Criticality- and Requirement-aware Bus Arbitration for Multi-core Mixed Criticality Systems

Mohamed Hassan and Hiren Patel

MCS: Physical Criticality Side

MCS: Schedulability Side

MCS: Schedulability Side

MCS: Schedulability Side

Multi-core MCS

Problem Statement

Arbitrate accesses to the shared memory bus such that memory latency requirements of all tasks are satisfied

Mitigate mode switches in MCS utilizing dynamic memory rearbitration Outline

How to obtain memory requirements?

Real-time arbiters for MCS?

Proposed solution

Mitigating mode-switches using Carb capabilities

Evaluation

Criticality awareness

Requirement awareness

Traditional MCS model

• Originally proposed for single-core MCS

$$task = \langle CL, Deadline, WCET(l) \rangle$$

Calculated in isolation (no interference amongst cores)

Traditional MCS model

• Originally proposed for single-core MCS

Execution Time Decomposition

Schedulability condition:

 $f(WCET) \leq f(deadline)$

Execution Time Decomposition

Schedulability condition:

Execution Time Decomposition

Schedulability condition:

	Requirement Awareness	Criticality Awareness
RR	×	×
PRR		$\mathbf{\Lambda}$
WRR/TDM		X
HRR (RTSS 2011)/ Distributed TDM (RTAS2015)		X
CArb		

CArb Arbitration

CArb Arbitration

CArb Arbitration

Interference decomposition:

- Intra-class (same criticality): τ_{13} suffers a WC interference of 1 slot from τ_{23}
- Inter-class (other criticalities): τ_{13} suffers a WC interference of 2 slots from c_1 or 1 slot from c_2

• What is the right arbitration decision to decrease interference on τ_{13} ?

• What is the right arbitration decision to decrease interference on τ_{13} ?

Dynamic re-arbitration

• What is the right arbitration decision to decrease interference on τ_{13} ?

How much "decrease" is enough ?

Requirement Awareness-WC latency

Λ: Function of the Criticality Level?

WC computation time and WC memory requests are obtained by same methods: *timing analysis* or *simulations* WC computation time is a function of the CL \rightarrow why not WC memory requests?

- CArb: run the optimization framework per CL (operation mode)
- Execute a distinct schedule per operation mode

Dynamic Re-arbitration- The Problem

- Problems with traditional approach:
 - 1. Suspending l-critical tasks at the (l + 1)-mode entails having no guarantees for those tasks

→ They are still critical tasks! (WMC 2013)

Mode switching at the OS scheduling level results in huge overheads (RTAS 2015)

 \rightarrow Minimizing those switches is highly desirable!

Scheme1: Prioritized CArb

- Don't suspend *l* tasks.
- Allow them to access memory only on slack slots → eliminated their memory interference
 - total execution time = computation time + interference delay

Scheme1: Prioritized CArb

Scheme2: Prioritized CArb Is A Special Case!

Evaluation: Avionics case-study

Use-case requirements				Processor Scheduling using [21]					Optimal CArb parameters	
τ_{jl}	$D_{jl} \ (ms)$	S_{jl} (ms)	Λ_{jl}	Partition	Core	TDM ac	ross	memory access requirements	τw_{jl}	(CW_l, Z_l)
τ_{14}	25	1.06	500	1	1	nartition	sand	$M_{14} \le 5.02 \mu s$	6	
$ au_{24}$	50	3.09	500	2	1	RM within		$M_{24} \le 8.11 \mu s$	3	(3.4)
$ au_{34}$	100	2.7	500	3	1			$M_{34} \le 23.17 \mu s$	1	(3,4)
$ au_{44}$	200	1.09	500	4	1	nartition	(Sha/	$M_{44} \le 45.96 \mu s$	2	
	25 50 50 50	0.94 1.57 1.68 4.5 2.94	1000 1000 1000 1000	5	2	RTCSA 2	004)	$2M_{13} + M_{23} + M_{33} \le 6.45 \mu s$	6 4 4 3	(6, 4)
$^{ au_{53}}_{ au_{63}}$	100 200	2.94 1.41 6.75	1000 1000 1000	6	2	3/5	4M	$M_{43} + 4M_{53} + 2M_{63} + M_{73} \le 35.28\mu s$	3 1	
τ_{12}	50	5.4	4000	7	3	0.4		$M_{12} \le 1.77 \mu s$	1	(3, 1)
	50 200 50 200	$2.4 \\ 0.94 \\ 1.06 \\ 2.28$	2000 2000 2000 2000	8	3	0.6	4	$M_{11} + M_{21} + 4M_{31} + M_{41} \le 28.77$	5 2 5 3	
$ \frac{ au_{51}}{ au_{61}} \\ au_{771} \\ au_{81} \\ au_{91} \\ ext{}$	$25 \\ 100 \\ 200 \\ 100 \\ 50$	$4.75 \\12.87 \\0.47 \\1.24 \\1.62$	3000 3000 3000 3000 3000	9	4	1	8 <i>M</i> 51	$+ 2M_{61} + M_{71} + 2M_{81} + 4M_{91} \le 24.17$	20 6 3 6 10	(12, 5)
21 ta and class	ask 4 ses		parti	e tions		Moham	ned Hassan,	Derive memory requirements per class	Run optir solver to CArb para	mization obtain ameters

Evaluation: Avionics case-study

 $8M_{51} + 2M_{61} + M_{71} + 2M_{81} + 4M_{91} \le 24.17$

au	D	S	Partition	Core	U	Λ	$M(\mu s)$	τw	CW	Z
	(ms)	(ms)								
τ_{13}	5	1	1	1	0.5	2000	$M_{13} \le 0.22$	1	4	1
τ_{23}	5	1	2	1	0.5	2000	$M_{23} \le 0.22$	1		1
T19	5	2				1000		1		
$ au_{22}^{12}$	10	3	3	2	1	1000	$2M_{12} + M_{22} \le 1.28$	1	2	1
711	10	2				2000		1		
τ_{21}^{+11}	15	8	4	3	1	2000	$3M_{11} + 2M_{21} \le 2.9$	1	2	1

6 task and 3 classes

Summary

Evaluation: Synthetic Experimentation

Final CArb Schedule

Area Overhead

• 5 classes and 100 task/class requires only 440B.

