
1050 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

MCXplore: Automating the Validation Process of
DRAM Memory Controller Designs

Mohamed Hassan, Student Member, IEEE, and Hiren Patel, Member, IEEE

Abstract—We present an automated framework for the
validation of memory controllers (MCs) called MCXplore. In
developing this framework, we construct formal models for
memory requests and command interactions. MCXplore enables
validation engineers to define their test plans precisely using tem-
poral logic specifications. We use the NuSMV model-checker to
generate counterexamples that serve as test templates. MCXplore
uses these test templates to generate memory tests to validate
the correctness properties of the MC. We show the effectiveness
of MCXplore by validating various state-of-the-art MC features
as well as hard-to-detect timing violations. We also provide a set
of predefined test plans, and regression test suites that validate
essential properties of modern MCs. MCXplore is an open-source
framework to allow validation engineers and researchers to
extend and use.

Index Terms—Dynamic random access memory (DRAM),
memory controller (MC), model checking, testing, validation,
verification.

I. INTRODUCTION

WHILE the complexity of computing systems is
increasing, their time-to-market is decreasing. As a

consequence, the validation process of computing systems
becomes a major challenge that consumes a considerable por-
tion of the design cycle. Companies spend millions of dollars
annually on the validation process of all components of the
computing system [1]. Researchers have proposed method-
ologies to validate CPU designs [2], [3]. However, with the
increase in memory requirement demands from applications,
main memory subsystem is a vital component in almost all
computing systems. Therefore, the validation of the memory
subsystem is as crucial as validating other components. Thus,
this paper focuses specifically on validating the memory con-
troller (MC) component, which manages requests to the main
memory.

There are several techniques to validate computing systems.
We consider simulation-based validation since it is a com-
monly used approach [2], [3]. To validate any new fea-
ture or debug failures in the memory subsystem using the
simulation-based approach, validation engineers adopt a sim-
ulation model. They provide stimulus inputs to the model and
study its responses. Consequently, the effectiveness of this
approach is heavily dependent on the ability of input tests to

Manuscript received August 17, 2016; revised January 8, 2017; accepted
April 14, 2017. Date of publication May 18, 2017; date of current version
April 19, 2018. This paper was recommended by Associate Editor L. Benini.
(Corresponding author: Mohamed Hassan.)

The authors are with the University of Waterloo, Waterloo, ON N2L 3G1,
Canada (e-mail: mohamed.hassan@uwaterloo.ca; hiren.patel@uwaterloo.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2705123

cover necessary execution scenarios to be validated. Different
approaches exist for generating these tests. The straightfor-
ward approach is to use available benchmarks as the input
stimuli, which saves time and cost required to develop test
suites. This approach is extensively used by researchers to
evaluate and validate their novel MC designs [4]–[6]; though,
it has shortcomings. First, some of the benchmarks may not be
memory intensive. Furthermore, they may be so complex that
they do not have easy-to-analyze memory patterns, which are
vital to diagnose MC responses and to check for correctness.
Second, these benchmarks do not explore the state space of the
memory subsystem properties. For instance, they have specific
locality and read/write switching ratios. Exploring this state
space is paramount for validating the design under all possible
scenarios. To avoid these shortcomings, validation engineers
either manually develop their own synthetic test suites or use
random test generators [1], [2]. Manually generated tests are
time consuming and prone to human errors. On the other
hand, randomly generated tests may not cover all necessary
test properties.

An MC is a complex component that has to track the state
of all memory banks, check over 12 timing constraints obli-
gated by the JEDEC standard [7], and make several dynamic
arbitration decisions. Having the memory as a bottleneck in
many computing systems [8], they are becoming even more
complex with different performance optimizations such as
multiple reordering levels, adaptive policies, and priority-based
arbitration. Therefore, test generation for memory subsystem
validation is becoming an increasing challenge.

A. Contributions

We address this challenge by making the following contri-
butions.

1) We present MCXplore, an automated framework for
the validation of MCs. Unlike prior efforts to validate
MCs, MCXplore is design independent such that it can
be used to validate any MC design. This is possible
because MCXplore instead of following the convention
by modeling a specific MC design, it models the input
stimulus, which is common across different MC imple-
mentations. MCXplore enables validation engineers to
precisely specify the properties required in the test suite
in temporal logic specifications. Then, it automatically
generates tests with the optimal number of memory
requests that satisfy these properties to validate the
correctness of the MC. We release MCXplore as an open-
source framework [9] to allow validation engineers and
researchers to extend and use.

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

mailto:mohamed.hassan@uwaterloo.ca
mailto:hiren.patel@uwaterloo.ca
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1051

Fig. 1. DRAM subsystem.

2) We introduce two formal models for the generation pro-
cess of memory tests. The first model represents the
interrelation amongst memory requests (Section IV-A1)
and is used to validate the MC’s frontend (Section VI),
while the second model resembles interactions between
memory commands (Section IV-A2) and is suitable for
validating the MC’s backend (Section V). These mod-
els allow us to encode the test generation process as
a symbolic finite state machine (FSM), and use model
checking techniques to explore the state space for MC
test suites and generate counterexamples that serve as
test templates. MCXplore uses these test templates to
generate property-driven test suites.

3) We highlight interesting sequence patterns that a test
suite should encompass to test and evaluate various MC
features. Consequently, we provide a set of predefined
test plans as well as regression tests that validate essen-
tial functionalities of modern dynamic random access
memory (DRAM) MCs. These test suites can be used
to conduct trace-based validation for high-level models
of MCs (such as DRAM simulators), and they can be
utilized to construct test benches to validate hardware
register-transfer level (RTL) implementations.

4) Finally, we show a methodology to use high-level statis-
tics such as bandwidth utilization, access latency, and
aggregated number of committed commands to validate
the correctness of several state-of-the-art MC features
and debug for any timing violations. The validated
MC features are just examples to show the capabili-
ties of using MCXplore for validation. The proposed
methodology applies for other features as well.

II. BACKGROUND

We introduce basics of DRAM, MCs, and model checking
that are necessary for this paper.

A. Main Memory

As Fig. 1 illustrates, a DRAM is organized in dual in-
line memory modules (DIMMs), each DIMM consists of
multiple DRAM chips. Each DRAM chip consists of memory
cells arranged as banks. Cells in each bank are organized in
rows and columns. A DRAM rank is a group of banks. For
multichannel DRAMs, each channel has its own buses and
consists of one or more ranks. Accesses to different chan-
nels, ranks or banks can be interleaved to reduce their access
latency. On the other hand, accesses to different rows in the
same bank suffer from row conflicts and encounter larger laten-
cies. Data is transferred to/from the memory cells via sense
amplifiers. These sense amplifiers work as a row buffer that

TABLE I
IMPORTANT JEDEC TIMING CONSTRAINTS (DDR3-1333) [7]

caches the most-recently accessed row in each bank. A DRAM
request consists of a type and an address. The type is either
a read or a write. DRAM accesses are controlled by the MC,
which translates the read/write requests into one or more of
the following DRAM commands: ACTIVATE (A), READ (R),
WRITE (W), PRECHARGE (P), and REFRESH (REF). A
fetches the row from the memory cells to the sense amplifiers
(row buffer). R (W) reads (writes) the required columns in
the row buffer. P closes the activated row, and prepares the
cell array for the next memory access by restoring the charge
level of each DRAM cell in the row. Finally, REF activates
and precharges DRAM rows to prevent charge leakage. The
DRAM JEDEC standard [7] imposes strict timing constraints
on these commands (Table I). All MC designs must satisfy
these constraints to ensure correct DRAM behavior. Typically,
an MC implements an arbitration scheme, an address map-
ping, and a page policy. The arbitration scheme arbitrates
amongst different requests. The address mapping translates
request addresses into five segments: 1) channel (ch); 2) rank
(rnk); 3) bank (bnk); 4) row (rw); and 5) column (cl). The
page policy controls the liveness of the row in the row buffer.
Open-page policy keeps the row in the row buffer until another
row is requested. Contrarily, close-page policy precharges the
row buffer after each access. Usually, modern MCs implement
neither a strict open- nor close-page; instead, they implement
adaptive policies that dynamically switch between the two.

B. Model Checking

Fig. 2 delineates the basic operation of a model checker.
A model checker is a verification tool that takes two

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Fig. 2. Model checking operation.

inputs: 1) a system model expressed as an automaton or an
FSM and 2) a property expressed in a temporal logic statement.
It, then, checks whether the system violates this property or
not by exploring the state space of the model. If it detects
a violation, it produces a counterexample. This counterex-
ample is a path of states that falsifies the checked property.
If the property is carefully crafted, this counterexample can
be interpreted as a test case for the system [10]. Since the
state space of the system may be exponential, it is useful to
bound the number of searchable states by the checker. This
approach is known as bounded model checking (BMC) [11].
In BMC, the checker searches for a counterexample in execu-
tions whose length is bounded by some integer i. Leveraging
BMC, MCXplore provides memory tests with optimal (mini-
mum) number of requests. Optimality is achieved by starting
with i = 1 and increasing i until a counterexample is found.
We provide more details about test generation in Section IV.

III. RELATED WORK

Researchers have proposed several novel features to reduce
the large DRAM access latency. We divide these efforts into
two main categories. The first category is providing DRAM
simulation environments to help in the process of evaluating
the strengths and weaknesses of new ideas. Examples include
DRAMsim2 [12], USIMM [13], DrSim [14], Ramulator [15],
and DRAMSys [16]. The second category is proposing novel
features in all MC subcomponents, such as address map-
ping [4], [5], page policy [17], and arbitration [18]–[20].
Validating DRAM MC designs or simulators is a challenging
task for many reasons.

1) The MC must carefully track the state of each DRAM
bank.

2) The standard specifies more than 12 timing constraints
that any MC must satisfy for correct operation.

3) Many dynamic factors impact the MC operation such as
the type of requests in the queues and which DRAM
cell their addresses target.

For these reasons, most of the proposed DRAM simulators do
not fully validate their operation. Ramulator [15] is validated
using ten million memory requests that are a mix of random
and hand-crafted requests. The authors conduct the valida-
tion process by providing these requests to both Ramualtor
and a reference Verilog model provided by Micron [21], and
comparing the behavior of both. This approach has many
shortcomings.

1) The used requests do not necessarily exhibit all the pos-
sible request and command interactions. Thus, validation
coverage is not guaranteed.

2) The adopted Verilog reference model only validates that
there are no violations in the timing parameters. A tim-
ing parameter is violated if a corresponding command
is issued earlier than the specified timing constraint.
However, it does not test for performance penalties that
may result from issuing the commands later than the
specified constraint.

3) It does not validate all other policies at the MC’s fron-
tend, because these policies are not directly related to
command generation.

These policies include the page policy, address mapping, and
request arbitration. Developers of DRAMsim2 [12] follow a
similar validation procedure; thus, they suffer from the same
aforementioned shortcomings. DRAMSys [16] also uses a
similar approach. It executes testing scripts on the generated
commands to check if the timing constraints comply to the
JEDEC standard. To our knowledge, neither USIMM [13]
nor DrSim [14] are validated. MCXplore provides an easy-
to-adopt methodology to validate these simulators to avoid
these shortcomings. First, it provides a methodology to gener-
ate property-driven tests for each policy that can cover all
possible behaviors, as we illustrate in Section IV. Second,
the methodology can be used to seamlessly validate both
backend and frontend policies of MCs, as we illustrate in
Section VI. We intentionally insert bugs into several compo-
nents of DRAMsim2 [12] and show that MCXplore is able to
detect those bugs.

Upon proposing novel MC’s policies or features,
researchers usually validate them using benchmarks such as
in [4], [5], and [22], or manually written directed tests or a
combination of both such as in [17], [18], and [20]. Similarly,
in industry, presilicon validation engineers often use hand-
written directed tests or randomly generated tests [1], [23].
We propose an automated portable process of validating
new features in the DRAM subsystem that can be used both
by researchers and industry. Compared to these methods,
our proposed framework would achieve better coverage, is
less error-prone, and reduces validation complexity through
automation.

A. Formal Verification of the Memory system

Some prior works incorporate formal models in the design
and validation process of memory systems [24]–[27]. Authors
of MSimDRAM [24] model their MC design as a state
machine. Accordingly, they encode the correct intended behav-
ior of that MC as linear temporal logic (LTL) specifications
and use BMC to verify this behavior. Khalifa and Salah [25]
used a universal verification methodology (UVM) environment
to verify their proposed generic MC. The environment con-
sists of a test driver that generates test cases stimulating both
the design and a reference transaction level modeling (TLM)
model. The environment compares results from the design
with the reference results to detect any faults. The method-
ology in [26] automatically transforms the timing constraints
from the JEDEC standards into system Verilog assertions,
which can be used to verify that the commands generated
by the MC comply with these constraints. A timed automata
model for the MC’s backend is proposed in [27]. It uses
UPPAAL model checker to verify the correct behavior of

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1053

Fig. 3. Proposed validation process of MCs.

it including the timing constraints. All these approaches tar-
get to validate a particular MC with specific design instance.
The approach in [25] requires a reference TLM model to
compare against and hardware probing capabilities to mon-
itor different signals. In addition, it requires a methodology to
generate representative test cases to stress the MC design. With
the increasing complexity of MC designs, industry reports that
the test case generation process is becoming time consuming
and requires huge intellectual efforts [23]. The methodology
in [26] requires modifications to the RTL implementation
of the MC to insert the assertions. In addition, approaches
of [26] and [27] focus solely on MC’s backend.

MCXplore, on the other hand, focuses on modeling the input
stimulus of the MC, which enables MCXplore to be design
agnostic and can be used to validate both MC’s frontend and
backend. MCXplore can leverage different levels of mentoring
capabilities. For instance, in Sections V and VI, we utilize
high-level metrics such as bandwidth utilization to validate
features from both frontend and backend. MCXplore, simi-
lar to these works, adopts model checking in its framework.
However, previous works use model checking to model and
validate a specific design as in [24], or to convert the specifi-
cations into RTL assertions as in [26]. In contrast, MCXplore
uses model checking as a test generation engine. Integrating
model checking techniques in the test generation process is
not a new idea. Model checking has proven its success as a
test generation engine for validating both software [28], [29]
and hardware [2], [3]. A comprehensive survey of using model
checking in testing can be found in [30]. Using model check-
ing set MCXplore as a framework that can generate various
type of tests. For instance, it can generate directed test cases,
where the generated test is based on the temporal logic speci-
fication and can be used to stress certain behavior of the MC.
In addition, MCXplore can generate constrained random test
cases, where the generated test is randomized but obeys certain
rules. This is possible because model checking fully explores
the state space of the memory test components (addresses,
transaction types, etc.). Accordingly, by specifying the rules
as specifications, the model checker randomly picks one of the
valid paths with minimum transitions (which can be multiple)
that satisfies these rules.

1) Industry Solutions: Unfortunately, industrial solutions
are intellectual properties (IPs) with only few information

available about them. Synopsys has a verification IP to ver-
ify the DRAM and the MC [31]. The IP is implemented
in SystemVerilog and uses UVM. This IP requires access to
the native RTL implementation. Further, it requires licensing,
which may be of unaffordable cost. Keysight Technologies
and FuturePlus Systems follow a different approach by using
special probes and analyzers to monitor the DRAM signals
and verify their correctness [32]. This approach is suitable
after the manufacturing process is finished (post-silicon vali-
dation); however, it requires special hardware tools to conduct
the verification process, which may not be costly effective.
MCXplore, contrarily, can also be used for post-silicon valida-
tion, while it does not require special hardware nor additional
costs as it is freely available.

Compared to the preliminary version of MCXplore [33], this
paper introduces the following contributions.

1) It introduces the validation process of two address map-
ping techniques: a) address masking and b) rank hopping
(Sections VI-A2 and VI-A3).

2) It validates and compares three page policies: open-,
close-, and adaptive-page policies (Section VI-B).

3) It verifies seven more timing parameters (Section V-A).
4) It validates an REF management technique called Smart

Refresh, which targets to reduce DRAM power con-
sumption (Section V-B).

5) It validates command bus contention techniques
(Section V-C).

IV. MCXPLORE

Fig. 3 represents the steps of the methodology we propose.
The process consists of three phases: 1) test template genera-
tion; 2) test suite generation; and 3) diagnosis and reporting.
Thus, the process separates the test generation step from the
test plan step. This is an important requirement from validation
engineers to simplify the validation process [34].

Phase 1 (Test Template Generation): In this phase,
MCXplore turns the test plan into a test template in three steps.

Step 1: A test plan is a list of behaviors whose correctness
needs to be validated. Usually, design engineers
provide this list in a highly abstracted human
language.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

TABLE II
CURRENTLY SUPPORTED CONFIGURATIONS. (A) INDEXING

PERFORMANCE. (B) CUSTOMIZED ADDRESS

(a) (b)

Step 2: The big challenge for validation engineers is to
turn the test plan into meticulous rules that gener-
ated tests must follow [35]. We promote leveraging
model checking capabilities to address this chal-
lenge. Model checking automates the state-space
exploration of the test generation, and provides a
formal methodology to define test properties. We
create two abstract models to express the stimulus
test of the MC: 1) a request model and 2) a com-
mand interaction model. We encode them as FSMs
in the NuSMV model checker [36]. Accordingly,
validation engineers are able to encode test proper-
ties as specifications expressed in temporal logic
formulas. Formulas are negated such that they
are true if required test properties do not exist.
We accompany MCXplore with regression suites,
and a predefined set of temporal logic specifica-
tions that encode most of the basic test properties
required to stress MC designs. Table II tabulates
these properties.

Step 3: The model checker explores the FSM to deter-
mine the truth or falsity of the specifications. For a
false specification, it constructs a counterexample,
which is a trace of states that falsifies the specifi-
cation. This trace represents the test template that
encompasses test properties specified by validation
engineers. We use BMC to obtain the trace with
minimum number of states, which results in tests
with the optimal (minimum) number of memory
requests satisfying specified properties. Minimizing
the number of requests is necessary to reduce the
time and complexity of the validation process.

Phase 2 (Test Suite Generation):
Step 4: We provide a parser script to parse the test tem-

plate produced by phase 1, and generate test suites
with memory requests. Validation engineers drive
this parser with the address mapping of the MC,
number of desired tests in the suite, and test syntax.

Phase 3 (Diagnosis and Report):
Step 5: Validation engineers invoke the MC under vali-

dation with the generated test suite and compare
responses with the expected behavior. If results
match, then they report correctness. Otherwise,
they report their diagnosis results and conduct more

S I

detailed investigation if required. Section VI pro-
vides a methodology to construct test plans with
certain expected behaviors to use as a golden metric
to compare the MC response.

A. Proposed Models

We propose two models that are at different granularities to
facilitate the test generation process.

1) Request Interrelation Model: To fully cover the state-
space of a test of n memory read/write requests and a 32 bit
address, 233 ×n tests are needed. Clearly, such a large number
of tests is prohibitively time consuming.

We argue that the important factor in the coverage is not
the input stream pattern. Instead, it is the MC’s response to
this stream. For instance, if a request to a row rw1 is fol-
lowed by a request to rw2 in the same bank and rank, then
the MC behavior depends on whether rw2 = rw1 or not. This
is because the MC decision takes into account whether it is
a row hit or a row conflict, regardless of the actual values
of these rows. The same observation holds for banks, ranks
and channels. Hence, a state graph constructing these relation-
ships is sufficient to represent a model for the test template
generation step. Based on this observation, we model the inter-
relation between memory requests as the Kripke structure in
Model 1. Recall that a DRAM request has an address (Addr),
and an operation type (ty), where the address consists of five
segments (row, column, bank, etc.), and the type is a read
or a write operation. We define the proposition e for each
address segment such that e = 1 means that the request has
the same segment as its previous request, and e = 0 otherwise.
Similarly, if ty = 1, then the operation is a read, and a write
otherwise. To exhibit all possible relations between successive
requests, we have 64 possible states. For instance, for state
s39, (s39, 〈1, 0, 0, 1, 1, 1〉) denotes a read request that targets
the same channel, row, and column as its previous request,
while it targets different rank and bank. We also maintain
a set of counters to track the address pattern such as total
number of requests, row hits, and bank interleavings, which
we use to encode the test specifications. Note that BIN(x, y)
returns the yth bit of a positive integer x’s binary equivalent
number.

2) Command Interaction Model: Validation engineers can
use the request interrelation model to validate properties
related to timing constraints ruling command interactions.
However, in this case, MCXplore requires them to find out
the request patterns that expose these timing constraints. This
is because, using the request interrelation model, MCXplore
allows specifications to be at the request level and not the com-
mand level. Therefore, we propose the command interaction
model to facilitate the validation of properties related to MC
command generation. This model enables validation engineers

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1055

Fig. 4. DRAM commands and timing constraints interaction. Subscripts
reflect the targeted bank and rank, respectively. d: different, s: same, x: do
not care. Di: start of the data transfer. De: end of the data transfer. P is for
same bank. Ad,s is an A command to a different bank on the same rank.

to specify the timing constraints to be validated and MCXplore
automatically generates the test sequence that exercises these
constraints. Fig. 4 depicts the state graph of this model that we
build based on the timing constraints imposed by the JEDEC
standard [7]. The vertices represent DRAM commands and
the edges represent timing constraints. For example, the time
between A and a P to the same bank must be at least tRAS.
In Section V, we use this model to generate test suites for
validating the correctness of command generation, and check-
ing for any timing violations. Generally, the request model is
better-suited for MC’s frontend validation, while the command
model well-suits the MC’s backend validation. Frontend poli-
cies include request arbitration, address mapping, and page
policy. MC’s backend is responsible for command generation
and arbitration.

In the remaining of this paper, we show case studies
on applying the proposed methodology to validate the cor-
rectness of several state-of-the-art MC policies. We use
DRAMSim2 [12] with DDR3-1333 DRAM to conduct the
experiments. We use the DDR3-1333 module only as an exam-
ple. All the lemmas and proofs in this paper are independent
of the specific values of the timing constraints; thus, they are
applicable to other DRAM modules unless otherwise speci-
fied. We also insert common design bugs in the functionality
of these features to determine whether the proposed methodol-
ogy can discover them. We use bandwidth utilization defined
in (1) as our metric to validate the MC features. The advan-
tage of using Uti for validation is that it does not require
an engineer to observe internals of the MC. Instead, existing
inputs and outputs of the MC are sufficient. In (1), the total
DRAM access cycles consists of the data transfer cycles and
the overhead due to DRAM timing constraints

Uti = Data transfer cycles

Total DRAM access cycles
. (1)

It is worth noting that a single metric cannot cover all design
bugs. Accordingly, we show the usage of MCXplore with other
metrics such as the aggregated numbers of issued commands
(Section V-B), and the memory access latency (Section V-C).

Fig. 5. Validation dependency graph for timing parameters.

Fig. 6. Command sequence of TestCCD.

V. VALIDATING MC’S BACKEND

A. Checking for Timing Violations

Using MCXplore, we design property-driven tests to vali-
date the correctness of the timing parameter values enforced
by the MC. The key novelty here is that each test is designed
to maximize the impact of the timing parameter under test
while eliminating or minimizing the effect of all other param-
eters. Using the state graph in Fig. 4, we exhaustively study all
possible command interactions, produce utilization equations
to investigate the impact of timing parameters on utilization.
Having these equations, we find that not all parameters can
be isolated. As a consequence, we introduce the dependency
graph in Fig. 5. An edge from constraint constr1 to constr2
means that constr1 must be validated before constr2. A bi-
directional edge between two constraints means that they have
to be validated together. For space limitation reasons, we only
show the complete validation process for the tCCD parame-
ter. For tRTP, tRCD, tRL, and tWL, we discuss the three major
components of the validation process: 1) the test plan; 2) the
LTL specifications; and 3) the diagnosis. For all other parame-
ters, we summarize our findings in Table V. Since we validate
the timing

Bug Scenarios: For the timing parameter under validation,
we randomly set one of these parameters to a wrong value in
the range: [0, standard value + 20], where standard value is
the value dictated by the JEDEC standard.

1) tCCD (Test Plan): TestCCD formalizes this plan. It is a
stream of n read accesses targeting the same bank and row
(100% row locality). If n � 10 in Fig. 6, tCCD will dominate
the other timing constraints as Lemma 1 proves.

Specifications: The LTL in Specification 1 specifies a state,
where the number of requests is 100 and the tCCD constraint
appeared 99 times on the explored path to reach this state.

Test Template and Test Generation: MCXplore invokes the
NuSMV model checker to explore the state space to find
a counterexample for the specification. The counterexample

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

1056 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 7. Timing parameters validation. (a) tCCD. (b) tRC. (c) tFAW. (d) tRTRS. (e) tRTP. (f) tRRD. (g) tWR. (h) tWTR. (i) tRCD. (j) tRL. (k) tWL.

(a) (b)

Fig. 8. Test generation for validating tCCD. (a) Test template. (b) Final test
example.

represents the test template that exhibits the required test
properties. Fig. 8(a) delineates the test template for the spec-
ifications in Specification 1. Afterward, the parser parses this
template to generate as many tests as required, which conforms
with the provided address mapping and syntax. Fig. 8(b) shows
one test instance for a 64-bit address machine.

Diagnosis: To validate tCCD’s value, we execute the
obtained test on the MC under test (DRAMsim2 in this case)
and plot the results for various tCCD values in Fig. 7(a).
Afterward, we compare the observed utilization (Utio) with
the golden-metric utilization calculated from Lemma 1, Utic.
Fig. 7(a) illustrates that the observed utilization aligns with
the golden metric for tCCD = 4, which is the value specified
by the standard. For tCCD > 4, the optimization is less than
the expected value, which implies that the tCCD timing is set
to a nonoptimal value. Obviously, this leads to a performance
degradation as Fig. 7(a) shows. For tCCD < 4, the optimiza-
tion exceeds 100% in DRAMsim2 timings, which implies a
corruption in the transferred data.

Lemma 1: Executing TestCCD, the BW utilization of the
DRAM under test can be approximated to (tBUS/tCCD).

Proof: Executing TestCCD, the DRAM under test exhibits
the behavior shown in Fig. 6. Since TestCCD has n
requests, the data bus is busy for n · tBUS cycles.
Using Fig. 6, the total DRAM access time can be cal-
culated as: tRCD + (n − 1) · tCCD + tRL + tBUS.

As a result, the BW utilization of the DRAM under
test is: [n · tBUS/tRCD + (n − 1) · tCCD + tRL + tBUS]. If
n >> 10, the BW utilization can be approximated to
(tBUS/tCCD).

2) tRTP (Test Plan): Studying the state graph in Fig. 4, a
valid command sequence encompassing tRTP would be an A
command followed by one or more R commands then a P
command to close the row followed by an A to a different
row. However, this sequence includes the tRCD, tCCD, and
tRP constraints as well. Therefore, as the dependency graph in
Fig. 5 illustrates, these constraints need to be validated before
tRTP. In addition, the number of R commands must be large
enough to dominate the tRAS constraint between A and P. The
exact number of required R commands depends on the used
DRAM module.

Specifications: Specification 2 shows the LTL property to
validate tRTP, where num_tRTP is the number of occurrences
of the tRTP constraint. As Fig. 9 illustrates, there are two
paths of constraints between the A and the P commands. The
first is tRAS and the second consists of tRCD, a number of
tCCD constraints that depends on the number of R requests,
and finally RtoP. Specification 2 ensures that the second path
dominates the first one to show the effect of tRTP constraint
on the utilization.

Diagnosis: To validate tRTP, we compare the observed
utilization (Utio) from executing TestRTP with the calculated
utilization (Utic) from Lemma 2. Based on the comparison,
we make the conclusions tabulated in Table III.

Lemma 2: Executing TestRTP, the BW utilization of the MC
under test is: (4tBUS/tRCD + 3tCCD + tBUS + tRTP + tRP).

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1057

Fig. 9. Command sequence of TestRTP.

TABLE III
VALIDATING tRTP

Proof: Executing TestRTP, the MC under test repeats the
behavior shown in Fig. 9 every 4 requests. Focusing on one
repetition, the data bus is busy for 4 · tBUS cycles. In addi-
tion, the 4 requests encounter a total DRAM access latency of
tRCD + 3tCCD + tBUS + tRTP + tRP.

3) tRCD, tWL, and tRL (Test Plan): The target is to validate
tRL and tWL parameters, which requires two tests. One request
is a read operation and the other is a write operation.

Specifications: The LTL in Specification 3 specifies a state
in the FSM, where the explored path encounters an A fol-
lowed by a R. Similarly, the LTL in Specification 4 describes
a state in the FSM, where the explored path encounters
an A followed by a W. Since a read or a write from a
DRAM row requires first to activate that row, it is not pos-
sible to exclude the tRCD parameter (between A and R
or W). As a consequence, we validate tRCD, tRL, and tWL
together.

Diagnosis: To validate the parameters tRCD, tRL, and tWL,
we investigate the utilization observed (Utio) from running
tests Test{tRCD,tRL} and Test{tRCD,tWL}. If the observed utiliza-
tion coincides with the calculated utilization (Utic) in Lemma 3
for both tests, then all the three parameters are set to the stan-
dard value. For the DDR3 module used in our validation, this
situation is observed in Fig. 7(i)–(k) at tRCD = 10, tRL = 10,
and tWL = 9. Table IV summarizes our debugging conclusions
from the utilization graphs. We assume a single parameter is
possibly violated at a time.

Lemma 3: Executing Test{tRCD,tRL}, the utilization of the
MC under test is: (tBUS/tRCD + tRL + tBUS). similarly, exe-
cuting Test{tRCD,tWL}, the BW utilization of the MC under test
is: (tBUS/tRCD + tWL + tBUS).

Proof: In Fig. 10(a), the data bus is utilized for tBUS cycles
out of tRCD+tRL+tBUS total cycles. Similarly, in Fig. 10(b),
the data bus is utilized for tBUS cycles out of tRCD + tWL +
tBUS cycles.

4) Other Parameters: Similar to the aforementioned param-
eters, for validating other parameters we conduct the following
procedure.

1) We execute the corresponding test from Table V.
2) We compare the observed utilization with the calculated

utilization.

(a) (b)

Fig. 10. Validating tRCD, tRL, and tWL. (a) TesttRCD,tRL. (b) TesttRCD,tWL.

TABLE IV
VALIDATING tRCD, tRL, AND tWL

TABLE V
TESTS OF TIMING PARAMETERS

3) Based on the comparison, we determine whether the
parameter under test is:

a) compliant with the standard;
b) violated;
c) set to a nonoptimal value.

We present all the observed utilizations from all tests in Fig. 7
and tabulate calculated utilizations from all tests in Table V. In
Table V, unless specified, the number of requests is n � 10.

B. Smart Refresh

In this section, we validate the behavior of the Smart Refresh
technique [37]. This serves three purposes: 1) validating a
feature involving the REF command; 2) validating one of
the DRAM power reduction techniques; and 3) illustrating
the usage of a different metric than the bandwidth utilization
with MCXplore. The main observation behind Smart Refresh
is that a normal access to a DRAM row plays the same role
as a refresh command from the data restoration standpoint.
Accordingly, Smart Refresh aims to reduce power consump-
tion by skipping refreshing recently accessed rows. The MC
maintains a per-row counter and issues a refresh command to
a row when its counter value reaches zero. Upon accessing a
row, its corresponding counter is set to its maximum value. We
implement Smart Refresh in DRAMsim2, where the controller
maintains a 2-bit counter per row.

Test Generation: The number of REF commands issued
by Smart Refresh is supposed to decrease upon increasing
the number of accessed rows in the tests. Therefore, we use
MCXplore to generate tests with different number of A com-
mands as Specification 5 describes. To capture a considerable
number of refreshes, each test has one million requests, and
we run the simulation for ten million cycles.

Diagnosis: We use the total aggregated numbers of issued
A and REF commands as our metrics in this experiment.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

1058 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Fig. 11. Smart Refresh behavior with different number of accessed rows.

These numbers can be obtained using performance counters
such as those existing in Intel processors [38]. We depict the
results for the Smart Refresh technique along with the base-
line refresh mechanism in Fig. 11. The baseline issues a fixed
number of REF commands agnostically to the access pattern.
On the other side, Smart Refresh, as expected, issues less num-
ber of REFcommands for tests accessing more rows. Fig. 11
shows that for tests with small number of accessed rows, Smart
Refresh acts exactly as the baseline refresh mechanism (until
point 1), which validates the worst scenario. Contrarily, for
tests accessing large number of rows (after point 2), Smart
Refresh does not need to issue any extra REF command. This
aligns with the ideal scenario represented in [37].

C. Command Bus Contention

All banks of a DRAM rank share the command and data bus.
Accordingly, if more than one DRAM command are ready at
a specific cycle, the MC must have a policy to select only one
command to issue to prevent bus collisions. In this context,
a ready command is the command that satisfies all the cor-
responding timing constraints and can be issued according to
the command arbitration policy. For example, commands R2
and R3 in Fig. 12 are ready on the same cycle; however, only
one of them can be issued at one cycle. One possible policy is
to favor ready requests to different banks to increase DRAM
parallelism through interleaving [Fig. 12(a)]. An alternative
policy is to favor ready requests to same bank to increase
DRAM locality through row hits [Fig. 12(b)].

Test Generation: The target is to generate a test pattern
that exhibit a bus contention, i.e., having more than one ready
command to be issued on the same cycle. We generate a test
with three memory requests, Req1, Req2, and Req3. Req1 and
req3 target the same row in the same bank, while Req2 targets
a different bank. As Fig. 12 illustrates, both R2 and R3 are
ready on the same cycle. Accordingly, one of the commands
is issued on cycle 1 , while the other has to be delayed tCCD
cycles to be issued on cycle 2 .

Diagnosis: There are two possibilities for the test pattern,
either R2 is postponed or R3. To verify the policy resolving
the command bus contention, we use the request latency as
our metric since Req2 and Req3 will have different latencies
based on the implemented policy. Li in Fig. 12 is the latency
of Reqi. Bandwidth utilization cannot be used in this case
since both possibilities lead to the same utilization. Based on

(a)

(b)

Fig. 12. Policies to resolve command bus contention. (a) Prioritizing accesses
to different banks (favor bank interleaving). (b) Prioritizing hit accesses to
same bank (favor row hits).

the monitored latency, we can figure out which R command
is postponed by the MC and compare this to the expected
behavior. For instance, in Fig. 12(a), the MC postpones R3;
thus, L3 > L2. On the other hand, in Fig. 12(b), the MC
postpones R2 such that L3 < L2.

VI. VALIDATING MC’S FRONTEND

We validate features from MC’s frontend functionalities
including address mapping, page policy, and request arbi-
tration. For space limitation reasons, we show the complete
validation process for the XOR address mapping. For the other
policies, we discuss the three major components of the val-
idation process: 1) the test plan; 2) the LTL specifications;
and 3) the diagnosis. Since all the policies we validate in this
section are at the MC’s frontend, we use the request model.

A. Address Mapping Policies

We validate three features related to the address mapping
component: 1) permutation-based address mapping [4], [6];
2) address masking [39]; and 3) rank hopping [40], [41].

1) Permutation-Based Page-Interleaving (XOR) Address
Mapping: Modern MCs reduce row conflicts by using a
permutation-based page interleaving, where the bank bits are
bitwise XOR-ed with the least significant row bits [4], [6]. We
refer to this technique as simply XOR address mapping.

Test Plan: To generate a test suite that represents the opti-
mal memory pattern for the XOR mapping. It is a stream of
read accesses, where we change the bank interleaving ratio
per test, intr. In addition, requests targeting the same bank are
accessing different rows. SuiteXOR formally represents this test
plan. Each test has an interleaving percentage between 0% and
100%. nbnk is the number of banks per rank (usually eight for
DDR3). The conditions ensure that intr% of requests in the
test interleave across different nbnk banks. They also ensure
that in these intr% requests, each nbnk successive requests tar-
get same row, which implies that requests targeting different

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1059

banks have same rw segment, while requests to the same bank
have different rw values. Again, the target of this test plan is
to achieve the maximum possible utilization of XOR mapping
regardless of the intr value.

Specifications: Each test template has its corresponding
specification. The LTL in Specification 6 encodes a test plan
with intr = 40%, where t_x represents the total counts of
the event x. t_hit is the total number of row hits, and
t_bank_interleave is the total number of bank inter-
leavings. The intuition behind the specification is that out of
ten total requests in the test, the first six requests target differ-
ent rows in the same bank, while the last four requests target
the same row but in different banks.

Test Template: MCXplore invokes the NuSMV model
checker to explore the state space to find a counterex-
ample for the specification. The counterexample represents
the test template that exhibits the required test properties.
Fig. 13(a) delineates the test template for the specifications
in Specification 6.

Test Suite: MCXplore parses each test template and gener-
ates a test that complies with the test plan (step 4). Fig. 13(b)
shows one test instance generated from the test template.

Diagnosis: For the sake of comparison, we execute SuiteXOR
on both the XOR mapping and the base mapping (no XOR
operation is performed). As Fig. 14 illustrates, increasing the
intr ratio on the test, the base mapping achieves better utiliza-
tion. This is because requests to different banks are serviced
in parallel. On the other hand, the correct behavior of the
XOR mapping is to achieve a fixed utilization for all tests in
the suite. This is because even for noninterleaved accesses,
the XOR address mapping will map them to different banks
because of the XOR operation between the bank bits and the
corresponding row bits. To further check for correct function-
ality, this value should be compared to the expected utilization
dictated in Lemma 4. Fig. 14 shows that the XOR mapping
achieves a fixed utilization of ∼ 79%, which coincides with
the expected behavior. It is worth mentioning that Lemma 4
assumes that tFAW ≥ 4 · tRRD and 2 · tFAW ≥ tRC, which is
true for all available DDR chips.

Lemma 4: Executing any test in SuiteXOR on an MC with
XOR mapping results in a utilization that can be calculated
as: (4 · tBUS/tFAW).

Proof: Since XOR mapping maps successive requests of any
test in SuiteXOR to different banks, the MC under test repeats
the behavior shown in Fig. 15 every eight requests. Focusing

(a) (b)

Fig. 13. Test generation for validating XOR mapping. (a) Test template.
(b) Final test example.

Fig. 14. XOR address mapping.

Fig. 15. Command sequence of SuiteXOR on XOR mapping.

on one repetition, the data bus is busy for 8 · tBUS, while the
total DRAM latency is 2 · tFAW.

Bug Scenario: To illustrate potential design errors, we inject
two bugs in the XOR mapping. In the first one (Bug1 in
Fig. 14), we perform the XOR operation between only the
first two bits of the bank and row segments, while in the sec-
ond bug (Bug2), we perform the XOR operation between the
least significant bit of row and bank segments. From Fig. 14,
both Bug1 and Bug2 do not achieve the expected utilization
of Lemma 4; hence, they are detectable.

2) Address Masking: MCs map logical addresses to phys-
ical addresses by using a bit masking operation. Fig. 16
illustrates the masking operation to extract the row, column
and bank segment of an address. Rank and channel segments
are extracted with similar logic. We use MCXplore to gen-
erate tests to validate the address mapping operation for a
variety of address mappings with different number of rows,
ranks and channels, and with various row sizes. Modern MCs
(such as the Intel MC hub [39]) rely on configuration regis-
ters to select one of possible address mappings. For clarity,
Fig. 17 shows one simple example comprising of a single-
rank single-channel DRAM subsystem with three possible
address mapping schemes, Scheme1: (rw-cl-bnk), Scheme2:
(bnk-cl-rw), and Scheme3:: (bnk-rw-cl).

Test Plan To generate three tests: Test1, Test2, and Test3.
Each test is a stream of read accesses targeting the same bank
and different rows. Tests differ only in the address mapping,
where Test1, Test2, and Test3 are designed corresponding to
Scheme1, Scheme2, and Scheme3, respectively.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

1060 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Fig. 16. Address masking operation.

Fig. 17. Address masking schemes.

Specification: Specification 7 encodes the test plan as an
LTL property, where the test comprises of ten requests.

Diagnosis: We execute each test on each address scheme
and depict the results in Fig. 18. Lemma 5 calculates the
expected utilization upon executing Testi on Schemei. Each
test should result in a utilization of (tBUS/tRC) ≈ 12% when
running on its corresponding scheme and larger utilization
otherwise.

Lemma 5: Executing Testi on Schemei for i ∈ {1, 2, 3}, the
BW utilization of the DRAM under test can be calculated
as (tBUS/tRC).

Proof: Executing Testi on Schemei, the DRAM under test
repeats the behavior shown in Fig. 19 every request. Focusing
on one request, the data bus is busy for tBUS cycles. Moreover,
the total DRAM latency required to transmit the data of one
request is tRC = tRP + tRAS cycles.

Bug Scenario: The masking operation may result in a dif-
ferent mapping than the intended one by the designer. This can
be due to a fault in the masking logic, the configuration regis-
ters or even a human error when the designer unintentionally
sets the wrong address scheme. For example, let the intended
mapping to be Scheme1, while the masking mistakenly results
in a mapping of Scheme3. Under this scenario, Test3 is the
one that will result in the expected utilization and not Test1;
hence, we can discover that there is inconsistency between the
masking operation mapping and the intended mapping. Since
the generated tests target different rows in the same bank,
they generate row conflicts and result in a minimum utiliza-
tion (tBUS/tRC). Accordingly, if a bug results in running Testi
on Schemej, where i
= j, the resulting utilization will be higher
than the expected value as Fig. 18 illustrates.

3) Rank Hopping: Some modern MCs use rank hopping to
force consecutive requests to access different ranks [40], [41].
Hence, they will not suffer from the read-write switching
required between accesses of different types accessing the
same rank. Instead, requests targeting different ranks suffer
from a lesser delay tRTRS.

Test Plan: SuiteHOP formally describes the test plan. The
target is to generate a test suite, where each test has a different
read-write switching ratio (sw) and all requests are targeting
the same bank and row.

Fig. 18. Address masking results.

Fig. 19. Command sequence from executing Testi on Schemei, i ∈ {1, 2, 3}.

Fig. 20. Rank hopping.

Specifications: Each test template has its corresponding
specification. The LTL in Specification 8 encodes a test plan
with sw = 40%, (t_sw = 40) out of (num_requests = 100).

Diagnosis: We test both the rank hopping mapping with
a dual-rank DRAM, and a single-rank DRAM. We delineate
results in Fig. 20. The correct behavior of rank hopping is to
achieve a fixed utilization regardless the switching ratio while
the utilization of the single-rank DRAM degrades with the
increase of the switching ratio due to the RtoW and WtoR_B
constraints. For tests with low switching ratio, we expect the
single-rank system to have better utilization than the rank
hopping because of the overhead that tRTRS constraint adds.
Lemma 6 determines the threshold point.

Lemma 6: The rank hopping mapping outperforms the
single-rank base mapping if and only if the switching ratio,
sw, satisfies the following condition:

sw >
2tRTRS

tRL + tWTR + 2tBUS + tRTRS − 2tCCD
.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1061

Proof: For the single-rank base mapping, the DRAM uti-
lization for a test of requests with same type targeting same
row and bank, Testsw=0, can be approximated to Utino_sw =
(tBUS/tCCD) (proof is in Section V-A1). On the other hand,
the DRAM utilization for Testsw=100 can be approximated to
Utisw = (2tBUS/tRL + tWTR + 2tBUS + tRTRS). The utiliza-
tion of Testsw executing on a single rank is calculated in (2).
Uti1rnk is the weighted harmonic mean of Utino_sw and Utisw
with weights (1 − sw) and sw, respectively

Uti1rnk = 1
1−sw

Utino_sw
+ sw

Utisw

. (2)

For the rank hopping mapping, the DRAM utilization can
be approximated to Utihop = (tBUS/tBUS + tRTRS). Hence,
the rank hopping outperforms base mapping if: Utihop >

[1/(1 − sw/Utino_sw)+ (sw/Utisw)]. This can occur only if
sw > [Utisw× (Utino_sw −Utihop)/Utihop× (Utino_sw −Utisw)].
By substituting Utino_sw, Utisw, and Utihop and conducting
mathematical simplifications, the condition will be sw >

(2tRTRS/ tRL+ tWTR+ 2tBUS+ tRTRS − 2tCCD).
Fig. 20 illustrates that for switching ratios that are approx-

imately larger than or equal to 12.5%, the rank hopping
mapping outperforms the single-rank base mapping which
coincides with the conclusion of Lemma 6.

B. Page Management Policies

Recall from Section II that the page policy controls the
liveness of the row in the row buffer. We validate three
page policies, which are commonly used in current architec-
tures: close-page, open-page, and adaptive-page policies. Since
DRAMsim2 supports only close- and open-page policies, we
extend it to support the adaptive-page policy. We implement
an adaptive-page policy that models the page policy imple-
mented by Intel [42] and executes the following procedure. If
the number of row hits in a decision window is larger than
50%, the MC executes a open-page policy; otherwise, it exe-
cutes a close-page policy. We choose the decision window to
be 20 requests; thus, the MC executes open-page if there are
at least 10 hits in the last 20 requests.

Test Plan: To generate a test suite, where each test
is a stream of read accesses targeting the same bank
with a different locality ratio. SuitePP formally defines this
test plan. We define the locality percentage as: loc =
(number of row hits × 100/total number of requests). Unlike
all previous tests, where all requests of the test are issued
back-to-back at cycle 0, Testloc issues a request every 2 · tRC
cycles. The intuition is that it is necessary that each two suc-
cessive requests be separated by a period larger than tRC to
differentiate between the behavior of the close-page and that
of open-page when it has a row-conflict.

Fig. 21. Evaluation of page policies.

Specifications: Each loc value has its corresponding speci-
fication. The LTL in Specification 9 encodes a test plan with
loc = 40%, (t_hit = 40) out of (num_requests = 100).

Diagnosis: We execute SuitePP on DRAMSim2 for each
page policy and depict the results in Fig. 21.

1) Close-page is expected to have the same DRAM utiliza-
tion for all tests. Lemma 7 dictates this utilization. We
observe that the obtained results of close-page in Fig. 21
coincide with the expected utilization from Lemma 7.

2) For open-page, the utilization depends on the loc per-
centage. Increasing loc, less precharging is required and
the DRAM utilization increases accordingly. Lemma 7
defines the relation between DRAM utilization and loc.
Fig. 21 shows that open-page policy outperforms close-
page policy for loc > 50%. This value can be directly
derived from the utilization values that Lemmas 7 and 8
calculate.

3) Deploying adaptive-page, the MC executes the close-
page policy for low loc values, while it switches to
open-page for high loc values. Fig. 21 shows that the
adaptive-page policy has the same utilization as the
close-page for loc ≤ 50% and the same utilization as
the open-page otherwise.

Lemma 7: Executing Testloc on close-page policy results in
the same utilization for all feasible loc ratios. This utilization
can be calculated as (tBUS/tRCD + tRL + tBUS).

Proof: As Fig. 22(a) delineates, each request consumes a
total of tRCD + tRL + tBUS DRAM cycles to transfer on the
data bus for only tBUS cycles. The DRAM remains idle for
the remaining of the 2 · tRC period and our utilization metric
in (1) only considers the DRAM active cycles.

Lemma 8: Executing any test in TestsPP on open-page pol-
icy, the utilization can be calculated as [tBUS/(1 − loc)
(tRP + tRCD + tRL + tBUS + loc(tRL + tBUS))].

Proof: For loc = 0, each request incurs a row con-
flict with a command pattern as shown in Fig. 22(b).
Therefore, the BW utilization can be calculated as Uticonf =
(tBUS/tRP + tRCD + tRL + tBUS). In contrast, for loc =
100%, each request incurs a row hit with the command pat-
tern in Fig. 22(c). Accordingly, the BW utilization can be
calculated as Utihit = (tBUS/tRL + tBUS). In general, the BW
utilization of Testloc with any loc value can be calculated as

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

1062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

(a)

(b) (c)

Fig. 22. Command arrangement for TestPP. (a) Close-page policy. (b) Open-
page policy (row conflict). (c) Open-page policy (row hit).

the weighted harmonic mean of Uticonf and Utihit as follows
(1/[(1 − loc)/Uticonf] + [locUtihit]). This gives the utilization
value, which Lemma 8 calculates.

C. Arbitration Schemes

We validate an MC feature that affects both the page policy
and the arbitration deployed by the MC. Deploying this fea-
ture, the MC keeps the row in the row buffer for a designated
number of row hits, that we call maximum row-hits thresh-
old. The threshold limits the number of requests that can be
reordered with the first-ready first-come-first-serve (FR-FCFS)
arbitration scheme deployed in most conventional MCs nowa-
days [20]. Usually, the threshold value is chosen such that it
maximizes the performance for targeted applications. In this
experiment, we assume the intended threshold to be thr = 16;
though, the procedure is valid for any thr’s value.

Test Plan: To generate a set of tests, where each test is a
stream of read accesses targeting the same bank. Each test
has a different number of requests targeting an open row (row
hits), hit. Suitethr formalizes this plan, where we sweep hit
between 0 and 32. The conditions ensure that all requests target
the same bank, while every hit successive requests target the
same row.

Specifications: The formula in Specification 10 exemplifies
the encoding of the test plan with hit = 16 such that the first
request opens a row and requests 2 to 17 are hits on that row.
Afterward, request 18 opens a different row (row conflict), and
requests 19 to 34 are hits on the open row.

Diagnosis: We execute the generated tests and compare with
the expected behavior. The correct functionality is to achieve
the maximum utilization (calculated by Lemma 9) when hit =
thr. Fig. 23 shows that the MC under correct functionality
(correct) achieves a maximum utilization of 73% at hit = 16,
which confirms the conclusion of Lemma 9.

Fig. 23. Evaluation of FR-FCFS threshold.

Fig. 24. Command sequence of Suitethr when hit = thr − 1.

Lemma 9: Executing Suitethr on an MC that implements a
maximum row-hits threshold results in a maximum utilization
for the test Testhit with hit = thr and this utilization can be
calculated as [thr × tBUS/tRCD+(thr−1) tCCD+RtoP+tRP].

Proof: When hit = thr, the DRAM repeats the behavior
illustrated in Fig. 24 every thr requests. During one repetition,
the data bus is busy for thr × tBUS, while the total access
latency is tRCD + (thr − 1)tCCD + RtoP + tRP.

Bug Scenario: We embed two bugs to the logic of the row-
hits threshold (Bug1 and Bug2 in Fig. 23). Bug1 reduces
the threshold to 8 instead of the intended value by the
designer (16), while Bug2 increases the threshold to 32. From
utilization graphs in Fig. 23, we directly discover that the
maximum utilization value is not the expected value calcu-
lated by Lemma 9. In Bug1, the utilization graph repeats
a pattern every multiple of 8, where it achieves the maxi-
mum utilization. Consequently, we deduce that the bug causes
the threshold to be 8. A similar conclusion can be reached
for Bug2.

VII. EXTENSIBILITY OF MCXplore

MCXplore treats extensibility as a first-class citizen. To val-
idate a new policy, the designer only needs to identify the
properties of that policy and encode them in LTL specifica-
tions. Afterward, the designer chooses the suitable model, and
MCXplore will generate the desired test suites. Furthermore,
leveraging the modularity of MCXplore, other models can
be easily integrated; modifications involve only the interface
functions that parse the model to generate the required
test. We encourage researchers and validation engineers to
extend and use MCXplore to validate and test their proposed
designs.

VIII. CONCLUSION

We propose a framework for validating MC designs. We
introduce two models for the test input of the MC and enable
validation engineers and researchers to specify their test plan
as specifications in temporal logic. We use model checking
to generate test templates that satisfy this plan. We imple-
ment this framework and release it open-source as MCXplore,
accompanied with a regression test suite for validating basic
MC features. Using MCXplore, we show how to validate the
correctness of state-of-the-art MC features as well as discover
timing violations in the DRAM subsystem.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

HASSAN AND PATEL: MCXplore: AUTOMATING THE VALIDATION PROCESS OF DRAM MC DESIGNS 1063

REFERENCES

[1] Intel Platform and Component Validation, a White Paper, Intel,
Santa Clara, CA, USA, accessed on Aug. 31, 2015. [Online]. Available:
http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf

[2] H.-M. Koo and P. Mishra, “Test generation using sat-based bounded
model checking for validation of pipelined processors,” in Proc. ACM
Great Lakes Symp. VLSI, Philadelphia, PA, USA, 2006, pp. 362–365.

[3] M. Katelman, J. Meseguer, and S. Escobar, “Directed-logical testing
for functional verification of microprocessors,” in Proc. ACM/IEEE Int.
Conf. Formal Methods Models Co-Design (MEMOCODE), Anaheim,
CA, USA, 2008, pp. 89–100.

[4] W.-F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM laten-
cies with an integrated memory hierarchy design,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Monterrey, Mexico,
2001, pp. 301–312.

[5] M. Ghasempour, J. D. Garside, A. Jaleel, and M. Lujan, “DReAM:
Dynamic re-arrangement of address mapping to improve the
performance of DRAMS,” in Proc. Int. Symp. Memory Syst. (MEMSYS),
Washington, DC, USA, 2016, pp. 362–373.

[6] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleav-
ing scheme to reduce row-buffer conflicts and exploit data locality,”
in Proc. ACM/IEEE Int. Symp. Microarchit. (MICRO), Monterey, CA,
USA, 2000, pp. 32–41.

[7] JEDEC. (2015). JEDEC DDR3 SDRAM Specifications Jesd79-3d.
Accessed on Aug. 12, 2016. [Online]. Available: http://www.jedec.org/
standards-documents/docs/jesd-79-3d

[8] O. Mutlu et al., “Research problems and opportunities in memory
systems,” Supercomput. Front. Innov., vol. 1, no. 3, pp. 19–55, 2014.

[9] MCXplore. Accessed on May 22, 2017. [Online]. Available:
https://caesr.uwaterloo.ca/mcxplore/

[10] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking
to generate tests from specifications,” in Proc. IEEE Int. Conf. Formal
Eng. Methods, Brisbane, QLD, Australia, 1998, pp. 46–54.

[11] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu,
“Bounded model checking,” in Advances in Computers. Amsterdam,
The Netherlands: Academic Press, 2003.

[12] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan./Jun. 2011.

[13] N. Chatterjee et al., “Usimm: The Utah simulated memory module,”
Univ. Utah, Salt Lake City, UT, USA, Tech. Rep. UUCS-12-002, 2012.

[14] M. Jeong, D. H. Yoon, and M. Erez. Drsim: A Platform for Flexible
DRAM System Research. Accessed: May 22, 2017. [Online]. Available:
http://lph.ece.utexas.edu/public/DrSim

[15] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49,
Jan./Jun. 2016.

[16] M. Jung et al., “Dramsys: A flexible dram subsystem design space explo-
ration framework,” IPSJ Trans. Syst. LSI Design Methodol. (T-SLDM),
2015, pp. 63–74.

[17] M. Hassan, H. Patel, and R. Pellizzoni, “A framework for scheduling
DRAM memory accesses for multi-core mixed-time critical systems,” in
Proc. IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS), Seattle,
WA, USA, 2015, pp. 307–316.

[18] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” ACM SIGARCH Comput. Archit. News,
vol. 28, no. 2, pp. 128–138, 2000.

[19] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair
queuing memory systems,” in Proc. Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Orlando, FL, USA, 2006, pp. 208–222.

[20] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu, “Staged memory scheduling: Achieving high performance and
scalability in heterogeneous systems,” ACM SIGARCH Comput. Archit.
News, vol. 40, no. 3, pp. 416–427, 2012.

[21] DDR3 SDRAM Verilog Model, Micron, Boise, ID, USA, 2012.
[22] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page:

A DRAM page-mode scheduling policy for the many-core era,” in
Proc. IEEE/ACM Int. Symp. Microarchit. (MICRO), Porto Alegre, Brazil,
2011, pp. 24–35.

[23] T. Podda et al., Smart Way to Memory Controller Verification:
Synopsys Memory VIP, Synopsys, Mountain View, CA, USA, accessed
on May 22, 2017. [Online]. Available: https://www.design-reuse.com/
articles/38587/synopsys-memory-controller-verification.html

[24] D. Sahoo and M. Satpathy, “MSimDRAM: Formal model driven devel-
opment of a DRAM simulator,” in Proc. IEEE Int. Conf. VLSI Design
Int. Conf. Embedded Syst. (VLSID), Kolkata, India, 2016, pp. 597–598.

[25] K. Khalifa and K. Salah, “Implementation and verification of a generic
universal memory controller based on UVM,” in Proc. IEEE Int. Conf.
Design Technol. Integr. Syst. Nanoscale Era (DTIS), Naples, Italy, 2015,
pp. 1–2.

[26] M. O. Kayed, M. Abdelsalam, and R. Guindi, “A novel approach for
SVA generation of DDR memory protocols based on TDML,” in Proc.
IEEE Int. Microprocessor Test Verification Workshop, Austin, TX, USA,
2014, pp. 61–66.

[27] Y. Li, B. Akesson, K. Lampka, and K. Goossens, “Modeling and verifica-
tion of dynamic command scheduling for real-time memory controllers,”
in Proc. IEEE Real-Time Embedded Technol. Appl. Symp. (RTAS),
Vienna, Austria, 2016, pp. 1–12.

[28] J. Callahan, F. Schneider, and S. Easterbrook, “Automated software
testing using model-checking,” in Proc. SPIN Workshop, 1996, pp. 1–19.

[29] V. Okun, P. E. Black, and Y. Yesha, “Testing with model checker:
Insuring fault visibility,” WSEAS Trans. Syst., pp. 77–82, 2003.

[30] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model checkers:
A survey,” Softw. Test. Verification Rel., vol. 19, no. 3, pp. 215–261,
2009.

[31] VC Verification IP for DRAM Memory, Synopsys, Mountain
View, CA, USA, accessed on May 22, 2017. [Online].
Available: https://www.synopsys.com/verification/verification-ip/dram-
memory.html

[32] Keysight Technologies and FuturePlus Systems. DDR4
Memory Protocol Analysis and Compliance Verification.
Accessed on May 22, 2017. [Online]. Available: http://
literature.cdn.keysight.com/litweb/pdf/59911827EN.pdf?id=2295381

[33] M. Hassan and H. Patel, “MCXplore: An automated framework
for validating memory controller designs,” in Proc. IEEE Design
Autom. Test Europe Conf. Exhibit. (DATE), Dresden, Germany, 2016,
pp. 1357–1362.

[34] A. Adir et al., “A unified methodology for pre-silicon verification and
post-silicon validation,” in Proc. IEEE Design Autom. Test Europe Conf.
Exhibit. (DATE), Grenoble, France, 2011, pp. 1–6.

[35] Y. Naveh et al., “Constraint-based random stimuli generation for
hardware verification,” AI Mag., vol. 28, no. 3, pp. 13–30, 2007.

[36] A. Cimatti et al., “NuSMV 2: An opensource tool for symbolic
model checking,” in Computer Aided Verification. Heidelberg, Germany:
Springer, 2002.

[37] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An enhanced memory con-
troller design for reducing energy in conventional and 3D die-stacked
DRAMS,” in Proc. IEEE/ACM Int. Symp. Microarchit. (MICRO),
Chicago, IL, USA, 2007, pp. 134–145.

[38] I. X. Processor, E5-2600 Product Family Uncore Performance
Monitoring Guide, Intel Corporat., Santa Clara, CA, USA, 2012.

[39] Memory Controller Hub (MCH), a Datasheet, Intel, Santa Clara, CA,
USA, Feb. 2005.

[40] B. L. Jacob and D. T. Wang, “System and method for performing
multi-rank command scheduling in DDR SDRAM memory systems,”
U.S. Patent 7 543 102, 2009.

[41] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A rank-switching,
open-row DRAM controller for time-predictable systems,” in Proc.
IEEE Euromicro Conf. Real-Time Syst. (ECRTS), Madrid, Spain, 2014,
pp. 27–38.

[42] Intel Xeon Processor X5650, Intel, Santa Clara, CA, USA, accessed
on May 22, 2017. [Online]. Available: http://ark.intel.com/products/
47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-
Intel-QPI

Mohamed Hassan received the M.Sc. degree from
Cairo University, Giza, Egypt, in 2012, and the Ph.D.
degree from the University of Waterloo, Waterloo,
ON, Canada, in 2017.

He is currently a SoC Research and Development
Engineer with Intel, Toronto, ON, Canada. His cur-
rent research interests include realtime embedded
systems, computer architecture, hardware validation,
and security.

Hiren Patel is an Associate Professor with the
Electrical and Computer Engineering Department,
University of Waterloo, Waterloo, ON, Canada. His
current research interests include realtime embed-
ded systems, computer architecture, and systemlevel
design methodologies.

Authorized licensed use limited to: McMaster University. Downloaded on February 27,2020 at 19:48:15 UTC from IEEE Xplore. Restrictions apply.

http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d
https://caesr.uwaterloo.ca/mcxplore/
http://lph.ece.utexas.edu/public/DrSim
https://www.design-reuse.com/articles/38587/synopsys-memory-controller-verification.html
https://www.design-reuse.com/articles/38587/synopsys-memory-controller-verification.html
https://www.synopsys.com/verification/verification-ip/dram-memory.html
https://www.synopsys.com/verification/verification-ip/dram-memory.html
http://literature.cdn.keysight.com/litweb/pdf/59911827EN.pdf?id=2295381
http://literature.cdn.keysight.com/litweb/pdf/59911827EN.pdf?id=2295381
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

