
MCXplore: An Automated Framework for Validating

Memory Controller Designs

Mohamed Hassan and Hiren Patel

{mohamed.hassan, hiren.patel}@uwaterloo.ca

University of Waterloo, Waterloo, Canada

Abstract—This work presents an automated framework for
the validation of dynamic random access memory controllers
(DRAM MCs) called MCXplore. In developing this framework, we
construct formal models for memory requests interrelation and
DRAM command interaction. The framework enables validation
engineers to define their test plans precisely as temporal logic
specifications. We use the NuSMV model-checker to generate
counter-examples that serve as test templates; hence, MCXplore
uses these test templates to generate memory tests to validate
the correctness properties of the memory controller. We show
the effectiveness of MCXplore by validating various state-of-the-
art MC features as well as hard-to-detect timing violations that
often occur. We also provide a set of predefined test plans,
and regression tests that validate essential properties of modern
DRAM MCs. We release MCXplore as an open-source framework
to allow validation engineers and researchers to extend and use.

I. INTRODUCTION

While the complexity of computing systems is increasing,
their time-to-market is decreasing. As a consequence, the
validation process of these systems becomes a major challenge
that consumes a considerable portion of the design cycle.
Companies spend millions of dollars annually on the validation
process of all components of the computing system [1].
Researchers have proposed methodologies to validate CPU
designs [2]. However, with the increase in memory requirement
demands from applications, main memory subsystem is a vital
component in almost all computing systems. Therefore, the
validation of the memory subsystem is as crucial as validating
other components; thus, it is the focus of this paper.

There are many techniques to validate computing systems.
We target simulation-based validation since it is the most
commonly used technique nowadays [2]. To validate any new
feature or debug failures in the memory subsystem using
the simulation-based approach, validation engineers adopt a
simulation model. They provide stimulus inputs to the model
and study its responses. Consequently, the effectiveness of this
approach is heavily dependent on the ability of input tests to
cover necessary execution scenarios to be validated. Different
approaches exist for generating these tests. The straightforward
approach is to use available benchmarks as the input stimuli,
which saves time and cost required to develop test suites. This
approach is extensively used by researchers to evaluate and
validate their novel memory controller (MC) designs, though
it has many shortcomings. First, some of the benchmarks
may not be memory intensive. Furthermore, they may be
so complex that they do not have easy-to-analyse memory
patterns, which are vital to diagnose MC responses and to
check for correctness. Second, these benchmarks do not ex-
plore the state space of the memory subsystem properties. For

instance, they have specific locality and read/write switching
percentages. However, exploring this state space is paramount
for validating the design under all possible scenarios. To
avoid these shortcomings, validation engineers either manually
develop their own synthetic test suites or use random test gen-
erators [1] [2]. Manually-generated tests are time consuming
and prone to human errors. On the other hand, randomly-
generated tests may not cover all necessary test properties.
In addition, MC designs are becoming complex with different
performance optimizations such as multiple reordering levels,
adaptive policies and priority-based arbitration. Therefore, test
generation for memory subsystem validation is becoming an
increasing challenge.

Contributions– We address this challenge by making the
following contributions. (1) We present MCXplore, an au-
tomated framework for the validation of MCs. MCXplore
enables validation engineers to precisely specify the properties
required in the test suite in temporal logic specifications.
Then, it automatically generates tests with the optimal number
of memory requests that satisfy these properties to validate
the correctness of the MC. To our knowledge, this is the
first effort to automate the validation process of MCs. We
release MCXplore as an open-source framework [3] to allow
validation engineers and researchers to extend and use. (2)
We introduce two formal models for the generation process
of memory tests. The first model represents the interrelation
amongst memory requests, while the second model resembles
interactions between memory commands. These models allow
us to encode the test generation process as a symbolic finite
state machine (FSM), and use model checking techniques [4]
to explore the state space for MC test suites and generate
counter-examples that serve as test templates. MCXplore uses
these test templates to generate property-driven test suites. (3)
We highlight interesting sequence patterns that a test suite
should encompass to test and evaluate various MC features.
Consequently, we provide a set of predefined test plans as
well as regression tests that validate essential functionalities
of modern dynamic random access memory (DRAM) MCs.
(4) Finally, we show case studies on applying our automated
framework to validate the correctness of several state-of-the-art
MC features and debug for any timing violations.

A. Main Memory Background

As Figure 1 illustrates, a DRAM is a three-dimensional
array of memory cells arranged as banks. Cells in each bank
are organized in rows and columns. A DRAM rank is a group
of banks. For multi-channel DRAMs, each channel has its own
buses and consists of one or more ranks. Accesses to different

1357978-3-9815370-7-9/DATE16/ c©2016 EDAA



R
e
q
u
e
s
to

rs

Logical 

Address Address 

Mapping

Physical 

Address Command

Generation

Command Queues

Command

Arbitration

Memory Controller Banks Columns

Row-Bu er

Rows

Interface Queues

Requestors

Arbitration

Rank

Fig. 1: DRAM subsystem.

channels, ranks or banks can be interleaved to reduce their
access latency. On the other hand, accesses to different rows in
the same bank suffer from row conflicts and encounter larger
latencies. The row buffer caches the most-recently accessed
row in each bank. DRAM accesses are controlled by the
MC, which implements an arbitration scheme, an address
mapping, and a page policy. The arbitration scheme arbitrates
amongst different requests. The address mapping translates
request addresses into 5 segments: channel (CH), rank (RNK),
bank (BNK), row (RW ), and column (CL). The page policy
controls the liveness of the row in the row buffer. Open-page
policy keeps the row in the row buffer until another row is
requested. Contrarily, close-page policy writes back data in the
row buffer after each access. Usually, modern MCs implement
neither a strict open- nor close-page; instead, they implement
adaptive policies that dynamically switch between the two.
Finally, the MC issues one or more of the following commands
to access the DRAM: ACTIVATE (A), READ (R), WRITE (W),
PRECHARGE (P), and REFRESH (REF). A fetches the row
to the row buffer. R (W) reads (writes) the required columns
in the row buffer. P writes back the data in the row buffer
to the corresponding row of cells. Finally, REF activates
and precharges DRAM rows to prevent charge leakage. The
DRAM JEDEC standard [5] imposes strict timing constraints
on these commands (Table I). All MC designs must satisfy
these constraints to ensure correct DRAM behaviour.

TABLE I: Important JEDEC timing constraints (DDR3-
1333) [5].

Const. Meaning Cyc.

tRC Minimum time between A commands to same bank. 34

tCCD Column-to-column delay. 4

tRP Row pre-charge time 10

tBUS
request size

data bus size × 2
: Time required to transfer a data burst. 4

tRAS Minimum time between A command and P command. 24

tWL Minimum time between W and the start of data transfer. 9

tRL Minimum time between R and the start of data transfer. 10

tRCD Minimum time between activating the row and accessing it. 10

tFAW Four bank activation window in same rank. 20

tRTRS Rank to Rank switching delay. 1

tRTP Read to precharge delay. 5

tWTR Write to read switching delay. 5

tWR Write recovery delay. 10

RKtoRK (tBUS + tRTRS): Rank switching delay.

RtoW (tRL + tBUS + tRTRS − tWL): R to W delay.

WtoR B (tWL + tBUS + tWTR): W to R in same rank delay.

WtoR RK (tWL + tBUS + tRTRS − tRL): W to R in different ranks delay.

RtoP (tBUS + tRTP − tCCD): R to P delay.

WtoP (tWL + tBUS + tWR): R to P delay.

II. RELATED WORK

Researchers have proposed several novel features to re-
duce the large DRAM access latency. These efforts include
providing simulation environments to help in the process of
evaluating new ideas [6], proposing new features in all memory
controller subcomponents such as address mapping [7], page

policy [8] and arbitration [9]. However, researchers usually
validate their novel features using benchmarks such as in [8],
or manually-written directed tests or a combination of both
such as in [7], [9]. We propose an automated process of
validating new features in the DRAM subsystem that can be
used both by researchers and industry.
In industry, our automated framework can be used in the
pre-silicon validation of MCs. Pre-silicon validation engineers
often use hand-written directed tests or randomly-generated
tests [1]. Compared to both methods, our proposed framework:
would achieve better coverage, is less error-prone and reduces
validation complexity through automation.
Model checking has proven its success as a test-generation
engine for validating both software [10] and hardware [2]. This
work is the first to incorporate model checking techniques in
the test generation process for the memory subsystem.

III. MCXPLORE

Figure 2 represents the steps of our methodology. The
process consists of three phases: test template generation, test
suite generation and diagnosis and reporting results. Thus,
the process separates the test generation step from the test
plan step. This is an important requirement from validation
engineers to simplify the validation process [11].
Phase 1: Test Template Generation– In this phase, MCXplore
turns the test plan into a test template in three steps.
Step 1: A test plan is a list of behaviours whose correctness
needs to be validated. Usually, design engineers provide this
list in a highly-abstracted human language.
Step 2: The big challenge for validation engineers is to
turn the test plan into meticulous rules that generated tests
must follow [12]. We promote leveraging model checking
capabilities to address this challenge. Model checking
automates the state-space exploration of the test generation,
and provides a formal methodology to define test properties.
We create two abstract models to express the stimulus test
of the MC: a request model and a command interaction
model, and we encode them as FSMs in the NuSMV model
checker [13]. Accordingly, validation engineers are able to
encode test properties as specifications expressed in temporal
logic formulas. Formulas are negated such that they are
true if required test properties do not exist. We accompany
MCXplore with regression suites and a pre-defined set of
temporal logic specifications that encode most of the basic test
properties required to stress MC designs. Table II tabulates
these properties.
Step 3: The model checker explores the FSM to determine the
truth or falsity of the specifications. For a false specification,
it constructs a counter-example, which is a trace of states
that falsifies the specification. This trace represents the
test template that encompasses test properties specified by
validation engineers. We use bounded model checking to
obtain the trace with minimum number of states, which
results in tests with the optimal (minimum) number of
memory requests satisfying specified properties. Minimizing
the number of requests is mandatory to reduce the time and
complexity of the validation process.
Phase 2: Test Suite Generation– Step 4: We provide a parser
script to parse the test template produced by phase 1 and
generate test suites with actual memory requests. Validation
engineers drive this parser with the address mapping of the

1358 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)



S
T
A

R
T

Pre-de ned
SPECs

New
Test

Template
Model

Checker
Counter-example

exist?
Parser

New
SPECs

 
MC Equal?

E
N

D

Report
Correctness

Report
Bug

More
Diagnosis?

#Tests

Syntax
Addr.
map.

Test
suite

Compare

Expected
behaviour

Test
Plan

Request 
model

Command
model

Select
No

Yes

No

Yes
Yes

No

Yes

No

Step3 Step4 Step5

Test Suite Generation Diagnosis and Report

Step1 Step2

Test Template Generation

Fig. 2: Proposed pre-silicon validation process of MCs.

Property Configuration

Address pattern Linear

Random

Customized

Type pattern All reads

All writes

Switching

Random

Switching%

Reads-to-writes%

Address mapping Any

Transaction size Any

Address length 32

Customized Address

Segment Configuration

Row Hit (for any row)

Conflict

Random

Locality%

Bank/ No interleave

Rank/ Fully interleave

Channel Random

Interleave%

Column Same

Successive

Random

TABLE II: Currently pre-defined configurations.

MC, number of desired tests in the suite, and test syntax.
Phase 3: Diagnosis and Report– Step 5: Validation engineers
invoke the MC under validation with the generated test suite
and compare responses with the expected behaviour. If results
match, then they report correctness. Otherwise, they report
their diagnosis results and conduct more detailed investigation
if required. Section IV provides lemmas and a methodology
to construct test plans with certain expected behaviours to use
as a golden metric to compare the MC response.

A. Proposed Models

We propose two models that are at different granularities
to facilitate the test generation process.
Request Interrelation Model – To fully cover the state-space
of a test of n memory read/write requests and a 32 bit address,
233×n tests are needed. Clearly, such a large number of tests
is prohibitively time consuming. We argue that the important
factor in the coverage is not the input stream pattern. Instead,
it is the MC’s response to this stream. For instance, if a
request to a row RW1 is followed by a request to RW2 in
the same bank and rank, then the MC behaviour depends
on whether RW2 = RW1 or not. This is regardless of the
actual values of these rows. The same observation holds for
banks, ranks and channels. Hence, a state graph constructing
these relationships is sufficient to represent a model for the
test template generation step. Based on this observation, we
model the interrelation between memory requests as the Kripke
structure in Model 1. Recall that a DRAM request has an
address (Addr), and an operation type (ty) where the address
consists of 5 segments (row, column, bank, etc.), and the type

Model 1 : Kripke structure for the MC input

MCin = {Sin, Iin, Rin, Lin} where:

Pin = {ty, erw, ech, ernk, ebnk, ecl}
Sin = {si : ∀i ∈ [0, 63]} is the set of all possible states.

I = {s0} is the set of initial states.

R = {(si, sj) : ∀i, j ∈ [0, 63]} is the transition relation between states.

L = {(si, 〈ecl, ebnk, ernk, ech, erw, ty〉)} is the labelling function where all

the sets cannot be empty sets, and

ty=BIN(i, 0), erw=BIN(i, 1), ech=BIN(i, 2), ernk=BIN(i, 3), ebnk=BIN(i, 4),

and ecl=BIN(i, 5).

Subscripts reflect the targeted bank and rank respectively. d: different, s: same, x: do

not care. Di: start of the data transfer. De: end of the data transfer. P is for same bank.

Fig. 3: DRAM commands and timing constraints interaction.

is a read or a write operation. We define the proposition e for
each address segment such that e = 1 means that the request has
the same segment as its previous request, and e = 0 otherwise.
Similarly, if ty = 1, then the operation is a read, and a write
otherwise. To exhibit all possible relations between successive
requests, we have 64 possible states. For instance, for state
s39, (s39, 〈1, 0, 0, 1, 1, 1〉) denotes a read request that targets
the same channel, row and column as its previous request,
while it targets different rank and bank. We also maintain a
set of counters to track the address pattern such as total number
of requests, row hits, and bank interleavings, which we use to
encode the test specifications. Note that BIN(x, y) returns the
y
th bit of a positive integer x’s binary equivalent number.

Command Interaction Model– Validation engineers can use
the request interrelation model to validate properties related
to timing constraints ruling command interactions. However,
in this case, MCXplore requires them to find out the request
patterns that expose these timing constraints. This is because,
using the request interrelation model, MCXplore allows spec-
ifications to be at the request level and not the command
level. Therefore, we propose the command interaction model
to facilitate the validation of properties related to MC com-
mand generation. This model enables validation engineers to
specify the timing constraints to be validated and MCXplore
automatically generates the test sequence that exercises these
constraints. Figure 3 depicts the state graph of this model
that we build based on the timing constraints imposed by the
JEDEC standard [5]. The vertices represent DRAM commands
and the edges represent timing constraints. For example, the
time between A and a P to the same bank must be at least
tRAS. In section IV-C, we use this model to generate test
suites for validating the correctness of command generation,
and checking for any timing violations.

IV. EVALUATION: VALIDATING STATE-OF-THE-ART MC
FEATURES

We use DRAMSim2 [6] with DDR3-1333 DRAM to
validate several state-of-the-art MC features. We also insert

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1359



0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

B
W

U
ti
li
za
ti
o
n

Interleave%

Bug1 Bug2 Correct Base

(a) XOR address mapping.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

B
W

U
ti
li
za
ti
o
n

#Successive hits in the test

Bug1 Bug2 Correct

(b) Maximum hits using utilization.

Fig. 4: Address mapping and page policy validation.

common design bugs in the functionality of these features
to determine whether the proposed methodology can discover
them. Although we have carried out these evaluations for an
extensive number of features, due to space limitations, we only
show a subset of them. We use bandwidth utilization defined
as (Uti = Data transfer cycles

Total DRAM access cycles
) as our metric to validate the features.

The advantage of using Uti for validation is that it does not
require an engineer to observe internals of the MC. Instead,
existing inputs and outputs of the MC are sufficient.

A. XOR Address Mapping Validation

Modern MCs reduce row conflicts by using XOR address
mapping where the bank bits are bitwise XOR-ed with the
least significant three row bits [7].
Test plan. To generate a test suite SuiteXOR that represents the
optimal memory pattern for the XOR mapping. It is a stream
of read accesses where we change the bank interleaving ratio
per test, intr. In addition, requests targeting the same bank
are accessing different rows. Since the plan is related to the
interrelation between requests, we use the request model for
test generation.
Specifications. Each test has its corresponding specification.
The following formula encodes a test plan with intr = 40%,
where t x represents the total counts of the event x:
LTLSPEC G((t requests = 6 ∧ t hit = 0 ∧ t bank interleave = 0)) →

!F(t requests = 10 ∧ t hit = 4 ∧ t bank interleave = 4))

The intuition behind the specification is that out of 10 total
requests in the test, the first 6 requests target different rows in
the same bank, while the last 4 requests target the same row
but in different banks.
Test template. Step 3 in MCXplore produces a counter-example
for each specification, which forms the test template that we
formalize as below. Each test has an interleaving percentage
between 0% and 100%. nbnk is the number of banks per rank
(usually 8). The conditions ensure that intr% of requests in the
test interleave across different nbnk banks. They also ensure
that in these intr% requests, each nbnk successive requests
target same row, which implies that requests targeting different
banks have same rw segment, while requests to the same bank
have different rw values. Again, the target of this test plan is
to achieve the maximum possible utilization of XOR mapping
regardless of the intr value.

SuiteXOR = {Testintr : ∀intr ∈ [0, 100]}
Testintr = [Req1, Req2, ..., Reqn], where Reqk = 〈Addrk, R〉, k ∈ [1, n]
and ((rwl = rwm) iff ((l MOD nbnk = m MOD nbnk) ∧ (l,m ∈ [1, n×intr

100
])),

and ((bnkl 6= bnkl−1) iff l ∈ [2, n×intr

100
])).

Test suite. MCXplore parses each test template and generates
a test that complies with the test plan (step 4).
Validation. For the sake of comparison, we execute SuiteXOR

on both the XOR mapping and the base mapping (no XOR
operation is performed). As Figure 4a illustrates, increasing
the intr ratio on the test, the base mapping achieves better
utilization. This is because requests to different banks are
serviced in parallel. On the other hand, the correct behaviour
of the XOR mapping is to achieve a fixed utilization for all
tests in the suite. This is because even for non-interleaved
accesses, the XOR address mapping will map them to different
banks because of the XOR operation between the bank bits
and the corresponding row bits. To further check for correct
functionality, this value should be compared to the expected
utilization dictated in Lemma 1. Figure 4a shows that the XOR
mapping achieves a fixed utilization of 79%, which coincides
with the expected behaviour.

Lemma 1: Executing any test in SuiteXOR on an MC with
XOR mapping results in a utilization that can be calculated
as: 4tBUS

tFAW
.

Proof: Since XOR mapping maps successive requests of
any test in SuiteXOR to different banks, the MC under test
repeats the behaviour shown in Figure 5 every 8 requests.
Focusing on one repetition, the data bus is busy for 8tBUS,
while the total DRAM latency is 2tFAW .

A1 A2 A3 A4 A5 A6 A7 A8 A1

tFAW tFAW

tBUS tBUS tBUS tBUStBUS tBUS tBUS tBUS

Fig. 5: Command sequence of SuiteXOR on XOR mapping.

Bug scenario. To illustrate potential design errors, we inject
two bugs in the XOR mapping. In the first one (Bug1 in
Figure 4a), we perform the XOR operation between only the
first two bits of the bank and row segments, while in the second
bug (Bug2), we perform the XOR operation between the least
significant bit of row and bank segments. From Figure 4a,
both Bug1 and Bug2 do not achieve the expected utilization
of Lemma 1; hence, they are detectable.

B. Page Policy and Arbitration Validation

In this section, we validate an MC feature that affects both
the page policy and the arbitration deployed by the MC. MCs
employing this feature keep the row in the row buffer for a
designated number of row hits, that we call maximum row-
hits threshold. Thus, the open-page policy is turned into a
threshold-based page policy in these MCs. In addition, the
threshold limits the number of requests that can be reordered
with the first-ready first-come-first-serve (FR-FCFS) arbitra-
tion scheme deployed in most conventional MCs nowadays [9].
MC designers select the threshold value that maximizes the
performance for targeted applications. We assume the intended
threshold to be thr = 16.
Test plan. To generate a set of tests, where each test is a stream
of read accesses targeting the same bank, while we sweep the
number of requests targeting an open row (row hits), hit, per
test. We use the request model to generate the test suites.
Specifications. The following formula exemplifies the encod-
ing of the test plan with hit = 16, where c x represents the total
successive occurrences of x.
LTLSPEC G(c hit = 16 7→!F (t requests = 34 ∧ t hit = 33∧

t bank interleave = 0 ∧ c hit = 16))

Test template. Step 3 in MCXplore produces a counter-example

1360 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)



for each specification that we formalize as follows, where
we sweep hit between 0 and 32. The conditions ensure that
all requests target the same bank, while every hit successive
requests target the same row.

Suitethr = {Testhit : ∀hit ∈ [0, 32]}
Testhit = [Req1, Req2, ..., Reqn], where ((bnkl = bnkl−1) and ((rwl =
rwm) iff (l MOD hit = m MOD hit)) ∀l,m ∈ [1, n]).

Validation. We execute the generated tests and compare with
the expected behaviour. The correct functionality is to achieve
the maximum utilization when hit = thr. Lemma 2 calculates
this maximum utilization value. Figure 4b shows that the
MC under correct functionality (Correct) achieves a maximum
utilization of 73% at hit = 16, which confirms the conclusion of
Lemma 2.

Lemma 2: Executing Suitethr on an MC that implements a
maximum row-hits threshold results in a maximum utilization
for the test Testhit with hit = thr and this utilization can be
calculated as: thr×tBUS

tRCD+(thr−1)tCCD+RtoP+tRP
.

Proof: When hit = thr, the DRAM under test repeats the
behaviour illustrated in Figure 6 every thr requests. During
one repetition, the data bus is busy for thr × tBUS, while the
total access latency is tRCD + (thr − 1)tCCD + RtoP + tRP .

A R R R A

tRCD

tBUS

P

tCCD

(thr-1)tCCD

RtoP tRP

tBUS tBUStRL

Fig. 6: Command sequence of Suitethr when hit = thr − 1.

Bug scenario. We embed two bugs to the logic of the row-
hits threshold. The first bug (Bug1 in Figure 4b) reduces
the threshold to 8 instead of intended value by the designer
(16), while the second bug (Bug2 in Figure 4b) increases
the threshold to 32. From utilization graphs in Figure 4b, we
directly discover that the maximum utilization value is not the
expected value calculated by Lemma 2. In Bug1, the utilization
graph repeats a pattern every multiple of 8, where it achieves
the maximum utilization. Consequently, we deduce that the
bug causes the threshold to be 8. Similar conclusion can be
reached for Bug2.

C. Timing Parameters Validation

Using MCXplore, we design property-driven tests in order
to validate the correctness of the timing parameter values
enforced by the MC. The key novelty here is that each test is
designed to maximize the impact of the timing parameter under
test while eliminating or minimizing the effect of all other
parameters. Using the state graph in Figure 3, we exhaustively
study all possible command interactions, produce utilization
equations to investigate the impact of timing parameters on
utilization. Having these equations, we find that not all pa-
rameters can be isolated. As a consequence, we introduce
the dependency graph in Figure 8. An edge from constraint
constr1 to constr2 means that constr1 must be validated
before constr2. A bi-directional edge between two constraints
means that they have to be validated together. For space
limitation reasons, we show the validation process of only
a subset of the parameters and summarize our findings in
Table IV.

Fig. 8: Validation dependency graph for timing parameters.

Bug scenarios. For the timing parameter under validation, we
randomly set one of these parameters to a wrong value in the
range: [0, standard value + 20], where standard value is the
value dictated by the JEDEC standard.

1) tRTP: Test plan. Studying the state graph in Figure 3,
a valid command sequence encompassing tRTP would be an
A command followed by one or more R commands then a P

command to close the row followed by an A to a different row.
In addition, the number of R commands must be large enough
to dominate the tRAS constraint between A and P. Clearly,
this example highlights the importance of the command model.
Using the request model, validation engineers have to manually
design the request sequence that exposes these details. On
the other hand, the command model captures the command
interaction details; thus, allows validation engineers to set the
specifications as simple as we illustrate below.
Specifications. Specification is as follows, where num tRTP

is the number of occurrences of the tRTP constraint:
LTLSPEC G! (num tRTP ≥ 1)

Test template. Figure 9 delineates the command sequence
generated by MCXplore. From Figure 9, the tRCD, tRP and
tCCD parameters must be be validated before tRTP , which
coincides with the dependency in Figure 8.
Test suite. MCXplore parses this command sequence and
creates a test, TestRTP , consists of five read accesses targeting
the same bank where the last request targets a different row
than the first four.
Validation. To validate tRTP , we compare the observed uti-
lization (Utio) from executing TestRTP with the calculated
utilization (Utic) from Lemma 3.

Lemma 3: Executing TestRTP , the BW utilization of the
MC under test is: 4tBUS

tRCD+3tCCD+tBUS+tRTP+tRP
.

Proof: Executing TestRTP , the MC under test repeats the
behaviour shown in Figure 9 every 4 requests. Focusing on
one repetition, the data bus is busy for 4 × tBUS cycles. In
addition, the 4 requests encounter a total DRAM access latency
of tRCD + 3tCCD + tBUS + tRTP + tRP .

Fig. 9: Command sequence of TestRTP .

Based on the comparison, we make the following conclusions:

Utio = Utic optimal value Figure 7a at tRTP = 5
Utio > Utic violated Figure 7a at tRTP < 5
Utio < Utic non-optimal value Figure 7a at tRTP > 5

2) tRCD,tWL,tRL: Test plan. The target is to validate tRL

and tWL parameters, which requires two tests.
Test template. MCXplore generates a template for the tRL test
as an A followed by a R. Similarly, the template of the tWL

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1361



10

15

20

25

30

35

40

45

50

0 1 3 5 7 9 11 13 15 17 19 21 23 25

B
W

U
ti
li
za
ti
o
n

tRTP[Cycles]

Non-optimal

S
ta
n
d
a
rd
-v
io
la
ti
o
n

(a) tRTP

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B
W

U
ti
li
za
ti
o
n
%

tRCD[Cycles]
Read Utiliztion% Write Utilization%

Non-optimal

Standard-violation

(b) tRCD

9.0
12.0
15.0
18.0
21.0
24.0
27.0
30.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B
W

U
ti
li
za
ti
o
n
%

tRL[Cycles]
Read Utiliztion% Write Utilization%

Non-optimal

Standard-violation

(c) tRL

9.0
12.0
15.0
18.0
21.0
24.0
27.0
30.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B
W

U
ti
li
za
ti
o
n
%

tWL[Cycles]
Read Utiliztion% Write Utilization%

Non-optimal

Standard-violation

(d) tWL

Fig. 7: Timing parameters validation.

Test{tRCD,tRL} Test{tRCD,tWL} Conclusion Figure

Utio > Utic Utio > Utic tRCD is violated.
7b

Utio < Utic Utio < Utic tRCD is not optimal.

Utio > Utic Utio = Utic tRL is violated.
7c

Utio < Utic Utio = Utic tRL is not optimal.

Utio = Utic Utio > Utic tWL is violated.
7d

Utio = Utic Utio < Utic tWL is not optimal.

TABLE III: Validating tRCD,tRL and tWL.

test is an A followed by a W. Hence, it is not possible to
exclude the tRCD parameter (between A and R or W). As a
consequence, we validate tRCD, tRL and tWL together.
Test suite. Test{tRCD,tRL} is a single read request, while
Test{tRCD,tWL} is a single write request.
Validation. To validate the parameters tRCD, tRL and tWL, we
investigate the utilization observed (Utio) from running tests
Test{tRCD,tRL} and Test{tRCD,tWL}. If the observed utilization
coincides with the calculated utilization (Utic) in Lemma 4 for
both tests, then all the three parameters are set to the standard
value.

Lemma 4: Executing Test{tRCD,tRL}, the utilization of
the MC under test is: tBUS

tRCD+tRL+tBUS
. similarly, executing

Test{tRCD,tWL}, the BW utilization of the MC under test is:
tBUS

tRCD+tWL+tBUS
.

For the DDR3 module used in our validation, this situation
is observed in Figures 7b, 7c and 7d at tRCD = 10, tRL = 10

and tWL = 9. Table III summarizes our debugging conclusions
from the utilization graphs. We assume a single parameter is
possibly violated at a time.

3) Other parameters: Similar to the aforementioned two
instances, for validating other parameters we conduct the
following procedure. 1) We execute the corresponding test
from Table IV. 2) We compare the observed utilization with
the calculated utilization. 3) Based on the comparison, we
determine whether the parameter under test is (a) compliant
with the standard, (b) violated or (c) set to a non-optimal value.
We tabulate calculated utilizations from all tests in Table IV. In
Table IV, unless specified, the number of requests is n ≫ 10.

Test Conditions (∀l ∈ [1, n]) Utilization

tRC (bnkl = bnkl−1) ∧ (rwl 6= rwl−1 ) tBUS
tRC

tCCD (bnkl = bnkl−1) ∧ (rwl = rwl−1 ) tBUS
tCCD

tFAW
(rnkl = rnkl−1 ) ∧ 8×tBUS

2×tFAW(bnkl 6= bnkl−1 ) ∧ (rwl 6= rwl−1 )

tRTRS (rnkl 6= rnkl−1 ) ∧ (rwl = rwl−1 ) tBUS
tBUS+tRTRS

tRRD
(n = 4) ∧ 4×tBUS

3×tRRD+tRCD+tRL+tBUS(rnkl = rnkl−1 )∧ (bnkl 6= bnkl−1 )

tWR
(tyl = W ) ∧ tBUS

tRCD+tWL+tBUS+tWR+tRP(bnkl = bnkl−1 ) ∧ (rwl 6= rwl−1 )

tWTR
(tyl 6= tyl−1 ) ∧ tBUS

tRL+tWTR+tBUS+tRTRS(bnkl = bnkl−1 ) ∧ (rwl = rwl−1 )

TABLE IV: Tests of timing parameters.

V. CONCLUSION

We propose a framework for validating MC designs. We
introduce two models for the test input of the MC and enable
validation engineers and researchers to specify their test plan
as specifications in temporal logic. We use model checking
to generate test templates that satisfy this plan. We imple-
ment this framework and release it open-source as MCXplore,
accompanied with a regression test suite for validating basic
MC features. Using MCXplore, we show how to validate the
correctness of state-of-the-art MC features as well as discover
timing violations in the DRAM subsystem.

REFERENCES

[1] “Intel platform and component validation , a white paper,”
http://download.intel.com/design/chipsets/labtour/PVPT WhitePaper.pdf,
Intel, 2015-08-31.

[2] H.-M. Koo and P. Mishra, “Test generation using sat-based bounded
model checking for validation of pipelined processors,” in Proceedings

of the 16th ACM Great Lakes symposium on VLSI, 2006, pp. 362–365.

[3] “Mcxplore.” [Online]. Available: https://caesr.uwaterloo.ca/mcxplore/

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[5] “DDR3 SDRAM specification, JESD79,” JEDEC, 2010.

[6] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[7] W.-F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM latencies
with an integrated memory hierarchy design,” in International Sympo-

sium on High-Performance Computer Architecture (HPCA). IEEE,
2001, pp. 301–312.

[8] M. Hassan, H. Patel, and R. Pellizoni, “A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems,”
in Proc. Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), 2015.

[9] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged memory scheduling: achieving high performance
and scalability in heterogeneous systems,” ACM SIGARCH Computer

Architecture News, vol. 40, no. 3, pp. 416–427, 2012.

[10] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model checkers:
a survey,” Software Testing, Verification and Reliability, vol. 19, no. 3,
pp. 215–261, 2009.

[11] A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner,
and J. Schumann, “A unified methodology for pre-silicon verification
and post-silicon validation,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 2011, pp. 1–6.

[12] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcu, and
G. Shurek, “Constraint-based random stimuli generation for hardware
verification,” AI magazine, vol. 28, no. 3, p. 13, 2007.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in Computer Aided Verification.
Springer, 2002, pp. 359–364.

1362 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)


