
PREPRINT:

MCXplore: An Automated Framework for
Validating Memory Controller Designs

https://git.uwaterloo.ca/caesr-pub/mcxplore

Mohamed Hassan and Hiren Patel

{mohamed.hassan, hiren.patel}@uwaterloo.ca

University of Waterloo

https://git.uwaterloo.ca/caesr-pub/mcxplore

• There has been a focus on validating processing
elements

• Main memory is becoming a vital component in almost
all computing systems

Background

Mohamed Hassan/ University of Waterloo 126-Mar-16

Background

Mohamed Hassan/ University of Waterloo 226-Mar-16

A Read P ARead ReadRead

req1 req2 req3 req4

𝒕𝑹𝑪

𝒕𝑹𝑪𝑫 𝒕𝑪𝑪𝑫 𝒕𝑹𝑻𝑷 𝒕𝑹𝑷

Simulation-based Validation

Mohamed Hassan/ University of Waterloo 326-Mar-16

- May not be memory intensive
- Lack easy-to-analyse memory patterns
- Do not explore the state space of the

memory subsystem properties

- Very time and resource consuming (may
not be possible)

+ Time and effort conserving
Benchmarks

Exhaustive
Tests

Manual
Tests

Random
Tests

+ Guaranteed coverage

+ Allows for directed testing to
cover specific properties

- Time consuming

- Prone to human errors

+ Moderate time and effort - Questionable test coverage

• MCxplore, objective and flow

• Validation example from the MC frontend

• Validation example from the MC backend

• Additional features

• Conclusions

Outline

Mohamed Hassan/ University of Waterloo 426-Mar-16

Contributions

Mohamed Hassan/ University of Waterloo 526-Mar-16

MCXplore

Formal models

Request Model:
The interrelation
amongst memory

requests

Command Model:
interactions between
memory commands

Model
Checking

Test Plan:
precisely specify

test properties in TL

Separate test
template from

actual tests

Optimal Tests:
with minimum

number of requests

Extensive Testing

Vital sequence patterns
and test plans for state-

of the-art MCs

Test suites for
commodity MC policies

Validation
Methodology

Golden metric to
validate results

Automated test
generation

Proposed Process

Mohamed Hassan/ University of Waterloo 626-Mar-16

Request Model

Mohamed Hassan/ University of Waterloo 726-Mar-16

25 × 𝑛 × 2
possibilites

232 × 𝑛 × 2
possibilites

• Simplifies testing
properties that are related
to timing constraints and
command generation

• Enables specifying the
timing constraints and
MCXplore automatically
generates the test
sequence that exercises
these constraints

Command Model

Mohamed Hassan/ University of Waterloo 826-Mar-16

Evaluation

26-Mar-16 Mohamed Hassan/ University of Waterloo 9

DRAMsim2 as
the base MC

Insert bugs
Apply

proposed
methodology

Example: XOR Address Mapping

26-Mar-16 Mohamed Hassan/ University of Waterloo 10

LS row bits Bank bits New bank bits

001 001 000

010 001 011

XOR Address Mapping

26-Mar-16 Mohamed Hassan/ University of Waterloo 11

• Optimal memory pattern for the
XOR mapping

• A stream of read accesses where
we change the bank interleaving
ratio per test, requests targeting
the same bank are accessing
different rows

(1)

Test
Plan

XOR Address Mapping

26-Mar-16 Mohamed Hassan/ University of Waterloo 12

(2)

Specs.

𝐿𝑇𝐿𝑆𝑃𝐸𝐶
𝐺((𝑡𝑟𝑒𝑞 = 6 ∧ 𝑡ℎ𝑖𝑡 = 0 ∧ 𝑡𝑖𝑛𝑡𝑟 = 0) →

! 𝐹(𝑡𝑟𝑒𝑞 = 10 ∧ 𝑡ℎ𝑖𝑡 = 4 ∧ 𝑡𝑖𝑛𝑡𝑟 = 4))

XOR Address Mapping

26-Mar-16 Mohamed Hassan/ University of Waterloo 13

• Model checker produces a counter-
example for each specification.

• Each template has a bank
interleaving percentage between
0% and 100%

(3)

Test
Template

XOR Address Mapping

26-Mar-16 Mohamed Hassan/ University of Waterloo 14

(4)

Test
Suite

0x00000000 R 00000 000
0x00080000 R 00001 000
0x00100000 R 00010 000
0x00180000 R 00011 000
0x00200000 R 00100 000
0x00280000 R 00101 000
0x00290000 R 00101 001
0x002a0000 R 00101 010
0x002b0000 R 00101 011
0x002c 0040 R 00101 100

same bank
different rows

different rows
same bank
40% inter.

XOR Address Mapping

26-Mar-16 Mohamed Hassan/ University of Waterloo 15

(5)

Golden
metric

𝑈𝑡𝑖𝑥𝑜𝑟 =
4𝑡𝐵𝑈𝑆

𝑡𝐹𝐴𝑊

• Elect memory utilization as a golden metric
• It does not require any special debugging capabilities

inside the MC

26-Mar-16 Mohamed Hassan/ University of Waterloo 16

(6)

Diagnosis

Correct
XORBug

Bug No XOR

• Each test is designed to maximize the impact of the
timing parameter under test while eliminating or
minimizing the effect of all other parameters

• Timing parameters dependency graph

Timing Parameters Validation

26-Mar-16 Mohamed Hassan/ University of Waterloo 17

All possible
command

interactions

Utilization
equations

Dependency
graph

• Each test is designed to maximize the impact of the
timing parameter under test while eliminating or
minimizing the effect of all other parameters

• Timing parameters dependency graph

Timing Parameters Validation

26-Mar-16 Mohamed Hassan/ University of Waterloo 18

Example: Read-to-Precharge Constraint

26-Mar-16 Mohamed Hassan/ University of Waterloo 19

• Target: validate 𝑡𝑅𝑇𝑃

•A valid command sequence is A
followed by one or more R
then a P to close the row
followed by an A to a different
row

(1)

Test
Plan

Read-to-Precharge Constraint

26-Mar-16 Mohamed Hassan/ University of Waterloo 20

(2)

Specs.

𝐿𝑇𝐿𝑆𝑃𝐸𝐶
𝐺! (numtRTP ≥ 1)

Read-to-Precharge Constraint

26-Mar-16 Mohamed Hassan/ University of Waterloo 21

(3)

Test
Template

𝑅𝑡𝑜𝑃 = 𝑡𝑅𝑇𝑃 + 𝑡𝐵𝑈𝑆 − 𝑡𝐶𝐶𝐷

Read-to-Precharge Constraint

26-Mar-16 Mohamed Hassan/ University of Waterloo 22

(1)

Test
Plan

0x00000000 R 00000 000
0x00000040 R 00000 000
0x00000080 R 00000 000
0x000000c0 R 00000 000
0x001000c0 R 00001 000

last request if
for a different
row  issue P

Example: Read-to-Precharge Constraint

26-Mar-16 Mohamed Hassan/ University of Waterloo 23

(5)

Golden
result

𝑈𝑡𝑖𝑅𝑇𝑃 =
4𝑡𝐵𝑈𝑆

𝑡𝑅𝐶𝐷 + 3𝑡𝐶𝐶𝐷 + 𝑡𝑅𝑇𝑃 + 𝑡𝑅𝑃

Read-to-Precharge Constraint

26-Mar-16 Mohamed Hassan/ University of Waterloo 24

(6)

Diagnosis

Configurability

26-Mar-16 Mohamed Hassan/ University of Waterloo 25

Syntax

• Addr. length

• Output syntax

• Transaction size

• Number of requests

Address mapping

• Row mask

• Column mask

• Rank mask

• Bank mask

• Channel mask

Patterns

• Transaction:

• rd, wr, random,
sw%

• Row:

• hit, conflict,
random, linear,
locality %, custom

• Rank/ Bank/
Channel:

• Same, linear,
random,
interleave%

• …..

Test Suites

26-Mar-16 Mohamed Hassan/ University of Waterloo 26

Suite Description

RegressionSuite includes tests that cover all combinations of the
configuration parameters

PoliciesSuite includes tests that test most commonly used policies
of commodity memory controllers such as page
policies, address mapping and arbitration schemes

TimingSuite includes tests to detect any timing violations in most
timing constraints

• MCXplore is design-independent
• Two formal models at different granularities to capture MC

behaviors

• A precise methodology to define test plans

• Validated state-of-the-art commercial MC policies

• Highlight interesting test patterns and use memory
utilization as a golden metric

• Three test suites to validate and evaluate any new
MC feature

• It is open-source!

• https://git.uwaterloo.ca/caesr-pub/mcxplore

Conclusion

26-Mar-16 Mohamed Hassan/ University of Waterloo 27

https://git.uwaterloo.ca/caesr-pub/mcxplore

