCS onto multi-core platforms [5]–[7]. An on-going sur-
vey [17] maintains a comprehensive list of these efforts. There
exist two practical issues in these efforts that are related to
our proposal. 1) They suspend LO-critical tasks at the HI-
mode [17]; thus, having no guarantees for the those tasks that
are deemed low criticality, but still critical to some degree.
Hence, this suspension can result in some safety issues [2].
2) They do not address temporal interferences between tasks
arising from accessing resources that are shared amongst cores
such as memory buses, caches and DRAMs. For the first issue,
we promote fine-grained rescheduling to allow higher-critical
tasks to meet their new requirements, while not suspending
the lower-critical ones, if possible (Section VIII). To our
knowledge, [9], [16] are the only existing efforts to address
the second issue.

The approach in [16] employs a software-based throttling
mechanism to manage accesses to the shared main memory.
It assigns a memory access budget to each core, and when
a non-critical core exceeds its budget, [16] throttles it to
guarantee requirements of the critical core. We find that this
approach is suitable for only dual-criticality MCS, where each
task is either critical or non-critical. For MCS with multiple
criticalities, [16] faces the aforementioned issue of throttling
lower-critical tasks. In addition, [16] mandates mapping all
critical tasks to the same core. Two drawbacks arise from this
requirement. 1) It limits the applicability of this technique to
other scheduling approaches that do not meet this requirement.

2) Systems with large number of critical tasks cannot use this
approach if critical tasks are not schedulable in a single core.
The technique in [9] arbitrates amongst memory requests from
all tasks using conventional RR and FCFS policies. However,
these arbiters, as we discuss in Section V, are agnostic to the
distinct criticality and requirements of tasks, as they allocate
the same service to all tasks. As a consequence, the bounds
obtained in [9] are pessimistic. We address these limitations by
proposing CArb that arbitrates accesses to the shared memory
bus according to both criticality and timing requirements of all
tasks. Utilizing CArb, we illustrate how to distinctly allocate
service to tasks in an optimal fashion.

B. Shared Resources amongst cores

Recent works address interference in MCS due to shared
DRAMs such as [12] [13], and shared caches amongst cores
such as [14] [15]. These works do not address the interference
occurring on the memory bus connecting various cores with
these shared memories. Our work is orthogonal to these
efforts and can coherently operate with them to address the
interference problem on all resources of MCS; thus, enabling
safe co-existence of tasks with different CLs on the same
multi-core platform.

III. SYSTEM MODEL

Figure 1 depicts the system considered in this paper. We
assume a multi-core system, where each core executes a
single task. This task runs until completion on the dedicated
core. We support any mapping of tasks to cores. This allows
the integration of CArb with a wide variety of existing task
mapping schemes. Existing cores share inter-core platform
resources. Specifically, off-chip DRAM, on-chip last-level
cache (LLC), and the memory bus connecting cores to the
LLC. We assume that the interference on shared DRAM is
resolved using existing techniques such as partitioning [12]
or requirement-aware scheduling [13]. Similarly, interference
on shared data in the LLC is addresses by deploying cache
partitioning or colouring [14]. Accordingly, this work focuses
on the interference problem on the shared memory bus, and
its impact on the total execution time of various tasks. We
consider a mixed criticality system with n criticality levels.
We classify tasks according to their criticality into groups
that we denote as classes. Hence, there exist a set of n
classes. Each class is defined as Cl = 〈Ll,Γl〉, where L is
the criticality level and Γl is the total number of tasks in Cl.

Shared Cache

CoreN

Private
Cache(s)

Memory
Controller

D
RA

M

CPU Chip
I/O

Devices
DMA

Arbiter

Core1

Private
Cache(s)

Core0

Private
Cache(s)

Shared Memory BUS

Fig. 1: Multi-core architecture.

Higher values of L denote higher criticality levels. A task is
characterized as: τ jl= 〈Ll, Tjl, Djl, Ejl, Sjl(L), Ijl(L),Λjl〉
where: Tjl is the minimum inter-arrival time of task jobs which
represents the task period. Djl is the task deadline, where
Djl = Tjl. Sjl is the WCET of any job of task τ jl when
τ jl runs in isolation (no inter-task interference). Ijl is the
WC additional latency due to inter-task interference. Ejl is the
total WCET. Since the interference delays can be considered
to be additive to the task’s WCET in isolation [18], we assume
that Ejl = Sjl + Ijl. Each task has an S value for each CL
in the system. This is a primary characteristic of MCS. The
intuition behind these different values per task is as follows.
The computed WC times of a task are estimates calculated
using extensive testing and/or static analysis methods. Hence,
based on the accuracy and pessimism levels of these methods,
different estimates may exist. The higher the criticality level
is, the more pessimistic the values are [1], [8]. Λjl is the
maximum number of memory accesses issued by any job
of τ jl. It is worth noting that CArb makes no assumption
about the memory access rate of tasks. Λjl represents the WC
number of memory accesses per period over all periods of the
task, similar to [19]. This is analogous to the execution time
of the task. Both the number of memory accesses, and the
execution are different from one period to another; nonetheless,
the task model only considers the WC execution time of a task.
Both S and Λ can be collected using either measurement-based
techniques or static analysis tools. For sake of simplicity, we
assume that Λ is constant for all CLs. In section VII-C, we
generalize the model to consider Λ(L) as function of the CL.
Since the number of running tasks varies with regard to the
CL, so does the interference amongst these tasks. Hence, I
is a function in the CL, I(L). This task model considers two
extensions to the standard MCS model [17]. 1) We assume an
arbitrary number of CLs. We promote this for two reasons.
First, to not limit the integration support of CArb to only dual-
criticality scheduling mechanisms; rather, CArb supports also
mechanisms with more criticality levels such as [20]. Second,
we encourage MCS models that adopt more criticality levels
because current industrial standards, for instance in avionics
domain, call for up to five levels. Examples of these standards
include IEC 61508, DO-178B, DO-254 and ISO 26262 [8]. 2)
Decomposition of total execution time, E, into S and I . This
enables memory bus arbitration to optimize service allocation
to tasks according to their deadline requirements. A more
detailed discussion on this decomposition is in the following
section.

IV. EXECUTION TIME DECOMPOSITION

Migrating MCS onto multi-core platforms with inter-core
shared resources, the interference delay due to shared resources
amongst cores becomes an eminent component in the total
WCET. Therefore, we claim that focusing on the interference
delays of tasks is as necessary as the traditional focus on
WCETs calculated in isolation. In consequence, we incorporate
the total WCET E with its two components S and I in the
proposed MCS model. This allows core scheduling techniques
to focus on optimizations that affect S and shared memory
arbitration techniques to minimize or eliminate I . In this paper,
we employ this decomposition process, and show that such
separation enables attaining optimal solutions to the inter-
ference problem. This section illustrates the decomposition

process, while Section VII-B targets optimal allocations.

Existing approaches in scheduling MCS usually formu-
late the requirement on S relative to D as a schedulability
condition. Tasks in the system are schedulable under the
scheduling scheme only if they satisfy this condition. For the
aforementioned reasons, we argue for substituting S with E in
the schedulability analysis of multi-core MCS, and we assume
S and I are additive such that E = S + I . Hence, if S
is known beforehand, the schedulability condition turns into
a requirement on the total interference delay encountered by
each task such that the set of tasks is schedulable. Further, for
static analysis purposes, the WC interference delay per mem-
ory request, M , must be assumed. Recall that the total number
of memory requests of a task is Λ; thus, I = M ×Λ. Both S
and Λ are predetermined task’s characteristics. Subsequently,
from the schedulability condition, we derive a requirement on
Mjl for each τ jl such that the set of tasks is schedulable. Since
this paper focuses on the interference on shared memory buses,
we denote this condition as the memory latency requirement.
The arbiter must allocate services to tasks such that the
maximum memory latency of any request does not violate this
requirement.

A. Illustrative Example

We show how to derive the memory access requirement
from the schedulability condition. We use the partitioning
algorithm proposed by Sha [21] as an example of a scheduling
policy used in the avionics domain. The policy in [21] splits
the set of tasks into partitions. All tasks of a partition must
execute on the same core. A class, as defined in Section III, can
consist of multiple partitions. Hence, tasks of same class can
execute in parallel on multiple cores if they belong to different
partitions. In consequence, the partitioning algorithm of [21]
resembles a general scheduling example by allowing tasks of
same as well as different criticalities to run simultaneously;
thus, interfere on shared memory. Under this algorithm, a
time-division-multiplexing (TDM) scheduler assigns slots to
partitions and a rate monotonic (RM) algorithm schedules
tasks of the same partition. Sha [21] proved that the sufficient
schedulability condition for each partition is:

Ur ≤ γr
(
(

2

2− Ûr

)
1
γr − 1

)
. (1)

Where for partition r, γr is the total number of tasks in r,
Ur is the total utilization of those tasks, and Ûr is the partial
utilization granted to r, which is the number of TDM slots
granted to the partition divided by the total number of slots
in the TDM schedule. From this schedulability condition for a
partition, we compute the memory latency requirements using
the following procedure:
(1) Given that the utilization of all tasks in partition r is Ur =
kr∑
j=1

Sjr

Djr
and substituting S with E = S + I , as discussed

earlier, then:

γr∑
j=1

Sjr +Mjr × Λjr

Djr
≤ γr

(
(

2

2− Ûr

)
1
γr − 1

)

(2) Recall that Sjr and Λjr are predetermined for all tasks, then
the memory access latency requirements per task to satisfy

schedulability condition is obtained by Equation 2. Memory
access latencies of all tasks of that partition must satisfy the
condition in Equation 2. Notice that if a different scheduling
algorithm is used, a similar procedure can be conducted to
obtain the corresponding condition.

γr∑
j=1

Mjr × Λjr

Djr
≤ γr

(
(

2

2− Ûr

)
1
γr − 1

)−
γr∑
j=1

Sjr

Djr
(2)

V. APPLICABILITY OF REAL-TIME ARBITERS IN MCS

We study commonly used arbiters in traditional real-time
systems to investigate their applicability on MCS. Particularly,
we focus on RR arbiters: bare RR, prioritized RR (PRR),
weighted RR (WRR), and harmonic RR (HRR) in addition
to TDM arbiters: contiguous TDM, and work-conserving
distributed TDM. We argue that an adequate arbiter for
MCS must posse two features: requirement-awareness and
criticality-awareness. Requirement-awareness implies that
the arbiter is able to allocate service to tasks based on their
temporal requirements. Comparatively, criticality-awareness is
achievable when the arbiter allocates service to tasks relative
to their criticality. We evaluate each arbiter with regard to
adopting these two features using Figure 2 for illustration. In
Figure 2, we assume a system with three criticality levels and
6 tasks. τ 13 and τ 23 are the highest critical, τ 12 and τ 22

are of medium criticality, and τ 11 and τ 21 are non-critical.
yacc is the access latency to the shared memory.

Bare RR. RR is dynamic and simple to implement.
The arbiter equivalently rotates amongst tasks (Figure 2a).
The WC latency of a request from any task is bounded
by the number of tasks in the system; hence, RR assures
predictability. RR allocates the same service to all tasks
regardless of their distinct criticality and timing requirements.
For instance, in Figure 2a, all tasks encounter the same WC
latency of 6yacc cycles. Hence, RR is neither criticality-aware
nor requirement-aware; thus, ill-suited to MCS.
PRR. Authors in [22] address the deficiencies of RR by
proposing PRR. The arbiter conducts RR arbitration amongst
critical tasks only. Non-critical tasks gain access only on
slack slots, which are slots when there are no ready requests
from any critical task. This solution targets systems with
dual-criticality. Applying PRR in MCS with more than
two levels, critical tasks (but not the most critical) can be
scheduled by two approaches. 1) They share the schedule
with the most critical tasks; hence, attain as much service
as them even though they may have different requirements.
In Figure 2b, both tasks of C2 and C3 have a WC latency
of 4yacc. 2) They share the slack slots with non-critical
tasks; thus, they have no timing guarantees, and may miss
their deadlines (Figure 2c). Accordingly, we find that PRR’s
applicability is limited to dual-criticality systems where tasks
with the lower CLs have no requirements.
WRR and Contiguous TDM. Unlike bare RR, WRR [23] is
capable of allocating different amounts of service (slots or
weights) to tasks based on their requirements as Figure 2d
illustrates. Similar capability exists for contiguous TDM.
The major difference between contiguous TDM and WRR
is that TDM arbiters are, in general, non-work conserving.
A slot assigned to a task will remain idle if there are no
ready requests from this particular task even if there are

(a) RR.

(b) PRR1. (c) PRR2.

(d) WRR and TDM.

(e) Harmonic WRR and distributed TDM.

Fig. 2: Real-time arbiters.

ready requests from other tasks. On the other hand, WRR
is work-conserving, and assigns idle slots to the first task
with a ready request. Deploying either contiguous TDM or
WRR, tasks with higher weights (or number of slots in TDM)
encounter less average-case latency; though, the WC latency
of requests from these tasks is either the same as or higher
than bare RR. For example, in Figure 2d, the most critical
task τ 13 obtains 1/4 of the total slots. Notice that it suffers a
WC latency of 10yacc cycles compared to only 6yacc cycles
in bare RR. This is because in the WC, a request from any
task (critical or non-critical) must wait for requests from
all other tasks before it gets an access. Consequently, their
deployment in MCS leads to pessimistic WCETs, and may
not satisfy task requirements.
HRR and work-conserving distributed TDM. HRR [24]
and work-conserving TDM [13] address this pessimism
in WRR and contiguous TDM by evenly distributing
slots assigned to tasks across the schedule as shown in
Figure 2e. They have a different WC bound per task based
on its requirements. Therefore, they are requirement-aware.
Nevertheless, they assign service to tasks solely based on
their timing requirements and not criticality. Upon applied
to MCS, being non-criticality aware has two drawbacks.
1) In both approaches [13], [24], meeting the requirements
for lower-criticality is as important as meeting those of the
most-critical tasks. As aforementioned, in MCS, importance
of fulfilling task requirements is relative to its criticality.
For instance, in the automotive domain, it is crucial that the
anti-lock brake system (ABS) meets its requirements over the
proper functioning of the radio system does [25]. 2) Under
the dynamic migration between various modes of the MCS
system, a non criticality-aware approach is agnostic to which
tasks must meet their requirements under all modes and which
ones, on the other side, can be throttled at certain situations.

VI. CArb: PROPOSED ARBITRATION SCHEME

Motivated by the limitations of existing arbiters for MCS,
we introduce CArb: a criticality- and requirement-aware arbiter
that is configurable. CArb deploys a hierarchical two-tier
arbitration scheme to manage accesses to the shared memory
bus. It classifies tasks by their criticality grouping tasks of
same CL in a class. Then, it executes a harmonic WRR inter-
class arbitration among classes in the first tier, and a harmonic
WRR intra-class arbitration amongst tasks of the same class
in the second tier. Figure 3 depicts a system with 11 tasks
classified into three classes C1, C2 and C3, where C3 is the
most-critical. We use it as an example to illustrate CArb’s
operation.

Intra-Class
 WRR

Inter-Class WRR

(a) Inter- and intra-class arbitration.

(b) Look-up table required for schedule parameters.

Task slotClass slot
Class slots Task slots

(c) Final CArb schedule.

Fig. 3: Memory bus arbitration using CArb.

Inter-class Arbitration. CArb has two types of slots: class
slots and task slots. A class slot consists of one or more task
slots and is granted to a single class. The number of task slots
in a class slot is generally distinct per class and is defined
by its window size, Zl. Since CArb deploys a harmonic WRR
arbitration amongst classes, the number of class slots assigned
to Cl is relative to its class weight, CWl. Schedule hyperperiod
is the summation of all class weights, H =

n∑
l=1

CWl such that

CArb repeats the same schedule every H . Subject to CWl and
H , each class gets a slot every CPl =

H
CWl

, which we denote
as CArb’s class period. In Figure 3, class weights CW1, CW2

and CW3 are 2, 2 and 4, respectively comprising a hyperperiod
of H = 8, while the class window sizes Z1, Z2 and Z3 are
2, 3 and 3, respectively. Algorithm 1 describes the inter-class
arbitration mechanism. For each class slot, a flag bit is reset
to indicate that the slot is not allocated yet (line 3). Then,
the arbiter iterates through the set of classes starting from the
most critical one. For each class, Cl, the arbiter checks if Cl

has to start a new period. If Cl starts a new period, a flag
bit, denoted as class grant CGl, is reset (line 6). If CGl = 0,
which implies that Cl is ready to be scheduled, and the current
class slot is not allocated yet, CArb allocates this slot to Cl

(lines 7 to 11). At this step, CArb moves to the intra-class
arbitration to schedule tasks of Cl. Afterwards, CArb switches
to the next class slot and repeats the same process again (the
loop in lines 2 to 13) for H slots, then starts a new hyperperiod
with same schedule. The inter-class WRR shown in Figure 3a
exemplifies a schedule resulting from Algorithm 1, where the
schedule repeats every 8 class slots.

Intra-class Arbitration. Recall that the inter-class tier
grants Zl task slots to Cl every class slot assigned to it. This
results in a total of CWl×Zl task slots every H . The role of the
intra-class arbitration is to distribute these task slots amongst
tasks of Cl to satisfy their requirements. This is achieved by
executing a per-class schedule that deploys a harmonic WRR

Algorithm 1: CArb(. . .) – inter-class arbitration.
Input: CWl, Zl,Γl ∀l in [1, n]

1 H ← SUM∀l(CWl);
2 foreach (classSlot in [0, H − 1]) do
3 allocated ← false;
4 foreach (l in [n, 1]) do
5 CPl ← H/CWl;
6 if (mod(classSlot, CPl) = 0) then CGl ← 0;
7 if (CGl = 0 and allocated = false) then
8 CGl ← 1;
9 scheduleClass(Zl,Γl);

10 allocated ← true;
11 end
12 end
13 end

Algorithm 2: scheduleClass(. . .) – intra-class arbitration.
Input: Zl,Γl

1 τWjl ∀j in [1,Γl]
2 CHl ← SUM∀lτWjl

;

3 foreach (taskSlot in [0, Zl − 1]) do
4 allocated ← false;
5 foreach (j in [1,Γl]) do
6 τPjl← CHl/τWjl;

7 if (mod(indxl, τPjl) = 0) then τGjl← 0;
8 if (τGjl= 0 and allocated = false) then
9 τGjl← 1;

10 inc(indxl);
11 if (τj l has a waiting request) then
12 scheduleTask(τjl);
13 allocated ← true;
14 end
15 end
16 end
17 end

arbitration amongst tasks of the same class. Thus, the task
weight, τWjl, determines the number of task slots assigned
to τ jl. Summation of all task weights constructs the class

hyperperiod: CHl =

Kl∑
j=1

τWj l. The intra-class arbitration

repeats the same task schedule amongst tasks of Cl every CHl,
while τ jl gets τWjl task slots every CHl.

τPjl=
CHl

τW
jl

is the CArb’s task period such that CArb

must grant a task slot to τ jl every τPjl task slots in CHl.
In Figure 3, weights of C3’s tasks τW13, τW23 and τW33

are 3, 2 and 1, respectively. This results in a class hyperperiod
of CH3 = 6. Algorithm 2 illustrates the intra-class arbitration
process. Clearly, it is very similar to the first tier arbitration
amongst classes with some conceptual differences. The intra-
class arbitration executes a distinct schedule per class— see
for example the task schedules if C1, C2 and C3 at the intra-
class tier in Figure 3a. CArb tracks the number of task slots
allocated to Cl in the current schedule hyperperiod by the
counter indxl (line 7). For the current task slot, with particular
indxl value, it checks if τ jl has to start a new period (line
4). It repeats this check for all tasks in Cl. indxl is reset
at the start of every H . We dictate the task slot width to
allow for one access to the shared memory finish. Hence,
once CArb grants access to a request from any task, it cannot
be preempted. This is mandatory to guarantee predictability,
while keeping the arbiter feasibly simple to implement. Having
CArb implementing WRR, it is a work-conserving arbiter. For
any task slot, if a task does have a ready request, CArb will
allocate this slot to the first task in the schedule with a ready
request (line 8 in Algorithm 2). The final schedule that CArb
implements by executing both tiers of arbitration is akin to the
instance shown in Figure 3c.

Area Overhead. For CArb to be able to execute a bus
schedule satisfying memory requirements, it seeks the pre-
knowledge of the variables that comprises this schedule, which
we denote as schedule parameters. Particularly, it requires the
values of τWjl, CWl and Zl for all classes and tasks. We
formulate an optimization problem in Section VII to specify
the optimal values of these variables and solve this problem
offline based on requirements obtained in Section IV. Hence,
obtained schedule parameters are stored in a configurable look-
up table during boot time. For the example schedule shown in
Figure 3, we illustrate the look-up table structure in Figure 3b.
Let each schedule parameter require a 32bits (or 4B) register.
Generally, for n classes and Γl tasks per class, class parameters
(CWl and Zl) demand (8 × n)B, while task parameters per
class require (4× Γl)B. Accordingly, a total storage of 440B
is sufficient to store the schedule of a system with 5 classes
(5 is the maximum number of criticality levels specified by
standards) and 100 tasks per class. We believe that this is a
negligible area overhead for commodity multi-core systems.

VII. WC ANALYSIS AND PROBLEM FORMULATION

When using CArb, a request to the shared memory bus
incurs two types of latencies, scheduling latency and access
latency. Definitions 1 and 2 formally define these latencies.

Definition 1: Scheduling latency, yschjl,r, of a request reqr
generated by τ jl is measured from the time stamp of its
issuance until it is granted access to the memory bus. yschjl,r
is due to requests from other tasks scheduled before τ jl.

Definition 2: Access latency is the latency suffered by
a request generated by τ jl while it is accessing the shared
memory. We assume that accessing the shared memory takes
a fixed latency, yacc. This latency can be considered as the WC
access latency of the shared memory. Determining the value of
yacc is outside the scope of this paper and existing work can
be used to determine it both for LLCs [14] and DRAMs [13].

A. WC analysis

Lemma 1: The total WC latency of a memory request
generated by τ jl, denoted as ytotjl , is computed as follows.

ytot
jl =

((v=kl∑
v=1,v �=l

⌈
τWvl

τWjl

⌉)

+

(⌈
τPjl
Zl

⌉
×

∑
∀e|(e �=l∧
fe∈χl)

(⌈
CWe

CWl

⌉
× Ze

))
+1

)
× y

acc

Proof: The WC scheduling latency occurs when a request
waits for the WC number of requests before it can get access
to the resource. Recall that scheduling latency suffered by a
request from τ jl is due to requests from other tasks scheduled
before τ jl. These tasks belong either to the same class and
cause intra-class scheduling latency or other classes and cause
inter-class scheduling latency.
WC intra-class scheduling latency. In WC, during τPjl,

there are
⌈
τWvl

τWjl

⌉
slots assigned to τ vl (v �= l). Accordingly,

during τPjl, the WC number of scheduled requests from tasks

belonging to the same class is:
v=kl∑
v=1

⌈τWvl

τWjl

⌉
.

In Figure 3c, a request from τ 33 has to wait for 3 requests
from τ 13 and 3 requests from τ 23.
WC inter-class scheduling latency. In WC, Cl has to wait
for MIN(CPl, n) distinct classes before it is granted a class

slot, where each of these classes is assigned
⌈
CWe

CWl

⌉
class

slots. Furthermore, these classes are assigned the maximum
number of task slots. Let fe = CWe × Ze be the maximum
number of task slots. In Figure 3c, f1 = 4, f2 = 6 and
f3 = 12. Equation 3 calculates the WC number of task
slots CArb grants to other classed before it grants Cl a
class slot. χl = MAX(F,MIN(CPl, n)) represents the largest
MIN(CPl, n) elements of F where F = {f1, f2, ..., fn}. χl

identifies the MIN(CPl, n) classes with maximum number of
task slots to represent the worst-case for Cl.

∑
∀e|e�=l∧
fe∈χl

(⌈
CWe

CWl

⌉
× Ze

)
(3)

In addition, having Cl attained a class slot, does not necessarily
imply that τ jl attains a task slot. Recall that once Cl attains
a class slot, Zl task slots are granted to its tasks, and τ jl gets
a task slot every τPjl at the Cl’s schedule. Hence it gets one

task slot every
⌈
τPjl

Zl

⌉
class slots granted to Cl. Consequently,

a request from τ jl suffers from a WC inter-class scheduling

latency of
⌈τ Pjl

Zl

⌉
×

∑
∀e|e�=l∧
fe∈χl

(⌈
CWe

CWl

⌉
× Ze

)
. In Figure 3c,

a request from τ 33 has to wait in WC for
(⌈

CW2

CW3

⌉
× Z2

)
×

⌈
τP33

Z3

⌉
= (1 × 3) × 2 = 6 task slot granted to other classes

before it is granted an access. Finally, we add 1 to account for
the access latency of the request itself and multiply by yacc to
transform slots into cycles. In conclusion, the total WC latency
of any request is equal to the value computed in Lemma 1.

B. Optimization problem formulation

Target Function. We formulate the schedule construction
process as an optimization problem. The target is to gener-
ate the harmonic schedule with minimum hyperperiod that
satisfies requirements of all tasks. Hence, the schedule is
optimal amongst the set of harmonic schedules. Note that there
may exist a non-harmonic schedule with a shorter schedule
hyperperiod, which can be obtained using either unconstrained
search or heuristic solutions (see for example [26]) than
CArb. Since CArb is a hardware arbiter, we consider the
harmonic property to minimize the area overhead as discussed
in Section VI, while allowing for 100% bus utilization. We
determine the optimal values of weights and window sizes
assigned to classes and weights assigned to tasks to construct
that schedule. Therefore, we express the target function as:

MIN(
l=n∑
l=1

CWl × Zl).

Variables. The outcomes of this optimization problem
are the task weights τWjl, class weights CWl, and class
window sizes Zl that construct the schedule. Accordingly,
using these values, task periods τPjl, class periods CPl,
class hyperperiods CHl, and schedule hyper periods H are
calculated.

Constraints. 1) The total WC latency must satisfy the
memory access requirement obtained by Equation 2:

ytotjl ≤ Mjl (C.1)

2) Constraint C.2 prevents starvation at the inter-class arbi-
tration tier. The lower bound, CPl ≥ 2, prohibits each class
from starving other classes. If CPl = 1, Cl will saturate the
memory bus. The upper bound CPl ≤ H prevents starving
Cl as it assures that Cl will get at least one class slot in the
schedule hyperperiod.

H ≥ CPl ≥ 2 (C.2)

3) Similarly, Constraint C.3 prohibits starvation at the intra-
class arbitration tier:

CHl ≥ TPjl ≥ 2 (C.3)

4) Three conditions are required to assert the periodicity
characteristic such that CArb executes the schedule every H
class slots or, equivalently every CWl × Zl task slots. First,
the schedule hyperperiod, H , must be an integer multiple of
CArb’s class periods:

H

CPl
∈ Z>0. (C.4)

Second, every class hyperperiod, CHl must be an integer
multiple of CArb’s task periods:

CHl

τPjl
∈ Z>0 ∀l ∈ [1, n]∀j ∈ [1,Γl]. (C.5)

Third, the total number of task slots granted to a class every
H must be an integer multiple of the total number of required
slots by tasks in that class:

CWl × Zl

CHl
∈ Z>0. (C.6)

A final remark here is regarding constraint C.1. Recall that
the condition on Mjl in Equation 2 depends on the value of
Sjl, which is distinct per system mode. Two approaches can
be followed based on two cases of the system requirements. 1)
The first case is when the values of S for all tasks increase by
the same ratio when system moves to higher levels. In this case,
CArb stores only one optimal schedule that considers the value
of Sjl for the lowest mode. Upon switching to higher modes,
the operating system suspends lower-criticality tasks. Hence,
their interference effect over all other tasks is eliminated. Since
S increases by the same ratio for all tasks running at the new
level, their schedule weights remain the same. Hence, the
resulting schedule is sufficient to meet the requirements of the
running tasks. 2) The second case is when the increase ratios of
S are not the same among tasks. In this case, CArb requires a
schedule per each mode l that corresponds to Sjl(l). Since
current standards acquires 5 levels, the total area overhead
of these schedules is approximately 2KBs, which we find
acceptable for commodity systems.

C. Λ(L): The WC number of memory accesses as a function
of CL

So far, we have considered Λjl to be fixed for all CLs.
However, since Λ and S are calculated using same methods,
either analysis or measurements, the level of assurance on
Λ can, akin to S, depend on CL. Hence, the higher the
criticality level, the larger the value of Λ for the same task. To
address this situation, for each l-mode, we run the optimization
framework considering Sjl′(l) and Λjl′(l) for all tasks at
that level. Namely, tasks of l′ ≥ l since tasks of l′′ < l
are already suspended by the system at l-mode. A resulting
schedule per mode needs to be stored at the boot time. Upon
mode switching, CArb switches to the corresponding optimal
schedule to fulfil the new requirements of all tasks executing
at that mode.

VIII. DYNAMIC RE-ARBITRATION

A. Motivation

Suppose that the system operates at l-mode. Let the ex-
ecution time of τ jl+1 with criticality l + 1, sjl+1, exceed
its WCET value, sjl+1 > Sjl+1(l). Then, the conventional
approach is to switch the system to (l + 1)-mode suspending
all tasks of l criticality. Tasks of criticality l′′ < l are already
suspended at l-mode. This approach creates two challenges that
motivate our proposed fine-grained rescheduling at the arbiter
level. 1) Suspending l-critical tasks at the (l+1)-mode entails
having no guarantees for those tasks. 2) Due to high overheads
upon mode switching at the system scheduling mechanism as
studied by [27], minimizing those switches is highly desirable.

B. Proposed Solutions

Leveraging CArb, we can conduct a set of fine-grained
rescheduling techniques at the arbiter hardware that can miti-
gate the aforestated two issues of the conventional approach.
We illustrate two of these techniques.

Scheme1: Prioritized CArb. This technique does not di-
rectly suspend tasks of l criticality. Instead, CArb allows them
to access the shared memory bus only on slack slots when
there are no ready requests from any task of higher criticality.
As a consequence, this technique eliminates the interference
from l-critical tasks. Thus, the interference suffered by τ jl+1,
ijl+1 decreases. Since the total execution time is ejl+1 =
sjl+1 + ijl+1, if the decrease in ijl+1 mitigates the observed
increase in sjl+1 such that ejl+1 ≤ Ejl+1(l), there is no need
to switch the mode. Otherwise, a mode switch is unavoidable.
Since CArb schedule is statically predetermined, the maximum
increase in the execution time of τ jl+1 that this technique
can mitigate before switching the mode, denoted as smax

jl+1, is
known offline for all tasks. During running time, the operating
system monitors the execution time of all tasks and makes the
following decisions. Decisions are shown for τ jl+1 at l-mode;
however, they hold for all tasks at all modes:

sjl+1 ≤ Sjl+1(l) → normal l-mode
Sjl+1(l) < sjl+1 ≤ smax

jl+1(l) → apply prioritized CArb
sjl+1 > smax

jl+1(l) → switch to (l + 1)-mode

Although prioritized CArb may appear similar to other
priority-based arbiters, there are important differences. For
instance, static-priority arbiters such as the one deployed
in [12], does not provide any guarantees except for the highest-
criticality tasks. In worst-case, tasks with the highest-criticality
can issue requests forever; thus, starving other lower-criticality
tasks. In other words, simple static-priority arbiters allow all
tasks other than the highest-critical ones to issue requests only
on slack time. In contrast, CArb applies prioritization only
when a potential mode switch is discovered that CArb can
avoid using re-arbitration. Amongst running tasks, only tasks
of lowest-criticality (l-critical tasks at l-mode) issue requests
on slack time. For example, assume a MCS with 5 criticality
levels, where tasks are running at 1-mode, and the system mon-
itors an increase in the execution time that CArb can mitigate
without a mode switch. Accordingly, prioritized CArb forces
tasks with 1-criticality to issue requests only on slack slots, and
reallocate their slots to other tasks. All tasks of criticalities 2 to
5 are guaranteed to meet their requirements. On the other hand,
if the system implements the aforementioned static-priority
arbitration, only tasks of 5-criticality meet their requirements.
There exist other static-priority arbiters that avoid starvation
of lower-criticality tasks by deploying budgeting mechanisms
such as the credit-control static priority arbiter (CCSP) [28].
However, they have shortcomings when applied to MCS. For
example, during each period, lower-criticality tasks have to
wait for all higher-criticality tasks to finish their budgets
before it can issue a single request. Accordingly, they may or
may not meet their temporal requirements. This has the same
disadvantage as the contiguous TDM discussed in Section V.
Contrarily, prioritized CArb distributes slots amongst running
tasks in a harmonic way that is requirement-aware. This is
true for all running tasks except for the lowest-criticality that

CArb executes on slack time. In addition, once the monitored
execution times decrease below their corresponding worst-
case estimates, CArb reloads the normal schedule in the next
schedule hyperperiod. Consequently, all tasks are guaranteed
to meet their requirements.

Scheme2: Having an optimal schedule per mode. Pri-
oritized CArb can be considered as a special case schedule,
where weights of lower criticality tasks are set to 0. Although
it successfully delays the mode switching, it can be considered
the most conservative solution. Generally, based on the amount
of increase in the execution times, there exist a set of possible
CArb solutions that can offset this increase. On l-mode, each
solution comprises an optimal schedule that satisfy the new
requirements, with larger Sjl′ values for all l′ > l, while it
maximizes the allocated slots to tasks of l instead of setting
their allocated slots to 0. For the task under analysis, τ jl+1,
since the set of real execution times between Sjl+1 and smax

jl+1
is uncountably infinite, some execution time values must be
selected to find the optimal schedule for. In addition, the
larger the selected execution times are, the less the allocated
service to l-critical tasks. Hence, a trade-off exists between
the allocated service to tasks of l, and the area required to
store the selected number of corresponding schedules. For
instance, suppose that only one additional schedule is stored
for each level that corresponds to the middle point of value

ssch2jl+1 =
smax
jl+1+Sjl+1

2 ; hence, for l-mode and task τ jl+1, the
operating system decisions become as follows:

sjl+1 ≤ Sjl+1(l) → normal l-mode

Sjl+1(l) < sjl+1 ≤ ssch2
jl+1 → apply optimal schedule2

ssch2
jl+1 < sjl+1 ≤ smax

jl+1(l) → apply prioritized CArb
sjl+1 > smax

jl+1(l) → switch to (l + 1)-mode

To obtain these additional optimal schedules for l-mode,
Constraints C.1, and C.4 to C.6 apply only for l′ > l and
the target function of the optimization problem changes to
MAX(CWl × Zl) only for tasks of l criticality.
Finally, there are important observations to highlight. First,
suppose that CArb is executing scheme1 or scheme2, if all
monitored execution times decrease below their WCET values,
CArb can move back to the original optimal schedule. Second,
the overheads of proposed schemes are negligible compared
to mode switches as 1) they are conducted at the arbiter
hardware which is much faster than processor rescheduling at
the system level, and 2) the operating system does not require
to handle any of the complex procedures of mode switching;
instead, it just sends a signal to CArb to move to one of
these schemes. At the end of each hyperperiod, CArb monitors
whether it receives this signal from the system. In case of
signal reception, CArb applies the appropriate re-arbitration at
the next schedule hyperperiod.

C. Effect of Re-arbitration on Lower-criticality Tasks

Under normal operation, a MCS should satisfy require-
ments of both higher and lower criticality tasks. However,
when the execution time of tasks increase, this may not be
possible. The objective of the dynamic re-arbitration is to
achieve the following two goals at each criticality level:

1) Guarantee the timing requirements of higher criticality
tasks.

Use-case requirements Processor Scheduling using [21] Optimal CArb parameters

τjl Djl
(ms)

Sjl
(ms)

Λjl Partition Core U memory access requirements τwjl (CWl, Zl)

τ14 25 1.06 500 1 1 0.25 M14 ≤ 5.02μs 6

(3, 4)
τ24 50 3.09 500 2 1 0.25 M24 ≤ 8.11μs 3
τ34 100 2.7 500 3 1 0.25 M34 ≤ 23.17μs 1
τ44 200 1.09 500 4 1 0.25 M44 ≤ 45.96μs 2

τ13 25 0.94 1000
5 2 0.4 2M13 + M23 + M33 ≤ 6.45μs

6

(6, 4)

τ23 50 1.57 1000 4
τ33 50 1.68 1000 4
τ43 50 4.5 1000

6 2 3/5 4M43 + 4M53 + 2M63 + M73 ≤ 35.28μs

3
τ53 50 2.94 1000 3
τ63 100 1.41 1000 3
τ73 200 6.75 1000 1

τ12 50 5.4 4000 7 3 0.4 M12 ≤ 1.77μs 1 (3, 1)

τ11 50 2.4 2000

8 3 0.6 4M11 + M21 + 4M31 + M41 ≤ 28.77

5

(12, 5)

τ21 200 0.94 2000 2
τ31 50 1.06 2000 5
τ41 200 2.28 2000 3
τ51 25 4.75 3000

9 4 1 8M51 + 2M61 + M71 + 2M81 + 4M91 ≤ 24.17

20
τ61 100 12.87 3000 6
τ71 200 0.47 3000 3
τ81 100 1.24 3000 6
τ91 50 1.62 3000 10

TABLE I: Experiment using the avionics use-case from Honeywell [1].

2) Provide lower criticality tasks with the maximum possible
service after satisfying the first goal.

These two goals do not guarantee satisfying the timing require-
ments of lower-criticality tasks upon re-arbitration. In fact,
upon re-arbitration, CArb will reduce the service delivered to
lower-criticality tasks to satisfy requirements of higher ones.
Nonetheless, the proposed fine-grained re-arbitration, unlike
the traditional mode-switching approach, does not completely
suspend lower-critical tasks unless needed. This is important
since lower-criticality tasks are usually soft-real time tasks,
which care about average-case rate of service or memory
bandwidth. Hence, degrading their service is potentially a more
practical solution than completely suspending them [2].

IX. EXPERIMENTAL EVALUATION

We experimentally prototype CArb using a multi-core ar-
chitectural simulator called MacSim [29] with CArb managing
accesses to a shared L3 cache. We use a multi-core architecture
of four x86 cores, private 16KB L1 and 256KB L2 caches
per core, and a single 1MB L3 cache shared and partitioned
amongst cores and operates at 1GHz. The access latency of the
L3 cache is 50 cycles. The evaluation consists of three parts.
In the first part, we evaluate CArb using a real use-case MCS
requirements from the avionics domain. In the second part,
we highlight the trade-offs associated with adapting CArb’s
schedule parameters. In the last part, we study the effectiveness
of the proposed re-arbitration schemes.

A. Avionics Use-case

Experiment setup. We simulate a workload of 21 tasks
derived from partition-based avionics system from Honey-
well [1]. Table I tabulates for each task: the deadline, Djl,
WC execution time in isolation, Sjl, and the maximum number
of memory access issued in a period, Λjl. The workload has
9 partitions (column 5 in Table I) and 4 criticality classes,
C1 to C4. Since the actual task implementations are not
publicly available, we implement in-house workloads that
match requirements of these tasks. We deploy the algorithm
proposed by Sha [21] to schedule tasks on cores using core
assignments and utilizations given in columns 6 and 7 of
Table I, respectively.

Obtaining CArb parameters. We use the schedulability
condition in Equation 2 to construct the memory latency, which
we show in column 8 of Table I. Afterwards, we implement
the optimization framework proposed in Section VII in Matlab
to obtain the optimal values of CArb’s schedule parameters.
According to the memory latency requirements, we get the
optimal values for τWjl (column 9 in Table I), CWl and Zl

(column 10) that satisfy these requirements while minimizing
the schedule hyperperiod.

Results. Figure 4 shows the WC latencies obtained when
CArb executes the optimal schedule to arbitrate requests from
all tasks to the shared L3 cache. Clearly, the values satisfy all
the memory access latency requirements in column 8.

0

1.
9 2

1
2
3
4
5
6

1.
65

1.
7

4.
95

3.
25

1.
1 1.
9 2 2 1.
65

1.
35
2.
8

0.
65 1.
05

0.
91.
35 1.
9

1.
9

1.
05

5.
7

Fig. 4: Avionics use-case results.

B. Synthetic Experiments

CArb is capable of meeting various system requirements
by adapting its configurable parameters CWl, Zl and τWjl.
Certainly, this adaptation involves a trade-off between require-
ments of different tasks. It is the role of the optimization
framework to explore this trade-off and provide optimal values
that satisfy all requirements. However, this experiment does not
focus on discovering the optimal setting, but giving the reader
a perspective on how parameters influence the outcome. In
doing that, we disable the optimization framework and sweep
each parameter to study its effect.

Experiment setup. We assume a system with three classes
C3, C2 and C1. C3 has two tasks τ 13 and τ 13, C2 has one
task τ 12 while C1 has four tasks τ 11 to τ 41. We run each
task on a core and CArb manages accesses to a shared cache
among cores. We conduct three experiments to: 1) vary CW1,
2) vary Z1, and 3) vary τW41. Table II shows the values of
all parameters used in these experiments. Figure 5 delineates
the results of each experiment.

Exp. CW3 CW2 CW1 Z3 Z2 Z1 τWj3 τWj2 τWj1 τW41
j �= 4

1 1 1 vary 2 1 4 1 1 1 1

2 2 2 4 1 1 vary 1 1 1 1

3 2 2 4 1 1 3 1 1 1 vary

TABLE II: Parameters of synthetic experiments.

Observations. 1) Increasing CW1, CArb grants more class
slots to C1. Similarly, increasing Z1 will increase the number
of task slots assigned to C1’s tasks. Consequently, in both
cases, ytot of C1’s tasks will decrease at the expense of
increasing ytot of tasks in C2 and C3. We also show the amount
of interference that C1’s tasks contribute to latencies of tasks
belonging to other classes by illustrating the case when no task
from C1 is scheduled (CW1 = 0). Since this situation implies
starving C1’s tasks, the optimization framework prohibits it
under normal conditions.
2) At certain values, increasing weights or window sizes of a
class may not decrease ytot of tasks in that class. For example,
in Figure 5b, increasing Z1 from 2 to 3 does not decrease
ytotj1 , while it has a negative effect on ytot of tasks in C2 and
C3. The rationale behind this observation is that increasing Z1

from 2 to 3 do not, in fact, change the WC situation for tasks
in C1. According to the values of experiment 2 in Table II
and Z1 = 2, each task in C1 attains 2 of 12 task slots in
the schedule hyperperiod. Therefore, it has a WC scheduling
latency of 	 12

2
 = 6 slots. Increasing Z1 from 2 to 3, each
task in C1 wins 3 of 16 task slots; hence, the WC scheduling
latency becomes 	 16

3
 = 6 slots. As a consequence, increasing
Z1 from 2 to 3 does not change ytotj1 ; however, it decreases
average-case latency as tasks of C1 execute more frequently.
3) By changing τW41 (Figure 5c), the intra-class schedule of
C1 changes. Apparently, increasing τW41 decreases ytot41 at
the expense of increasing ytot of other tasks in C1. Notice
that with the exception of τW41= 0, changing τW41 has no
effect on ytot of tasks in C2 and C3. This is because the inter-
class schedule remains the same. This is a consequence of the
criticality-awareness of CArb as it separates class arbitration
from task arbitration. Since assigning τW41= 0 will result in
a free slot that will be assigned to other tasks, tasks of C2 and
C3 have less ytot.

0

100

200

300

400

500

1 20

(a) Class weight.

0

250

500

750

1000

1 2 3 4

(b) Class window size.

1 30
0

100

200

300

400

500

600

700

800

(c) Task weight.

Fig. 5: Synthetic experiments (y-axis is the total WCL, ytot).

C. Dynamic Re-arbitration

Experiment Setup. In this experiment, we investigate the
capabilities of CArb’s dynamic re-arbitration mechanisms pro-
posed in Section VIII. We use the parameters in Table III to
simulate a system with 3 classes. The partitioning algorithm
in Sha [21] is used for core scheduling and Table III tabulates
the used partitions and utilizations. According to the standard

τ D
(ms)

S
(ms)

Partition Core U Λ M(μs) τw CW Z

τ13 5 1 1 1 0.5 2000 M13 ≤ 0.22 1
4 1

τ23 5 1 2 1 0.5 2000 M23 ≤ 0.22 1

τ12 5 2
3 2 1

1000
2M12 + M22 ≤ 1.28

1
2 1

τ22 10 3 1000 1

τ11 10 2
4 3 1

2000
3M11 + 2M21 ≤ 2.9

1
2 1

τ21 15 8 2000 1

TABLE III: Parameters of the dynamic case experiment.

MCS model, there are 3 modes of operations. 1-mode is the
normal mode, where all tasks of all classes are operating
according to the requirements given in Table III. In 2-mode,
the operating system suspends tasks of C1 and only tasks of
classes C2 and C3 are utilizing the hardware. Finally, in 3-
mode, tasks of C1 and C2 are suspended and only tasks of
C3 have the permit to execute. Normally, a switch from the
1-mode to the 2-mode occurs when the execution time of any
task in C2 or C3 exceeds its Sij value in Table III. To expose
benefits of CArb dynamic re-arbitration, we postpone this mode
switch and investigate if this re-arbitration is able to mitigate
the increase in the execution time such that the requirements
of tasks in C2 and C3 are met without suspending tasks of C1.
We model the increase in the execution time by decreasing the
core operating frequency.

Observations. All tasks are affected by the frequency
scaling. For clarity, we focus on results of C2’s tasks (partition

3). Figure 6 depicts U3 =

2∑
j=1

ej3

Dj3

=

2∑
j=1

sj3 + mj3 × Λj3

Dj3

. The

dotted line is the schedulability bound (right hand side of
Equation 1).
1)Deploying CArb without dynamic re-arbitration and disable
mode switching. As expected, decreasing the frequency, s12
and s22 increase and U3 keeps increasing until violating
schedulability condition (noDynamic plot in Figure 6).
2) Deploying CArb with scheme1. When s12 and s22 exceed
their corresponding WCETs, S12 and S22, CArb switches to the
prioritized CArb mechanism, where tasks of C1 gains access
only on slack slots. As Figure 6 illustrates, Scheme1 mitigates
up to 12% and 18% increase percentages in s12 and s22,
respectively, without requiring the operating system to switch
to mode 2. This results in postponing the mode switch from
the frequency point of 990MHz to 950MHz. However, this
comes at the expense of switching all tasks of C1 to execute
on slack slots.
3) Deploying CArb with scheme2. Given the trade-off discussed
in Section VIII, we choose to store only one additional
schedule configuration for scheme2 per mode. We choose
a middle point between the WCETs and the maximum ex-
ecution times that scheme1 can mitigate, where (s12, s22)

0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

9309409509609709809901000
Core Frequency (MHz)

Sc
he

du
la

bi
lit

y
Co

nd
.

Cond. noDynamic Schedule2 Scheme2 Scheme1

(2.12,3.18)(2.06,3.09)(2.03,3.05) (2.12,3.18)(2.06,3.09)2.06,3.0(2.03,3.05)3 (s12 ,s22)

Fig. 6: Effect of decreasing core frequency on tasks of C2.

equal (2.06, 3.09)ms, respectively, in Figure 6. This point
is statically predetermined and we rerun the optimization
framework to obtain the new optimal schedule. The obtained
optimal schedule does not change the intra-class schedule
and only reallocates the inter-class slots. This is achievable
exclusively because CArb is criticality-aware with hierarchical
scheduling. In the new schedule (Schedule2 in Figure 6), the
class weights are the same as in Table III, while class window
sizes change to 1, 2 and 2 for C1, C2 and C3 respectively.
Instead of directly applying prioritized CArb once the execution
times exceeds their WCETs, Schedule2 mitigates increases up
to 6% and 9% in s12 and s22, respectively. This occurs from
990MHz to 970MHz in Figure 6. In addition, it guarantees
some service allocation on the memory bus to C1’s tasks. Af-
terwards, Scheme2 deploys the prioritized CArb (from 970MHz
to 950MHz in Figure 6). Finally, a mode-switch is unavoidable
when s12 and s22 exceed the point (2.12, 3.18)ms (region after
950MHz in Figure 6).

X. CONCLUSION

We address the inter-task interference problem in multi-
core mixed criticality systems by presenting CArb. CArb is a
criticality- and requirement-aware bus arbiter adopting two-
tier weighted round-robin arbitration. CArb has the following
advantages: it does not restrict the scheduling policy for tasks
on cores, and it supports any number of criticality levels.
In addition, it optimally allocates service to tasks through
configurable schedules loaded at boot time. CArb is capable
to dynamically adapt its schedule under varying system con-
ditions. This adaptation proves its effectiveness to mitigate the
system need to switch to a degraded mode upon increases in
the execution times of tasks. Finally, we evaluate CArb using
avionics case-study and synthetic experiments.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in IEEE International
Real-time Systems Symposium (RTSS), 2007.

[2] P. Graydon and I. Bate, “Safety assurance driven problem formulation
for mixed-criticality scheduling,” in Workshop on Mixed-Criticality
Systems, 2013.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in
IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2012.

[4] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks
with multiple criticality specifications,” in IEEE Euromicro Conference
onReal-Time Systems (ECRTS), 2008.

[5] R. M. Pathan, “Schedulability analysis of mixed-criticality systems on
multiprocessors,” in IEEE Euromicro Conference on Real-time Systems
(ECRTS), 2012.

[6] H. Li and S. Baruah, “Global mixed-criticality scheduling on mul-
tiprocessors,” in IEEE Euromicro Conference on Real-Time Systems
(ECRTS), 2012.

[7] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality
scheduling on multiprocessors,” Real-Time Systems, 2014.

[8] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criti-
cality systems,” in IEEE Euromicro Conference on Real-Time Systems
(ECRTS), 2015.

[9] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Schedul-
ing of mixed-criticality applications on resource-sharing multicore
systems,” in IEEE International Conference on Embedded Software
(EMSOFT), 2013.

[10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele,
“Worst case delay analysis for memory interference in multicore sys-
tems,” in IEEE International Conference on Design, Automation and
Test in Europe (DATE), 2010.

[11] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of
cpu and i/o transactions in cots-based embedded systems,” in IEEE
Real-Time Systems Symposium (RTSS), 2008.

[12] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical memory
controller using bank privatization and fixed priority scheduling,” in
IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA).

[13] M. Hassan, H. Patel, and R. Pellizzoni, “A framework for scheduling
dram memory accesses for multi-core mixed-time critical systems,” in
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015.

[14] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Out-
standing paper award: Making shared caches more predictable on
multicore platforms,” in IEEE Euromicro Conference on Real-Time
Systems (ECRTS), 2013.

[15] N. Chetan Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno, and
P. H. Jones, “Cache design for mixed criticality real-time systems,” in
IEEE International Conference on Computer Design (ICCD), 2014.

[16] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
access control in multiprocessor for real-time systems with mixed criti-
cality,” in IEEE Euromicro Conference on Real-Time System (ECRTS),
2012.

[17] A. Burns and R. Davis, “Mixed criticality systems: A review,” Depart-
ment of Computer Science, University of York, Tech. Rep, 2013.

[18] H. Yun, R. Pellizzon, and P. Valsan, “Parallelism-aware memory inter-
ference delay analysis for cots multicore systems,” in IEEE Euromicro
Conference on Real-Time Systems (ECRTS), 2015.

[19] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar,
“Bounding memory interference delay in cots-based multi-core sys-
tems,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014.

[20] P. Ekberg and W. Yi, “Schedulability analysis of a graph-based task
model for mixed-criticality systems,” Real-Time Systems, 2015.

[21] L. Sha, “Real-time virtual machines for avionics software porting and
development,” in Real-Time and Embedded Computing Systems and
Applications. Springer, 2004.

[22] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero,
“Hardware support for wcet analysis of hard real-time multicore sys-
tems,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3.
ACM, 2009, pp. 57–68.

[23] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-
robin cell multiplexing in a general-purpose atm switch chip,” IEEE
Journal on Selected Areas in Communications, 1991.

[24] M.-K. Yoon, J.-E. Kim, and L. Sha, “Optimizing tunable wcet with
shared resource allocation and arbitration in hard real-time multicore
systems,” in IEEE Real-Time Systems Symposium (RTSS), 2011.

[25] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2010 16th IEEE. IEEE, 2010, pp.
13–22.

[26] A. Minaeva, P. Šcha, B. Akesson, and Z. Hanzálek, “Scalable and
efficient configuration of time-division multiplexed resources,” Elsevier
Journal of Systems and Software, 2016.

[27] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele,
“Mixed-criticality runtime mechanisms and evaluation on multicores,”
in IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2015.

[28] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-
time scheduling using credit-controlled static-priority arbitration,” in
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2008.

[29] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: A cpu-gpu heterogeneous simulation framework user guide,”
Georgia Institute of Technology, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

