Predictable Cache Coherence for Multi-Core Real-Time Systems

Mohamed Hassan, **Anirudh M. Kaushik** and Hiren Patel RTAS 2017

No caching of shared data [RTSS'09, RTNS'10]

- ✓ Simpler timing analysis
- ***** Hardware support
- **★** Long execution time

No caching of shared data [RTSS'09, RTNS'10]

- ✓ Simpler timing analysis
- ***** Hardware support
- **★** Long execution time

Task scheduling on shared data [ECRTS'10, RTSS'16]

- ✔ Private cache hits on shared data
- ✓ No hardware support
- **★** Limited multi-core parallelism
- **★** Changes to OS scheduler

No caching of shared data [RTSS'09, RTNS'10]

- ✓ Simpler timing analysis
- **★** Hardware support
- **★** Long execution time

Task scheduling on shared data [ECRTS'10, RTSS'16]

- ✓ Private cache hits on shared data
- ✓ No hardware support
- **★** Limited multi-core parallelism
- **★** Changes to OS scheduler

Software cache coherence [SAMOS'14]

- ✓ Private cache hits on shared data
- **★** Hardware support
- **X** Source code changes

No caching of shared data
[RTSS'09, RTNS'10]

Task scheduling on shared data

Software cache coherence

 $\Gamma \cap \Lambda \Lambda \Gamma \cap \Omega^{1} \dots \Gamma$

- S1
 P1
 S3

 S2
 P2
 S4
- ✓ Simpler timing analysis
- ***** Hardware support
- **★** Long execution time

- S2 P2 S4
- ✓ Private cache hits on shared data
- ✓ No hardware support
- **★** Limited multi-core parallelism
- **★** Changes to OS scheduler

- ✓ Private cache hits on shared data
- ***** Hardware support
- **X** Source code changes

No caching of shared data

Task scheduling on shared data

Software cache coherence

[RISS 09, RINS 10]

[ECRTS'10, RTSS'16]

This work:

Allowing predictable simultaneous cached shared data

accesses through hardware cache coherence, and provide

significant performance improvements with no

changes to OS and applications.

- ✓ Simpler timing analysis
- ***** Hardware support
- **★** Long execution time

- ✓ Private cache hits on shared data
- ✓ No hardware support
- **★** Limited multi-core parallelism
- **★** Changes to OS scheduler

- ✔ Private cache hits on shared data
- ***** Hardware support
- **X** Source code changes

Outline

- Overview of hardware cache coherence
- Challenges of applying conventional hardware cache coherence on RT multi-core systems
- Our solution: Predictable Modified-Shared-Invalid (PMSI) cache coherence protocol
- Latency analysis of PMSI
- Results
- Conclusion

Overview of hardware cache coherence

GETS: Memory load

GETM/UPG: Memory store

PUTM: Replacement

Applying hardware cache coherence to multi-core RT systems

Applying hardware cache coherence to multi-core RT systems

Modified-Shared-Invalid protocol Multi-core RT system with predictable arbitration to shared components Well studied cache coherence protocol Predictable latencies for shared data accesses? OwnGETM OwnGETS or **OtherGETS**

Applying hardware cache coherence to multi-core RT systems

Modified-Shared-Invalid protocol Multi-core RT system with predictable arbitration to shared components Well studied cache coherence protocol Predictable latencies for shared data accesses? OwnGETM OwnGETS or **OtherGETS**

Sources of unpredictable memory access latencies due to hardware cache coherence

1. Inter-core coherence interference on same cache line

2. Inter-core coherence interference on different cache lines

3. Inter-core coherence interference due to write hits

System model

TDM schedule

Event

data

TDM schedule

***** Unbounded latency for Core₂

* Denotes waiting for data

Core	Event
$Core_2$	Read A
$Core_o$	Read B
$Core_2$	Waiting for data
$Core_o$	Read C

Core	Event
$Core_2$	Read A
Core _o	Read B
$Core_2$	Waiting for data
Core _o	Read C

Sources of unpredictable memory access latencies due to cache coherence

PMSI cache coherence protocol: Protocol modifications

State	Core events			Bus events						
	Load	Store	Replacement	OwnData	OwnUpg	OwnPutM	OtherGetS	OtherGetM	Other Upg	Other PutM
	Issue									
I	GetS/ISd	Issue GetM/IM ^d	X	X	X	X	N/A	N/A	N/A	N/A
S	Hit	Issue Upg/ SM ^w	X	N/A	X	X	N/A	I	I	X
			Issue				Issue	Issue		
M	Hit	Hit	PutM/MIwb	X	X	X	PutM/MSwb	PutM/MIwb	X	X
IS ^d	X	X	X	Read/S	X	X	N/A	ISdI	$IS^{d}I$	N/A
$\mathbf{I}\mathbf{M}^{\mathrm{d}}$	X	X	X	Write/S	X	X	IM^dS	$\mathrm{IM}^{\mathrm{d}}\mathrm{I}$	X	N/A
IM ^d I	X	X	X	Write/MIwb	X	X	N/A	X	X	N/A
IS ^d I	X	X	X	Read/I	X	X	N/A	X	X	N/A
IM ^d S	X	X	X	Write/ MS wb	X	X	N/A	X	X	N/A
					Store/					
SM w	X	X	X	N/A	M	X	N/A	I	I	X
						Send				
MIwb	Hit	Hit	N/A	X	X	data/I	N/A	N/A	X	X
						Send				
MS wb	Hit	Hit	MIwb	X	X	data/S	N/A	MIwb	X	X

PMSI cache coherence protocol: Protocol modifications

State	e Core events			Bus events						
	Load	Store	Replacement	OwnData	OwnUpg	OwnPutM	OtherGetS	OtherGetM	Other Upg	Other PutM
	Issue									
I	GetS/ISd	Issue GetM/IM ^d	X	X	X	X	N/A	N/A	N/A	N/A
S	Hit	Issue Upg/SMw	X	N/A	X	X	N/A	I	I	X
			Issue				Issue	Issue		
M	Hit	Hit	PutM/MIwb	X	X	X	PutM/MSwb	PutM/MIwb	X	X
IS ^d	X	X	X	Read/S	X	X	N/A	ISdI	$\mathbf{I}\mathbf{S}^{\mathrm{d}}\mathbf{I}$	N/A
IM ^d	X	X	X	Write/S	X	X	IM^dS	$\mathrm{IM}^{\mathrm{d}}\mathrm{I}$	X	N/A
IM ^d I	X	X	X	Write/MIwb	X	X	N/A	X	X	N/A
ISdI	X	X	X	Read/I	X	X	N/A	X	X	N/A
IM ^d S	X	X	X	Write/ MS wb	X	X	N/A	X	X	N/A
					Store/					
SM ^w	X	X	X	N/A	M	X	N/A	I	Ι	X
						Send				
MIwb	Hit	Hit	N/A	X	X	data/I	N/A	N/A	X	X
						Send				
MS wb	Hit	Hit	MIwb	X	X	data/S	N/A	MIwb	X	X

Core	Event
$Core_2$	Read A
$Core_o$	WB A
$Core_2$	Complete read A
Core _o	Read B

Latency analysis of PMSI

N: Number of cores

Latency analysis of PMSI

WCL of memory request

$$L^{acc} + \\ WCL^{arb} (\alpha N) + \\ WCL^{intraCoh} (\alpha N) + \\ WCL^{interCoh} (\alpha N^2)$$

Results

- Cycle accurate Gem5 simulator
- 2, 4, 8 cores, 16KB direct mapped private L1-D/I caches
- In-order cores, 2GHz operating frequency
- TDM bus arbitration with slot width = 50 cycles
- Benchmarks: SPLASH-2, synthetic benchmarks to stress worst-case scenarios
- Simulation framework available at https://git.uwaterloo.ca/caesr-pub/pmsi

Results: Observed worst case latency per request

Results: Observed worst case latency per request

Results: Observed worst case latency per request

Results: Slowdown relative to MESI cache coherence

Results: Slowdown relative to MESI cache coherence

Conclusion

- Enumerate sources of unpredictability when applying conventional hardware cache coherence on multi-core real-time systems
- Propose PMSI cache coherence that allows predictable simultaneous shared data accesses with no changes to application/OS
- Hardware overhead of PMSI is ~ 128 bytes
- WCL of memory access with PMSI α square of number of cores (α N²)
- PMSI outperforms prior techniques for handling shared data accesses (upto 4x improvement over uncache-shared), and suffers on average 46% slowdown compared to conventional MESI cache coherence protocol

WATER LOO

THANK YOU & QUESTIONS?