
Discriminative Coherence:1

Balancing Performance and Latency Bounds in2

Data-sharing Multi-Core Real-Time Systems3

Mohamed Hassan4

McMaster University5

mohamed.hassan@mcmaster.ca6

Abstract7

Tasks in modern multi-core real-time systems share data and communicate among each other. Nonetheless, the8

majority of published research in real-time systems either assumes that tasks do not share data or prohibits data9

sharing by design. Only recently, some works investigated solutions to address this limitation and enable data10

sharing; however, we find these works to suffer from severe limitations. In particular, approaches that bypass11

private caches to avoid coherence interference altogether suffer from significant average-case performance12

degradation. On the other hand, proposed predictable cache coherence protocols increase the worst-case memory13

latency (WCL) quadratically due to coherence interference. In this paper, by carefully analyzing the scenarios14

that lead to high coherence interference, we make the following observation. A protocol that distinguishes15

between non-modifying (read) and modifying (write) memory accesses is key towards reducing the effects of16

coherence interference on WCL. Accordingly, we propose DISCO, a discriminative coherence solution that17

capitalizes on this observation to balance average-case performance and WCL. This is achieved by disallowing18

modified data in private caches, and hence, the significant coherence delays resulting from them are avoided. In19

addition, DISCO achieves high average performance by allowing tasks to simultaneously read shared data in the20

private caches. Moreover, if the system supports the distinction between private and shared data, DISCO further21

improves average performance by allowing for the caching of private data in cores’ private caches regardless of22

whether it is modified or not. Our evaluation shows that DISCO achieves 7.2× lower latency bounds compared23

to the state-of-the-art predictable coherence protocol. DISCO also achieves up to 11.4× (5.3× on average)24

better performance than private cache bypassing for the SPLASH-3 benchmarks.25

2012 ACM Subject Classification Computer systems organization→Real-time systems; Computer systems26

organization→ Real-time systems; Computer systems organization→ Architectures27

Keywords and phrases Coherence, Shared Data, Caches, Multi-Core, Real-Time, Memory28

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.1529

1 Introduction30

Demands from modern applications of embedded systems such as those in automotive, avionics,31

industrial automation and healthcare are shaping the research directions in real-time embedded32

systems. The high performance demands from these applications ignited the transition from single-33

core to multi-core real-time systems [37]. In addition, meeting the high data demand was a strong34

motive behind exploring the adoption of complex memory hierarchies composed of multiple levels35

of caches [44] and include shared caches [10, 13, 25, 36, 29], shared interconnects [7, 15, 19] as36

well as off-chip memories [9, 12, 18, 22] instead of the small-sized static on-chip memories found37

in traditional low-end embedded systems. Despite this large volume of research, one demand from38

the aforementioned applications is yet to be efficiently addressed: allowing a seamless, predictable,39

and high performance data sharing among different running tasks. Unfortunately, most prior works40

in real-time systems do not meet this demand. They either assume tasks are not sharing data or41

prohibit data sharing by design [6]. This is mainly because data sharing is problematic and can lead42

to significant interference delays [3, 11] or even unpredictable behaviors [14] if it is not carefully43

addressed.44

© Mohamed Hassan;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamed.hassan@mcmaster.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2020.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Discriminative Coherence

On the other hand, researchers have already realized the importance of enabling data sharing in45

the context of real-time systems [4, 6, 11, 14, 16]. The common approach followed by these works is46

to allow data to be shared among tasks but prevent tasks from simultaneously accessing this shared47

data in an attempt to accommodate for the data sharing demand, while ensuring system predictability.48

As a result, large interference delays due to this simultaneous access are avoided altogether. This49

is achieved by either modifying the task-to-core mapping [6], data-aware scheduling [4, 11], or50

bypassing caches [6, 3, 26]. The main drawback of such approach is that by disallowing simultaneous51

access to shared data, it can severely deteriorate the system performance. To improve system52

performance and enable simultaneous access to shared data, [14, 39, 40, 23] propose predictable53

cache coherence protocols. The problem with these protocols is that they require complex changes to54

cache controllers and more importantly, they result in a significant increase in the worst-case latency55

(WCL) upon accessing memory due to coherence interference. In this paper, we propose DISCO: a56

discriminative coherence solution that addresses the aforementioned drawbacks. Towards this target,57

we make the following contributions.58

1. We exhaustively study all possible access scenarios under coherence protocols to distill the main59

sources of their large coherence delays. As a result of our study we make the following important60

observation. Significant coherence interference delays that arise from the worst-case scenarios are61

exclusively due to cache lines being modified in the private caches without an immediate update62

to the shared cache. The other key observation that DISCO is based on is that the number of63

memory writes usually represents a small percentage of the total memory requests of applications.64

We discuss these two observations in details in Section 5.65

2. Based on these two observations, we propose DISCO to prohibit the caching of modified data66

in the cores’ private caches. All data modifications are carried out at the shared cache. DISCO67

intentionally discriminates against write memory requests since they are forced to access the68

shared cache even if data already exists in the requesting core’s private cache, while read requests69

are allowed to hit in private caches if their data exists; therefore, reads are managed exactly as in70

traditional coherence approaches deployed in commodity systems. Since all writes are treated71

equally, we call this version of the proposed solution, DISCO-AllW.72

3. To further improve the system performance, we also propose another version of our solution73

that we call DISCO-SharedW. DISCO-SharedW leverages information about tasks’ data (namely,74

whether data is shared or private). DISCO-SharedW relaxes the constraint of DISCO-AllW by75

allowing private data to be modified in the private caches. It allows both read and write hits to76

the private data that is not shared among tasks since it causes no coherence interference. Both77

DISCO-AllW and DISCO-SharedW can be either implemented as a hardware cache coherence78

protocol (Section 6) or realized in commodity platforms using already available support on these79

platforms as we discuss in Section 7.3.3.80

4. We conduct a detailed analysis to calculate the WCL incurred by any memory request as well as81

the total WCL for both DISCO-AllW and DISCO-SharedW (Section 7).82

5. We compare both versions of DISCO with the two state-of-the art competitive solutions: PMSI83

coherence protocol [14] and cache bypassing [26, 3]. Our evaluation uses both the SPLASH-84

3 [35] parallel data-sharing benchmarks as well as synthetic experiments that are based on the85

EEMBC-Auto benchmarks [33]. Results in Section 8 show the notorious improvements that86

DISCO-AllW and DISCO-SharedW achieve compared to both PMSI and cache bypassing. We87

summarize these results in Table 1.88

M. Hassan 15:3

Per-request WCL Total WCL Avg. Performance
PMSI Bypass PMSI Bypass PMSI Bypass

analytical up to avg. up to avg. up to avg. up to avg.
DISCO-AllW 7.2× same 3.3× 2× 65% 42% 100% 12% 2.8× 1.5×

DISCO-SharedW 7.2× same 6× 3.5× 3.8× 1.5× 3.2× 1.6× 11.4× 5.3×
Table 1 Summary of DISCO improvements over state-of-the-art competitive approaches.

2 Related Work89

With the adoption of multi-core architectures in real-time embedded systems being on the rise,90

several new challenges face the researchers in these systems. Predictably managing the shared91

hardware components among different cores (such as interconnects, on-chip caches, and off-chip92

memories) is one of the biggest challenges. This is because processing elements in multi-core93

architectures compete to access these resources which results in significant interference in the system.94

To address this challenge, several recent research efforts aim at providing predictable access to shared95

interconnect [44, 7, 15, 31, 19], shared caches [42, 36, 43, 10], and shared DRAM [32, 34, 1, 9, 22,96

17, 12]. While these efforts successfully address the timing interference problem, the data interference97

problem is usually overlooked.98

Most of the aforementioned solutions adopt the independent-task model, where tasks do not share99

data. Recently, researchers recognized the importance of data sharing and proposed solutions to100

handle it [6, 11, 14, 3, 4, 26, 39, 23, 40]. We classify these works into three groups according to their101

research direction: 1) data-aware scheduling, 2) cache bypassing, and 3) cache coherence protocols.102

1) Data-aware scheduling. The first direction incorporates data-awareness in the task scheduling103

to avoid data interference. This is achieved by one of the following means: 1.1) scheduling tasks with104

shared data such that they never run in parallel [4]; hence, they do not compete for shared data; 1.2)105

assigning tasks with shared data to the same core [6]; hence, they share the same private cache(s) and106

do not suffer coherence interference from each other; or 1.3) incorporating run-time performance107

metrics collected through hardware counters to make data-wise scheduling decisions that mitigate the108

data sharing effects [11]. This direction enforces new constraints on the system scheduler interference,109

which deteriorates system schedulability [40]. Unlike these solutions, DISCO does not require any110

modifications to the system scheduler and coherently handles data sharing in hardware.111

2) Cache bypassing. A second alternative is cache bypassing, which was first utilized in the112

context of reducing the shared cache conflict interference [13, 26] but is then used to avoid coherence113

interference of shared data [6, 3]. If private caches are bypassed, coherence interference is eliminated,114

but at the expense of degrading average-case performance.115

3) Cache coherence. The third direction is to make data sharing transparent to the application and116

the scheduler by handling it completely in hardware using cache coherence protocols [14, 39, 23, 40].117

Cache coherence is notoriously the main solution adopted by commercial-of-the-shelf (COTS)118

multi-core architectures [30, 41]. It has the advantage of enabling data sharing without imposing119

any restrictions on the real-time scheduler compared to data-aware scheduling solutions. It is also120

shown to provide high average-case performance compared to both data-aware scheduling and cache121

bypassing [14, 40]. On the other hand, it suffers a notably high worst-case memory latency due to the122

introduced coherence interference. For instance, PMSI [14] has a worst-case latency that is quadratic123

in the number of cores in the system.124

We discuss both cache bypassing and cache coherence in more details in Section 5 since they are125

the most related to this work.126

ECRTS 2020

15:4 Discriminative Coherence

Shared BUS

Shared Cache

states tag Data
Cache

Controller

C0C1C2CN
Private Cache

states tag Data
Cache

Controller

Figure 1 System model.

𝐼

𝑆

LD/HitST/
Issue Upg

OtherGetS or
OtherGetM

OtherGetS

𝑀

LD/Hit

OtherGetS/
SendDataST/Hit

Figure 2 MSI coherence states, messages, and transitions. Messages observed by the core on the bus from
other cores are indicated as Other (e.g. OtherGetS).

3 System Model127

We assume the multi-core architecture depicted in Figure 1, where tasks running on this architecture128

can share data. The proposed solution does not depend on the core architecture and can be seamlessly129

deployed for in-order or out-of-order cores.130

Memory Hierarchy. Each core has its own private cache(s) and all cores share a last-level cache131

(LLC). LLC is accessed through a shared bus. Cores can also share an off-chip memory. We also132

assume that timing interference is resolved in the shared cache using partitioning or coloring [10],133

and in shared main memories using existing solutions orthogonal to this work [12, 8].134

Bus Arbitration. Without loss of generalization, we assume that accesses to the shared bus are135

managed according to a Time Division Multiplexing (TDM) scheme. Solutions proposed in this136

paper are independent of the deployed arbiter and can be applied to other arbiters as well. However,137

the timing analysis we perform in Section 6 assumes a TDM bus arbitration. Similar to existing138

work [14, 39], we set the slot width to accommodate for the one data transfer between private and139

shared caches in addition to coherence messages. This slot width is denoted as Lmiss
acc since it is140

incurred if a request misses in the corresponding core’s private cache.141

Task Scheduling. We do not make any assumption on how the executing tasks are scheduled on142

cores. The proposed approach is orthogonal to task scheduling and should operate in tandem with143

any schedule.144

M. Hassan 15:5

4 Cache Coherence Background145

When multiple cores accessing the same data, the system has to maintain data correctness. Data146

correctness is achieved when all cores have access to the most up-to-date data. On the other hand,147

data incorrectness occurs when a core accesses a stale data that has been already changed in another148

location in the system (e.g. another core’s cache). Modern multi-core systems deploy cache coherence149

protocols to prevent such situation and preserve data correctness. The Modified-Shared-Invalid (MSI)150

is considered the baseline coherence protocol [38], where many of the commercial-off-the-shelf151

architectures adopt protocols that inherit its three fundamental states: Modified (M), Shared (S), and152

Invalid (I) such as the MESIF protocl deployed in Intel’s i7 and the MOESI protocol deployed in153

AMD’s Opteron [20]. Therefore, we use it as a mean to explain the basics of a coherence protocol.154

Figure 2 depicts the three states of MSI as well as all possible transitions between them. If a cache155

line does not exist in the private cache or its data is stale, its state will be I . The S state indicates156

that the data of this cache line is valid and is not modified, while the M state indicates that the data157

of this cache line is valid and modified. Therefore, multiple cores can share a cache line in their158

private cache in the S state, while only one core can have a cache line in the M state. All other cores159

in this case will have this line in the I state. If a core has a load/read request to a cache line in the160

I state, the private cache controller of this core (or for simplicity we refer to this throughout the161

paper as just the core) issues a GetS coherence message on the bus to inform all other cores and the162

shared cache about this request. Once the core receives the requested data, it moves to the S state.163

Similarly, if a core has a write request to a cache line in the I state, it issues a GetM message on the164

bus and moves to the M state once data is received. The core is not required to take any action upon165

observing messages of other cores to a cache line that it has in the I state. Read requests to a cache166

line in the S state are hits and no message is broadcasted on the bus. In contrast, write requests to a167

cache line in the S state has to broadcast an Upg message on the bus to ask other cores to invalidate168

their local copies in their private caches since it is going to modify it. A core takes no action upon169

receiving an OtherGetS from another core to a line that it has in the S state since multiple cores can170

simultaneously read the same cache line. Read and write requests to a cache line in the M state are171

hits and no message is broadcasted on the bus. If the core observes an OtherGetS on the bus from172

another core requesting to read a cache line that it has in the M state, it sends the modified data to the173

requesting core and/or the shared memory and moves to the S state.174

5 Motivation175

5.1 Performance Gains of Cache Coherence176

PMSI [14] provides high performance gains compared to other approaches such as shared-data177

aware scheduling and private cache bypassing by deploying cache coherence to orchestrate accesses178

to share data. In Figure 3, we show the execution time of both PMSI and bypassing private caches179

entirely (or simply bypassing1). The applications used in this experiment are from the SPLASH3180

benchmark suite [35], and the experimental setup is discussed in details in Section 8. As Figure 3181

illustrates, PMSI outperforms bypassing for all benchmarks. Performance improvements reach up182

to 3.7× (barnes) and 7× (radiosity) with a geometric mean performance improvement across all183

benchmarks of 2×. This clearly represents promising results that motivate us to investigate cache184

coherence in the context of real-time systems.185

1 Bypassing throughout this paper refers to skipping the access to the private cache and access directly the shared
cache.

ECRTS 2020

15:6 Discriminative Coherence

0
500

1000
1500
2000
2500
3000
3500
4000

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

PMSI ByPassAll

Figure 3 Execution time.

Latency Component Bypassing PMSI
Arbitration Latency N · Lmiss

acc N · Lmiss
acc

Coherence Latency 0 N · (2 · N + 1) · Lmiss
acc

Access Latency Lmiss
acc Lmiss

acc

Table 2 Worst-case latency components of private cache bypassing and PMSI techniques.

5.2 Per-Request WCL186

Despite its average-case performance gains, PMSI suffers from large worst-case delays due to the187

introduced coherence interference. For instance, with bypassing, all cores pay the price of a shared188

cache access delay once granted access to the bus by the arbiter, regardless of the access pattern189

of other cores. This results in an access latency of one TDM slot, which we denoted as Lmiss
acc in190

Section 3 with no coherence latency at all. In addition to this access latency, for a system with N191

cores and a fair TDM arbiter, a request can suffer an arbitration latency up to one full TDM period or192

N · Lmiss
acc . Table 2 summarizes these worst-case values. This is notably lower than the worst-case193

scenario under PMSI, where all cores compete to simultaneously access the same shared cache line.194

As Table 2 illustrates, in addition to the access latency and arbitration latency that is the same as those195

of bypassing, a memory request under PMSI suffers from a significant worst-case coherence latency.196

The value of this latency directly follows from [14]. From Table 2, total WCL of both bypassing and197

PMSI can be calculated as follows.198

WCLP MSI
perReq = 2 · N2 · Lmiss

acc + 2 · N · Lmiss
acc + Lmiss

acc (1)199

200

WCLByP ass
perReq = N · Lmiss

acc + Lmiss
acc (2)201

Figure 4a delineates this per-request WCL across different number of cores, which shows the202

significant gap between WCLs of cache coherent solution (PMSI) and bypassing solution due to203

coherence interference.204

5.3 Total task’s WCL205

To bound the task’s total Worst-Case Execution Time (WCET), the cumulative WCL over all requests206

generated by the task under analysis has to be computed. Towards this target, we are interested in207

calculating the total memory WCL suffered by the total number of memory requests generated by a208

core during a period of time t, M(t) or simply M 2.209

2 For readability, we drop the usage of t from the remainder of the paper. For instance, we use W instead of W (t) to
refer to the number of total writes generated by a core during time t.

M. Hassan 15:7

0

2000

4000

6000

8000

0 2 4 6 8

Pe
r R

eq
ue

st
 W

CL
 [c

yc
]

Number of Cores

PMSI
ByPass

(a) Per-request WCL across different number
of cores.

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Ef
fe

ct
iv

e
W

CL
 [c

yc
]

% of Shared Data

PMSI
ByPass

(b) Effective WCL for various percentage of
shared data.

Figure 4 Per-request WCLs (Equations 1 and 2) and effective WCLs (Equation 5.

For bypassing, it is straightforward since all requests are serviced from the shared memory, every210

request can suffer the same WCL that is indicated in Equation 2. Therefore, the total WCL for by211

passing is computed as:212

WCLBypass
tot = M · WCLBypass

perReq = M · Lmiss
acc · (N + 1) (3)213

For PMSI, it is more involved since requests to private (non-shared) cache lines need to be214

differently handled compared to requests to shared cache lines as the former will not suffer from215

coherence interference. Considering a partitioned cache hierarchy, where private and shared data are216

located in separate set such that shared data will not cause any conflict interference to private data, it is217

safe to assume that the access pattern (private hits and misses) to private cache lines (those not shared218

with other cores) can be analyzed in isolation and remains the same when the core suffers interference219

from other N − 1 cores. Additionally, with this partitioning, from the task’s analysis in isolation220

(either statically or experimentally), one can compute the number of requests to private cache lines221

(let it be Mprivate), and the number of requests to shared cache lines (Mshared) by examining the222

addresses of memory requests. Moreover, accesses to private cache lines can be further classified223

into hits and misses to the private cache, which we denote as Mprivate
hits and Mprivate

misses , respectively.224

Unlike Mprivate, it is not possible to statically determine the hits or misses to the shared cache lines225

since this depends on the access behavior of other cores during run time, which can also access these226

shared lines. Therefore, the WCL has to be assumed for all accesses to shared lines. Assume the227

access latency to the core’s private cache is Lprivate
acc and recall that the WCL to access a shared cache228

line (which includes coherence interference if exists) is WCLP MSI
perReq as calculated by Equation 1.229

Accordingly, the cumulative total worst-case memory latency suffered by the task, WCLtot, can be230

computed as:231

WCLP MSI
tot = Mprivate

hits · Lprivate
acc + Mprivate

misses · (N + 1) · Lmiss
acc + Mshared · WCLP MSI

perReq

(4)
232

233

Dividing Equation 4 by the total number of task requests, we get the effective WCL of a single234

request (WCLeff) as in Equation 5, which can be considered as the average WCL suffered by a235

single request to the cache.236

WCLeff = %Mprivate
hits · Lprivate

acc + %Mprivate
misses · (N + 1) · Lmiss

acc + %Mshared · WCLP MSI
perReq

(5)
237

238

To visualize this effect, Figure 4b plots the effective WCL for both bypass and PMSI for different239

percentage of accesses to shared data. Figure 4b shows that with increased percentage of shared data240

accesses, the gap between PMSI and bypass significantly increases. The reason for this behavior is241

that since the WCLshared
perReq of PMSI (Equation 1) is much larger than that of bypass (Equation 2),242

increasing shared data accesses, this latency component will dominate the total WCL.243

ECRTS 2020

15:8 Discriminative Coherence

Req arrives
at private

cache
controller

R or
W?

Hit, perform LD

Wait for slot

is
su

e
re

q

modified
by

others?Wait for WB
Other

core WB Wait for slot Req/WB
slot?

perform
WB

get Data,
perform

LD/ST

R or W?

Invalidate
all others

R

W

Hit Req slot

No

Modified
?

yes

Hit or
Miss?

Hit or
Miss?

Hit

Hit, perform ST

Wait for slot issue req

Hit or
Miss?

Modified/
requested By

Others?

1

2

3
No

W
B

sl
ot

4

5

6

7
yes

Figure 5 PMSI flow diagram.

Rx(A) WB(A) RX(A) WB(A) RX(A)

St(A)
50 40

50 4050 40 3040 30

St(A)
40 30

St(A)
30 20

C0’s coherence interference C1’s coherence interference

C0: St(A)
C1: St(A)
C2: St(A)

Shared Cache

Arbitration Schedule

Figure 6 Coherence interference in case of writes for PMSI. C2 is the core under analysis and it has to wait
for both C0 and C1 before it gains access to block A.

5.4 Distilling Coherence Effects on WCL244

Now, our target is to reduce this high WCL resulting from cache interference. In doing so, we study245

carefully the effect of coherence across all access scenarios. We find that the high WCL is resulting246

from a pathological scenario and does not apply to all cases even for accesses to shared lines. This247

is a key observation and one of the main contributions of this paper; therefore, this subsection will248

discuss it in detail. We study all possible access scenarios in the existence of coherence, and plot249

these scenarios in Figure 5. Figure 5 follows the design guidelines of PMSI [14].250

5.4.1 Hit Scenario251

In case of a read hit (shown as event 1 in Figure 5) or a write hit to an already modified cache line252

in the private cache (at 2), the core proceeds with the load/store instruction without any arbitration253

or coherence delays. On the other hand, if the request is a write hit to a non-modified cache line (at254

3), the core has to wait for a slot to access the shared bus as writes require to exchange coherence255

messages to invalidate copies of this line in all other private caches.256

5.4.2 Miss Scenario257

If the request is not available in the core’s private cache, the core has to wait for its slot to issue this258

request on the shared bus. Once the core is granted a slot, it issues the request (4 in Figure 5 in case259

of a read, and 5 for a write). If the requested cache line is not modified in another core’s private260

cache and no write requests are pending to this line, the core receives the data from the shared memory261

in the same slot and proceed to finish the load/store instruction. This is the scenario highlighted as 6262

in Figure 5. On the other hand, if one of these two conditions is not satisfied, the core has to wait263

for all pending writes (if exist) to same line to finish first and the data to be updated in the shared264

memory (through a write back by another core) before it can obtain the requested line in its private265

cache. This is the scenario at 7 in Figure 5. As Figure 5 illustrates, the scenario at 7 is the one that266

triggers coherence interference and causes the largest delays.267

M. Hassan 15:9

0%
20%
40%
60%
80%

100%

private W% shared W% private R% shared R %

Figure 7 Breakdown of Splash benchmark memory requests.

5.4.3 Worst-Case Scenario268

Based on this discussion, the pathological worst-case scenario is to assume that all cores in the system269

simultaneously ask to modify the same cache line. Accordingly, the request under analysis in the270

worst case has to wait for all other cores, where each core performs its access to obtain the cache line271

in its private cache, modifies it (performs the store instruction), and writes the new data back to the272

shared memory. This requires two memory transfers per each core of the other N − 1 cores before273

the core under analysis is able to proceed with its access. Figure 6 depicts this scenario for a system274

with three cores, where the core under analysis is C2 and it has to wait for store requests from the275

other two cores before it can issue its own request. Under TDM scheduling, each transfer can wait for276

a complete TDM period (arbitration effects) before it can gain access to bus, where a TDM period is277

a function of N . This explains the quadratic effect of coherence interference on WCL.278

Bypassing avoids this scenario by directly accessing the shared memory for every memory request,279

which eliminates the need for write backs, and hence, the coherence interference. However, this280

comes at the expense of not utilizing the private caches at all making every request suffering the281

large shared cache access time. This explains the performance degradation of bypassing compared282

to PMSI as discussed in 5.1. In contrast, we observe that the explained scenario can be avoided if283

only writes are made visible instantaneously to the shared memory, while reads do not cause any284

additional coherence interference. In Figure 6, if cores write directly to the shared memory, the285

resulting effect will be completely equivalent to bypassing independent of how reads are handled.286

The other important observation is that writes represent usually a small percentage of applications.287

Our analysis shows that across the SPLASH3 suite, writes represent on average 30% of the memory288

requests of the application as Figure 7 illustrates. The same observation holds for other benchmarks289

as well. For instance, we find that the PARSEC benchmark [5] suite and the EEMBC-auto [33] suite290

have on average 21% and 32% writes per application, respectively.291

6 Proposed Solution292

Motivated by the observations we made in Section 5, we propose DISCO: a discriminative coherence293

approach. The key idea behind DISCO is to eliminate by design the worst-case scenarios covered in294

the previous section, and therefore, avoid its significant coherence delays. On the other hand, DISCO295

still maintains a high average-case performance by employing coherence and enabling simultaneous296

access to shared data. These two objectives are achieved by intentionally discriminating write memory297

requests by forcing them to update the shared memory immediately with any write (new) data from298

any core. This significantly simplifies the coherence protocol as it eliminates all the transient states299

ECRTS 2020

15:10 Discriminative Coherence

𝐼 𝑆

OtherGetM LD/Hit

LD/ IssueGetS

ST/
Issue GetM
&UpdateMST/

IssueGetM
&UpdateM

OtherGetS or
OtherGetM

OtherGetS

Figure 8 Coherence states of the simple SI protocol adopted by DISCO.

Req type

WriteRead

Data type

PrivateShared

Data type

PrivateShared

Line state

MissHit

Line state

MissHit

3Scenario 1 2Scenario Scenario

(a) Handling of different access scenarios.

Req arrives
at private

cache
controller

R or W?

Hit, perform LD

Wait for slot
Write to
shared
cache

Invalidate
all others

R

W

Hit or
Miss?

Hit

Wait for slot
issue req

issue req

get Data,
perform LD

1

2Miss

3

(b) Flowchart of operations.

Figure 9 Proposed DISCO-AllW coherence approach.

needed because of data being updated privately by other cores such as in PMSI [14], and reduces the300

coherence protocol to the simple SI (or sometimes referred to as VI) protocol [38]. Figure 8 shows301

the coherence states of this SI protocol. It is worth noting that there are two different ways to realize302

DISCO, either by 1) implementing this SI protocol in hardware, or 2) achieving the write bypass in303

already existing platforms through available support in these platforms. For now, we will detail the304

operation of DISCO, while we explain the required support in existing architectures that can allow for305

the realization of DISCO without redesigning the coherence protocol in Section 7.3.3. As Figure 8306

illustrates, the M state is completely removed since no core will have a cache line modified in its307

private cache without updating the shared cache.308

If a core has a read request to a cache line that is in the I state in its private cache, it issues a309

GetS message once granted access to the bus and moves to the S state once it receives data from310

the shared cache. In contrast, if the request is a write to a line in the I state, it modifies this line311

directly into the shared cache and it does not allocate it to the private cache. Hence, it remains in the312

I state. Although allocating the cache line in the private cache might improve average performance313

by potentially allowing future read hits to this line, it requires an additional data transfer from the314

shared cache to the core, which increases the WCL. In particular, the slot width of the shared bus315

arbiter has to accommodate for two memory transfers instead of one. As a result, we choose not to316

allocate the line in this case to improve WCL. As explained in Section 4, a core with a cache line in317

the I state makes no change to its state as a response to events on this line by other cores. If a core318

has a read request to a cache line that is in S state in its private cache, it is a hit and no change in319

the state is required. However, if the core has a write request to a line that is in the S state, it has320

to issue a GetM message on the bus to invalidate copies of this line in all other private caches and321

perform the write to its private cache as well as to the shared cache to keep it updated. If while in the322

S state, a core observes an OtherGetS message on the bus, it remains in the S state since the other323

core is requesting this line for a read and is not going to modify it. Contrarily, if the core observes324

an OtherGetM message to a line it has in the S state, it has to invalidate its copy since the data is325

going to be updated by the other core.326

Leveraging this simple protocol, DISCO eliminates the large coherence delays due to write327

requests that modify data in private caches of cores while not being reflected on the shared memory.328

M. Hassan 15:11

In other words, the long path in Figure 5 due to the modified/requested by others condition (the329

scenario at 7) is eliminated since this condition will be always false (no cache line will be modified330

in a core’s private cache). Figure 9 illustrates the operation of DISCO. Since all writes are handled331

equally, we denote this approach as DISCO-AllW.332

6.1 DISCO-AllW: Discriminative Coherence for All Cache Lines333

A request to a cache line can be classified according to three factors.334

1. Request type. With regard to the the instruction type, a request can be either a read (e.g. from a335

load instruction), or a write (e.g. from a store instruction).336

2. Data type. This is related to the nature of the data stored in this cache line, it can be one of two337

possibilities: a private cache line (only accessed by the current task), or a shared cache line across338

tasks.339

3. Line state. Finally, a request can be either a hit if the requested data exists (and is valid) in the340

private cache of the requesting core or a miss otherwise.341

This results in a total of eight possibilities for any such request. For example, one request can be a342

read hit to a private cache line, while another request could be a write hit to a shared cache line, etc.343

DISCO-AllW operates on these cases based on the following four rules:344

B Rule 1. Operating Rules of DISCO-AllW.345

(A) It does not distinguish between shared and private lines, both are treated equally.346

(B) It treats all writes equally by sending them to the shared cache.347

(C) Read hits are allowed and can proceed without requesting an access to the shared bus.348

(D) Read misses have to wait for an access to the shared bus to obtain data from the shared cache.349

Based on these rules, the aforementioned eight cases are reduced to only three scenarios under350

DISCO-AllW as illustrated in Figure 9a. Figure 9b depicts a flow chart for the operation of DISCO-AllW351

in all these three scenarios.352

1. Scenario 1 : A Read Hit in the Private Cache. Read hits are allowed immediately in the353

private caches and operate similar to traditional coherence protocols. This is because they do not354

require an access to the shared bus and do not result in any modification in the coherence state of355

the requested cache line.356

2. Scenario 2 : A Read Miss in the Private Cache. If the requested line is a read miss in the357

private cache, it has to be requested from the shared memory. Thus, the core has to wait for its358

slot and then issue its request on the shared bus. Since all writes are reflected immediately in the359

shared cache, the shared cache will always have the up-to-date data. Accordingly, the core will360

receive its requested line in the same slot and perform its load operation.361

3. Scenario 3 : A Write Request. As Figure 9b shows, any write request has to wait for an access362

slot to the shared bus to update the shared cache with the new data. In addition, all copies of363

the requested cache line in other cores’ private caches have to be invalidated (since it is now364

outdated).365

6.2 DISCO-SharedW: Discriminative Coherence for Shared Lines366

Only367

DISCO-AllW operation does not make any assumption about the cache lines; in particular, it does not368

rely on the knowledge of which lines are shared, which facilitates its adoption if such knowledge369

ECRTS 2020

15:12 Discriminative Coherence

Req type

WriteRead

Data type

SharedPrivate

Data type

PrivateShared

Line state

MissHit

Line state

MissHit

31 2

Line state

MissHit

54Scenario Scenario Scenario Scenario Scenario

(a) Handling of different access scenarios.

Req arrives
at private

cache
controller

R or W?

Hit, perform LD

Wait for slot

get Data,
perform

LD/ST

R

W

Hit or
Miss?

Hit

Wait for slot issue req

issue req

Private?

Write to
shared
cache

get Data,
perform LD

Invalidate
all others

Hit or
Miss?

Hit, perform ST

Wait for slot
private

Hit

sh
ar

ed

Miss

Miss

1

2

3

4

5

(b) Flowchart of operations.

Figure 10 Proposed DISCO-SharedW coherence approach.

is not made available during execution. On the other hand, if such knowledge is available, we can370

improve the performance of the solution. This can be done by leveraging the fact that if a line is371

private for a task (and hence not shared among tasks), DISCO can safely allow write hits to this372

line without worrying about coherence interference. In doing so, we introduce another alternative373

to DISCO-AllW that we call DISCO-SharedW. Figure 10 illustrates the details of DISCO-SharedW,374

which operates according to the following rules.375

B Rule 2. Operating Rules of DISCO-SharedW.376

(A) Read hits are allowed to both private and shared lines and can proceed without requesting an377

access to the shared bus.378

(B) Read misses have to wait for an access to the shared bus to obtain data from the shared cache.379

(C) Write hits are allowed only to private lines that are not shared with other tasks. Those hits can380

proceed without requesting an access to the shared bus.381

(D) Write misses to private lines has to wait for an access slot to the bus since it has to be requested382

from shared memory.383

(E) Writes to shared lines have to go the shared cache.384

According to these rules, DISCO-SharedW handles reads exactly as in DISCO-AllW. On the other385

hand, writes are handled differently based on whether they are targeting a private or a shared cache386

line. This results in the following five scenarios of any memory request as depicted in Figure 10a.387

1. Scenario 1 : A Read Hit in the Private Cache.388

2. Scenario 2 : A Read Miss in the Private Cache.389

As illustrated in Figure 10 (compared to Figure 9), DISCO-SharedW handles Scenarios 1 and 2390

exactly the same as DISCO-AllW.391

3. Scenario 3 : A write hit in the private cache for a private cache line. Write hits to private392

lines are allowed based on Rule 2(C) and they execute immediately without the need to exchange393

any coherence messages.394

4. Scenario 4 : A write miss in the private cache for a private cache line. Write misses to395

private cache lines are managed according to Rule 2(D) and they have to wait for an access slot to396

be sent to the shared memory.397

5. Scenario 5 : A write to a shared cache line. Write hits to shared cache lines are still not398

allowed. This is necessary to avoid the high coherence delays resulting from it. Therefore, a write399

request to a shared cache line has to wait for an access slot to the shared bus since it has to update400

the shared cache (Rule 2(E)).401

M. Hassan 15:13

7 Worst-Case Latency402

In this section, we derive both the per-request as well as the total WCL for a system that deploys403

DISCO to manage shared data in its cache hierarchy.404

7.1 Per-Request Worst-Case Latency405

From the previous discussion, any memory request in either DISCO-AllW or DISCO-SharedW requires406

in the worst case only one memory transfer between the shared cache and the requesting core. For407

read requests, the shared cache sends data to the core, while for writes, the core sends updated data to408

the shared cache. Consequently, any memory request suffers only access and arbitration latencies.409

Excessive coherence delays because of multiple data transfers as discussed in Section 5 are completely410

eliminated.411

I Lemma 1. A request to a cache hierarchy deploying either versions of DISCO encounters a412

latency that is at most:413

WCLDISCO
perReq = WCLDISCO-AllW

perReq = WCLDISCO-SharedW
perReq = N · Lmiss

acc + Lmiss
acc (6)414

Proof. The proof directly follows from the fact that under the deployed TDM arbitration, a core in415

the worst case has to wait for all other cores before it can send an access to the shared bus. Recall416

that we have N cores and that the slot width is Lmiss
acc . Thus, the worst-case arbitration latency a417

memory request can suffer is N · Lmiss
acc . In addition, as per definition, a request to the shared memory418

consumes an access latency of Lmiss
acc . J419

7.2 Total Worst-Case Latency420

Although both DISCO-AllW and DISCO-SharedW have the same per-request WCL, DISCO-SharedW421

improves the total WCL compared to DISCO-AllW. This is because leveraging the distinction between422

private and shared lines, a core’s hit rate for private writes under interference from competing tasks is423

maintained the same as it is calculated in isolation. This is true since private lines by definition are424

not shared among tasks, and hence, do not experience interference from requests of tasks running425

on other cores. It is important to notice that although DISCO-AllW assumes that the knowledge of426

shared vs private lines is not made available to the hardware online upon execution, we can still use427

this information offline to derive the total WCL of the task.428

I Lemma 2. Total worst case memory latency incurred by any task under DISCO-AllW can be429

calculated as:430

WCLDISCO-AllW
tot = Rprivate

hits · Lprivate
acc + (Rprivate

misses + Rshared + W) · WCLDISCO
perReq (7)431

432

Proof. Based on the discussion of DISCO-AllW in Section 6.1, we prove Lemma 2 as follows.433

Since all writes are treated equally, we denote write requests as simply W . By design, each one434

of these W requests has to wait for the corresponding core’s slot to update the shared cache. Thus,435

they suffer the worst case scenario in Lemma 1 and each of them can have a WCL of WCLDISCO
perReq .436

For the read requests to shared lines, denoted as Rshared: from Lemma 1, each one of those437

requests under DISCO-AllW suffers a WCL of WCLDISCO
perReq . Finally, since tasks do not interfere on438

private cache lines as aforementioned, tasks maintain the same hit rate calculated in isolation for read439

requests to these private lines. Accordingly, the number of read hits and misses to the private lines440

remain the same. Each one of the Rprivate
hits encounters a hit latency of the private cache, Lprivate

acc ,441

while every read miss has to access the shared cache encountering the scenario of Lemma 1 with a442

WCL of WCLDISCO
perReq . This constructs WCLDISCO-AllW

tot in Equation 7. J443

ECRTS 2020

15:14 Discriminative Coherence

I Lemma 3. Total worst case memory latency incurred by any task under DISCO-SharedW can be444

calculated as:445

WCLDISCO-SharedW
tot = Mprivate

hits · Lprivate
acc + (Mprivate

misses + Mshared) · WCLDISCO
perReq (8)446

447

Proof. In DISCO-SharedW, requests (whether reads or writes) to private lines maintain their hit448

rate calculated in isolation. This entails any memory request to suffer one of three possible worst449

case scenarios as follows. Hits to private lines, Mprivate
hits = Rprivate

hits + W private
hits , encounter the450

favorable private cache hit latency Lprivate
acc . Misses to private lines, Mprivate

misses , still has to wait for a451

slot to access the shared cache, and thus, suffers the WCL of WCLDISCO
perReq as per Lemma 1. Finally,452

Requests to shared lines, Mshared, also suffer the WCL of WCLDISCO
perReq since we cannot decide453

whether they are misses or hits as they are susceptible to interference from other tasks accessing same454

lines. Adding the WCL of these three scenarios lead to the WCLDISCO-SharedW
tot in Equation 8. J455

7.3 Other Considerations: A discussion456

In this section, we discuss factors that we believe are important to consider for the generalization of457

the proposed approaches.458

7.3.1 On the Derivation of the Total WCL459

Private and Shared Data. Equations 4, and 7–8, which derive the total WCL for PMSI, DISCO-460

AllW, and DISCO-SharedW, respectively, make an implicit assumption. They assume no conflict461

interference between shared and private data in the core’s private cache (e.g. L1). As aforementioned,462

this can be achieved by partitioning the cache such that private and shared data are mapped to different463

memory spaces (e.g. different sets). Splitting memory address space to private and shared locations is464

an already existing approach to mitigate interference in the cache hierarchy [27]. However, if such465

partitioning is not possible, the analysis conducted in isolation to derive the miss and hit rates of a466

task’s private data cannot be used. When running in a contending environment, private cache lines467

suffer additional conflict interference from shared data as they can be evicted because of the access468

pattern of shared cache lines that are mapped to the same cache line (under a direct mapped cache) or469

same set (under a set-associative cache). Therefore, to derive a safe bound, all private lines have to be470

declared misses. In this case, the total WCL will change to:471

WCLP MSI
tot =Mprivate · (N + 1) · Lmiss

acc + Mshared · WCLP MSI
perReq (9)472

WCLDISCO
tot =M · WCLDISCO

perReq (10)473
474

These two equations also can be used when no information is available about the requests475

classification (i.e., misses or hits), and therefore, all requests have to be assumed misses. Finally,476

it is important to highlight that this only affects the calculated analytical total WCL, and it has no477

effect on the actual operation of different solutions during run time. In other words, it does not affect478

the average-case performance of PMSI nor DISCO. Per-request WCL also remains as previously479

calculated in Equations 1 and 6.480

Reads and Writes. Another assumption that is made by Equation 7 is that it assumes the481

knowledge of the number of read and write requests made by the task. This information can be482

obtained from the task analysis (statically or dynamically) to obtain the number of load and store483

instructions [24]. Nonetheless, if such information is not available, Equation 10 can be used instead.484

Again, this does not affect the run-time behavior (and hence, average performance) of DISCO-AllW. It485

only affects the tightness of its derived bounds.486

M. Hassan 15:15

7.3.2 Effect of Write-backs Due to Replacement in DISCO-SharedW487

Since DISCO-SharedW allows write hits to private cache lines, those lines become dirty: they are488

modified in the core’s private cache and are not updated in the shared cache. Hence, those lines need489

to be written to the shared memory at some point before they are evicted from the private cache due490

to replacement. The analysis in Section 7 for DISCO-SharedW does not take into account the effect491

of the write-back of these lines. Here, we discuss possible alternatives to account for this additional492

delay.493

1) At the Request Level. In worst case, a miss request to the private cache initiates a replacement494

to a dirty cache line. This dirty line has to be written back to the shared memory before fetching495

the newly requested data. Moreover, this write back has to wait until the requesting core is granted496

access to the shared bus. As a result, a miss request encounters an additional TDM period due to this497

write back of the evicted line. This adds N · Lmiss
acc cycles to the WCLperReq in Equation 6 in case498

of DISCO-SharedW. However, this delay is unnecessarily pessimistic since not every request is going499

to cause a replacement.500

2) At the Task Level. Recall that the number of write-backs are because of writes in the private501

cache that are not updated at the shared memory. This number is obtainable for the task in isolation502

by using static analysis or experimental means since private cache is not shared among tasks running503

on other cores. We refer to the total number of write-backs initiated by a core during a period of504

time t as WB. For instance, a safe, but rather pessimistic, bound for WB is the total number of505

issued write requests to private cache lines during the same period t. This is true because write backs506

are initiated only because of dirty cache lines that are evicted, which in turn is bounded by the total507

number of writes to private lines. Shared lines cannot be dirty under DISCO-SharedW since similar to508

DISCO-AllW, they have to be sent directly to the shared memory. As a consequence, WB = W private
509

is a safe bound. We say that this bound can be pessimistic, and hence, can be further tightened since a510

line can be written multiple times before it is evicted. However, obtaining an accurate value of the511

maximum number of WB is the concern of the analysis of the task in isolation, and is outside the512

scope of this paper. Lemma 4 calculates the new total WCL under DISCO-SharedW, while accounting513

for the delay effect of the write-backs due to cache replacement.514

I Lemma 4. Total worst case memory latency incurred by any task under DISCO-SharedW can be515

calculated as:516

WCLDISCO-SharedW
tot = Mprivate

hits · Lprivate
acc + (Mprivate

misses + Mshared) · WCLDISCO
perReq517

+ N · Lmiss
acc · WB (11)518

519

Proof. The proof directly follows from the proof of Lemma 3, while adding the last term to520

account for the write-backs effect. Since each one of those write-backs requests an access to the521

shared memory, it can take a maximum of one TDM period to finish. This gives a total delay of522

N · Lmiss
acc · WB, which is the last term in Equation 11. J523

It is worth noting that even with adding the write-back delays to the total WCL, DISCO-SharedW524

still provides a lower total WCL compared to DISCO-AllW. Comparing Equation 7 with 11, this is true525

for two reasons. 1) WB ≤ W private as previously explained, and 2) WCLDISCO
P erReq > N · Lmiss

acc .526

7.3.3 Realization in Existing Architectures527

One of the main advantages of DISCO is that it significantly simplifies the coherence protocol, while528

maintaining the average-case benefit of allowing tasks to simultaneously access coherent data. In529

this section we discuss how to realize DISCO in existing architectures. The first version of DISCO530

ECRTS 2020

15:16 Discriminative Coherence

(DISCO-AllW) requires only the ability to bypass private caches for write requests. Contrarily, the531

second version (DISCO-SharedW) requires, in addition to write bypassing, the ability to distinguish532

between shared and private lines. We discuss these two requirements below.533

1) Selective Bypassing of Writes. Bypassing writes in the private caches can be realized in534

existing hardware by multiple means. First, a write-through cache achieves exactly the necessary535

behavior. Many existing architectures enable the user to set caches to operate as write-through536

caches. For instance, ARM allows the user to switch to write-through caches using a special register537

named Cache Behavior Override Register [2]. The same register also allows for setting caches as538

non-write-allocate, which means upon a write request, the cache line is written in the shared cache but539

is not fetched to the private cache. This is the same behavior we adopted to reduce the WCL. However,540

it is worth noting that as explained at the beginning of this section, DISCO can operate correctly even541

if this capability of non-write-allocate is not provided, albeit with two memory transfers per slot in542

the worst case. It is important to notice that this register controls the core’s private cache only and is543

independent of the shared cache as implemented in the ARM1176JZ-S processor [2], which is again544

exactly the same behavior needed for DISCO. Intel processor also provides various control registers545

to support setting caches to different cache types including write-through [21]; nonetheless, it seems546

to apply the setting for all cache levels, which forces writes to be sent to the main memory.547

2) Isolation Between Shared and Private Data. Isolation between shared and private lines is548

needed only by the DISCO-SharedW. This can be achieved in existing hardware by placing the549

shared memory in specific memory regions and then handle requests to every cache line differently in550

DISCO-SharedW based on the address of this line (whether it is within the boundaries of the shared551

region or not). This is possible since the aforementioned support about write bypassing can be applied552

to only specific regions in the memory both in ARM’s [2] and Intel’s platforms [21]. For instance,553

DISCO-SharedW can set those shared regions to write-through, while private regions operate normally554

in a write-back fashion.555

8 Evaluation556

To quantitatively evaluate the behavior of DISCO and compare it with state-of-the-art solutions, we557

simulate the behavior of a multi-core system with in-order pipelines, 8KB direct-mapped L1 per-core558

private cache, and a 1MB L2 shared cache across all cores. Cores are connected to the shared cache559

using a shared bus. Accesses to this shared bus are managed using a TDM arbiter. The access latency560

of the L1 cache is 2 cycles, while access latency of the L2 is 50 cycles. To eliminate the large delays561

of off-chip memory access, simialr to existing solutions [14, 23], we set L2 to be a perfect cache, i.e.562

all requests to L2 are hits. It is worth noting that this setup has no effect on the evaluated approaches,563

while it allows to avoid the effect of off-chip memory interference on the total execution time. The564

DRAM overheads are considered additive to the latencies derived in this work and can be computed565

using existing work [12].566

We deploy both versions of DISCO: DISCO-AllW and DISCO-SharedW. In addition, we also567

implement PMSI [14] and ByPassAll solutions discussed in Section 5. We use benchmarks from568

the SPLASH3 multi-threaded benchmark suite [33] as well as the EEMBC-Auto suite [33]. The569

simulation environment integrates with the Intel PIN tools [28] as follows. We run each benchmark570

through the PIN tool and collect execution traces that we run through the environment. For the571

SPLASH3 benchmarks, we run them using four threads in four cores (a thread for each core). For the572

EEMBC benchmarks, we use them to emulate a synthetic scenario that stresses the coherence effect.573

This is done by executing each of the EEMBC-auto benchmarks through the PINtool and feed the574

collected trace to each of the four cores in the environment. Doing so, all data is shared across all575

cores, which signifies the coherence interference.576

M. Hassan 15:17

0
500

1000
1500
2000
2500

W
CL

 [c
yc

]
PMSI DISCO-AllW DISCO-SharedW

(a) Splash3.

0

500

1000

1500

2000

2500

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

W
CL

 [c
yc

]

PMSI DISCO-AllW DISCO-SharedW

(b) EEMBC.

Figure 11 Both analytical (T bars) and experimental (solid bars) per-request WCL.

8.1 Per-Request Worst-Case Latency577

Figure 11 delineates the WCL for any request to the cache hierarchy in a four-core system for both578

SPLASH3 (Figure 11a) and EEMBC (Figure 11b). The figure shows both the analytical WCL bounds579

(T bars) and the the observed (experimental) WCL (colored solid bars) for both PMSI and the two580

versions of DISCO. From this experiment, we make the following observations.581

1) DISCO is able to reduce the analytical WCL by 7.2× compared to PMSI. The analytical WCL582

of PMSI is 2050 cycles compared to 250 cycles in DISCO. 2) PMSI incurs a large gap between583

experimental and analytical WCLs. In the SPLASH3 benchmarks (Figure 11a), this gap ranges584

from 70% (barnes and ocean) and reaches up to 3.4× (cholesky and radix). This is because PMSI’s585

analytical WCL assumes a pathological worst-case scenario that is hard to construct in real applications586

as explained in Section 5. Even with the synthetic experiments of EEMBC (Figure 11a), the gap is587

more than 45% for most benchmarks. On the other hand, DISCO’s analytical and experimental WCLs588

are identical, which indicates the tightness of the derived bounds. DISCO achieves this tightness by589

deliberately avoiding the large-latency scenarios created by write requests in private caches without590

updating the shared memory. 3) It is worth noting that DISCO achieves the same WCL as BypassAll591

solution (not shown in Figure 11), while still allowing read hits to the private caches, which improves592

both total WCL and average performance as we discuss in the next subsections.593

8.2 Total WCL594

Figure 12 delineates the total WCL of all the evaluated approaches for the SPLASH-3 benchmarks.595

To facilitate readability, all results in Figure 12 are normalized to the total WCL of the ByPassAll596

approach. Recall that the total WCL is the worst-case memory latency that is suffered by a core during597

ECRTS 2020

15:18 Discriminative Coherence

0
0.5

1
1.5

2
2.5

3
3.5

no
rm

al
ize

d
To

ta
l W

CL ByPassAll PMSI DISCO-AllW DISCO-SharedW

Figure 12 Total worst-case latency of Splash3.

a time period t and is calculated in Equations 3, 4, 7, and 11 for ByPassAll, PMSI, DISCO-AllW, and598

DISCO-SharedW, respectively. Figure 12 introduces several interesting observations.599

1) PMSI encounters the largest total WCL. This is due to the quadratic effect of coherence600

interference as we discussed in details in Section 5. The normalized PMSI’s total WCL varies per601

benchmark based on the percentage of shared data. For instance, the radix benchmark suffers the602

maximum value of PMSI’s total WCL (3.3× ByPassAll’s). Investigating the reason for this, we603

found that radix has the maximum percentage of shared data (around 38%). Accordingly, from604

Equation 4, the term that suffers the maximum latency of WCLP MSI
perReq dominates the total WCL.605

Interestingly, there are cases where PMSI has a lower total WCL than ByPassAll. Namely, this is606

the case for the fft and radiosity benchmarks in Figure 12. Analyzing both benchmarks, we found607

that both benchmarks in contrast to the radix benchmark have the maximum percentage of private608

(non-shared) data: 94% and 96% for fft and radiosity, respectively. This enables PMSI to leverage609

hits to this non-shared data, which gives it an advantage over ByPassAll, which forces all requests to610

go to the shared memory. 2) Compared to PMSI, DISCO-SharedW achieves up to 6x tighter total611

WCL (barnes) and 3.5x on average. DISCO-AllW, on the other hand, has up to 3.3x tighter total612

WCL (fmm) and 1.95x on average. PMSI has a lower total WCL than DISCO-AllW in case of fft613

and radiosity benchmarks for the same reasons as in observation 1 because DISCO-AllW does not614

allow write hits. An extended discussion about the behavior of these two benchmarks is provided615

in Section 8.4. 3) Although DISCO-AllW and DISCO-SharedW offer the same per-request WCL of616

ByPassAll as we highlighted in Section 8.1, both proposed approaches provide a tighter total WCL617

than ByPassAll. The reason for that is that both solutions allow read hits in cores’ L1 caches, while618

DISCO-SharedW also allows write hits to core’s private (non-shared) cache lines. This improves the619

total WCL since as proved in Lemmas 2-4, those hits will not suffer the arbitration latency due to620

contention on the shared bus. This enables DISCO-AllW to provide up to 65% (barnes benchmark)621

and 42% on average tighter total WCL than ByPassAll. Furthermore, DISCO-SharedW provides up622

to 3.8× (radiosity) and 1.5× on average tighter WCL compared to ByPassAll.623

8.3 Average-Case Performance (Execution Time)624

Figure 13 depicts the overall execution time for both SPLASH3 (Figure 13a) and EEMBC (Figure 13b)625

under four different approaches: PMSI, ByPassAll (all requests access L2), and both versions of626

DISCO. From this experiment, we make the following observations.627

1) Compared to ByPassAll, DISCO-AllW improves performance (reduced execution time) by628

up to 2.8× and 1.5× on average for the SPLASH3 benchmarks. Recall from Section 8.1 that629

DISCO achieves same WCL as ByPassAll, this verifies the ability of DISCO to balance WCL and630

performance. 2) DISCO-AllW also has a better overall performance compared to PMSI for SPLASH3631

benchmarks (up to 100% and 12% better performance on average). Nonetheless, PMSI has better632

M. Hassan 15:19

0

1000

2000

3000

4000

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

ByPassAll PMSI DISCO-AllW DISCO-SharedW

13
15

8

14
45

0

(a) Splash3.

0

5

10

15

20

Ex
ec

ut
io

n
tim

e
[c

yc
 in

 M
ill

io
ns

]

ByPassAll PMSI DISCO-AllW DISCO-SharedW

(b) EEMBC.

Figure 13 Execution time.

performance than DISCO-AllW for four benchmarks: barnes, fft, radiosity, and water_nsquared. We633

discuss the reasons behind these results in more details later in Section 8.4. 3) Even with the synthetic634

maximum-sharing scenario of EEMBC experiments (Figure 13b), PMSI outperforms ByPassAll,635

though slightly. In contrast, DISCO shows its maximum performance benefit with increased sharing636

for two main reasons. a) On the one hand, it does not suffer from the large coherence interference637

delays incurred by PMSI due to writes. b) On the other hand, it does not suffer from large delays due638

to forcing all requests to access L2 incurred by ByPassAll as DISCO allows read hits in the private639

caches. Please note that both versions of DISCO incur exactly same behavior under the EEMBC640

experiment since all requests (including writes) are shared among all cores. 4) Figure 13a clearly641

illustrates the benefits of DISCO-SharedW. DISCO-SharedW outperforms all other approaches for all642

benchmarks: it achieves up to 3.2× and 1.6× on average better performance than PMSI, more than643

11× and 5× on average better performance than ByPassAll, and 2× on average better performance644

than DISCO-AllW. Again, using either version of DISCO depends on the system capabilities. If the645

system has the capabilities (either in software or hardware) that isolates between shared and unshared646

data, DISCO-SharedW represents a promising design choice. Contrarily, if the system is not able to647

distinguish shared data, DISCO-AllW is the best available design choice.648

8.4 Average-Case Performance (Average-Case Memory Latency)649

To further study the average-case performance behavior of DISCO compared to PMSI, we show the650

average-case memory latency for SPLASH3 benchmarks in Figure 14. Figure 14 confirms the same651

behavior observed in the execution time in Figure 13a. 1) DISCO-AllW outperforms PMSI on average652

by 18%, while PMSI achieves better performance for some benchmarks; namely, barnes, and fft.653

2) DISCO-SharedW, on the other hand, considerably outperforms PMSI and achieves up to 12×654

ECRTS 2020

15:20 Discriminative Coherence

0
20
40
60
80

100
120

Av
er

ag
e

La
te

nc
y

[c
yc

] PMSI DISCO-AllW DISCO-SharedW

Figure 14 Average latency of Splash3.

0

20

40

60

80

100
%shared W Hits

%private W Hits

Figure 15 Measured PMSI write hits for Splash3.

and 5.8× on average less average latency. The intuition behind such behavior of benchmarks where655

PMSI outperforms DISCO-AllW is that they exhibit larger number of write hits to private cache lines656

compared to other benchmarks. Because DISCO-AllW forces all writes to access the shared cache, it657

does not leverage this temporal locality characteristic of such benchmarks; hence, it incurs worse658

overall performance. In contrast, DISCO-SharedW does leverage this locality by allowing write hits659

to private cache lines and hence, achieves better performance. To investigate this theory, we deploy660

performance counters in the simulation environment to count the number of write hits both to private661

and shared cache lines under PMSI. Figure 15 plots write hit both to shared and private lines as a662

percentage from the total number of issued requests. Benchmarks are shown in a decreasing order in663

number of write hits to private lines. Figure 15 confirms our explanation that PMSI achieves better664

performance for those benchmarks that exhibit high number of write hits to private lines. Nonetheless,665

for those benchmarks, DISCO-SharedW still achieves better performance than PMSI.666

9 Conclusion667

Modern real-time systems applications mandate data sharing. In this paper, we propose DISCO: a668

discriminative coherence protocol that significantly reduces the coherence delays, and hence, provides669

tighter bounds than existing predictable coherence protocols. DISCO also achieves a high average-case670

performance by allowing tasks to simultaneously cache and access data in the cores’ private caches.671

DISCO provides the tight latency bounds by eliminating the scenarios that cause high coherence672

interference under traditional coherence protocols. DISCO can be realized in systems that support673

write through caches or cache bypassing without any modifications. If such support is not available, it674

can be realized by modifying the cache controller to adopt the coherence protocol. DISCO achieves675

up to 7.2× tighter latency bounds than existing predictable coherence protocols, while improving676

performance by up to 11.4× (5.3× on average) compared to competitive cache bypassing techniques.677

M. Hassan 15:21

References678

1 Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable SDRAM memory679

controller. In IEEE/ACM international conference on Hardware/software codesign and system synthesis680

(CODES+ ISSS), 2007.681

2 ARM. ARM arm1176jz-s technical reference manual. 2013.682

3 Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and Marco Caccamo. Cache683

where you want! reconciling predictability and coherent caching. arXiv preprint arXiv:1909.05349, 2019.684

4 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis, and Thomas Nolte.685

Contention-free execution of automotive applications on a clustered many-core platform. In IEEE686

Euromicro Conference on Real-Time Systems (ECRTS), 2016.687

5 Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark suite: Charac-688

terization and architectural implications. In Proceedings of the 17th international conference on Parallel689

architectures and compilation techniques, pages 72–81. ACM, 2008.690

6 M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and F. D. Smith. Reconciling the tension691

between hardware isolation and data sharing in mixed-criticality, multicore systems. In IEEE Real-Time692

Systems Symposium (RTSS), 2016.693

7 B. Cilku, B. Frömel, and P. Puschner. A dual-layer bus arbiter for mixed-criticality systems with694

hypervisors. In 2014 12th IEEE International Conference on Industrial Informatics (INDIN), pages695

147–151, July 2014. doi:10.1109/INDIN.2014.6945499.696

8 Leonardo Ecco and Rolf Ernst. Improved dram timing bounds for real-time dram controllers with697

read/write bundling. In 2015 IEEE Real-Time Systems Symposium, pages 53–64. IEEE, 2015.698

9 Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A mixed critical memory controller699

using bank privatization and fixed priority scheduling. In IEEE International Conference on Embedded700

and Real-Time Computing Systems and Applications (RTAS), 2014.701

10 Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo Pellizzoni.702

A survey on cache management mechanisms for real-time embedded systems. ACM Comput. Surv., 2015.703

11 Giovani Gracioli and Antônio Augusto Fröhlich. On the design and evaluation of a real-time operating704

system for cache-coherent multicore architectures. ACM SIGOPS Oper. Syst. Rev., 2015.705

12 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study of predictable706

dram controllers. ACM Transactions on Embedded Computing Systems (TECS), 2018.707

13 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core processors with708

shared instruction caches. In IEEE Real-Time Systems Symposium (RTSS), 2009.709

14 M. Hassan, A. M. Kaushik, and H. Patel. Predictable cache coherence for multi-core real-time systems.710

In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2017.711

15 M. Hassan and H. Patel. Criticality- and requirement-aware bus arbitration for multi-core mixed criticality712

systems. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016.713

16 Mohamed Hassan. Heterogeneous mpsocs for mixed-criticality systems: Challenges and opportunities.714

IEEE Design & Test, 2018.715

17 Mohamed Hassan and Hiren Patel. A framework for scheduling DRAM accesses for multi-core mixed-716

time critical systems. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),717

2015.718

18 Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. PMC: A requirement-aware DRAM controller for719

multicore mixed criticality systems. ACM Trans. Embed. Comput. Syst., 2017.720

19 Farouk Hebbache, Mathieu Jan, Florian Brandner, and Laurent Pautet. Shedding the shackles of time-721

division multiplexing. In IEEE Real-Time Systems Symposium (RTSS), 2018.722

20 John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.723

21 Intel. Intel 64 and IA-32 architectures software developer’s manual. Volume 3A: System Programming724

Guide, Part, 1(64), 64.725

22 Javier Jalle, Eduardo Quinones, Jaume Abella, Luca Fossati, Marco Zulianello, and Francisco J Cazorla.726

A dual-criticality memory controller (dcmc): Proposal and evaluation of a space case study. In IEEE727

Real-Time Systems Symposium (RTSS), 2014.728

ECRTS 2020

http://dx.doi.org/10.1109/INDIN.2014.6945499

15:22 Discriminative Coherence

23 Anirudh M. Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp: A data communication729

mechanism for multi-core mixed-criticality systems. In IEEE Real-Time Systems Symposium (RTSS),730

2019.731

24 Sung-Kwan Kim, Sang Lyul Min, and Rhan Ha. Efficient worst case timing analysis of data caching. In732

Proceedings Real-Time Technology and Applications, pages 230–240. IEEE, 1996.733

25 NG Chetan Kumar, Sudhanshu Vyas, Ron K Cytron, Christopher D Gill, Joseph Zambreno, and Phillip H734

Jones. Cache design for mixed criticality real-time systems. In IEEE International Conference on735

Computer Design (ICCD), 2014.736

26 Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared Data Caches Conflicts Reduction for737

WCET Computation in Multi-Core Architectures. In International Conference on Real-Time and Network738

Systems, 2010.739

27 Benjamin Lesage, Isabelle Puaut, and André Seznec. PRETI: Partitioned real-time shared cache for740

mixed-criticality real-time systems. In Proceedings of the 20th International Conference on Real-Time741

and Network Systems (RTNS), 2012.742

28 Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace,743

Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis tools with dynamic744

instrumentation. In Acm sigplan notices, volume 40, pages 190–200. ACM, 2005.745

29 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo Pellizzoni.746

Real-time cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time and747

Embedded Technology and Applications Symposium (RTAS), pages 45–54. IEEE, 2013.748

30 MILO MK MARTIN, MARK D HILL, and DANIEL J SORIN. Why on-chip cache coherence is here to749

stay. Communications of ACM, 2012.750

31 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and Mateo Valero. Hardware751

support for WCET analysis of hard real-time multicore systems. In ACM Annual International Symposium752

on Computer Architecture (ISCA), 2009.753

32 Marco Paolieri, Eduardo Quiñones, Fransisco J. Cazorla, and Mateo Valero. An analyzable memory754

controller for hard real-time CMPs. Embedded System Letters (ESL), 1:86–90, 2009.755

33 Jason Poovey et al. Characterization of the EEMBC benchmark suite. North Carolina State University,756

2007.757

34 Jan Reineke, Isaac Liu, Hiren D Patel, Sungjun Kim, and Edward A Lee. PRET DRAM controller: Bank758

privatization for predictability and temporal isolation. In IEEE/ACM/IFIP international conference on759

Hardware/software codesign and system synthesis (CODES+ ISSS), 2011.760

35 Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3: A properly synchronized761

benchmark suite for contemporary research. In 2016 IEEE International Symposium on Performance762

Analysis of Systems and Software (ISPASS), pages 101–111. IEEE, 2016.763

36 Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-predictable data caches for764

chip-multiprocessors. In Springer International Workshop on Software Technolgies for Embedded and765

Ubiquitous Systems (IFIP), 2009.766

37 Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, Man-Ki Yoon, Rodolfo Pellizzoni, Heechul767

Yun, Russel Kegley, Dennis Perlman, Greg Arundale, et al. Single core equivalent virtual machines for768

hard real—time computing on multicore processors. Technical report, 2014.769

38 Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency and cache coherence.770

Synthesis Lectures on Computer Architecture, 2011.771

39 N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel. Hourglass: Predictable time-based cache coherence772

protocol for dual-critical multi-core systems. 2017.773

40 Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. Enabling predictable,774

simultaneous and coherent data sharing in mixed criticality systems. 2019.775

41 Per Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE Computer, 1990.776

42 Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning for predictable shared caches on777

multi-cores. In ACM Annual Design Automation Conference (DAC), 2008.778

43 B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making shared caches more predictable on779

multicore platforms. In IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2013.780

M. Hassan 15:23

44 Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Christian Ferdinand.781

Memory hierarchies, pipelines, and buses for future architectures in time-critical embedded systems. IEEE782

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(7):966–978, 2009.783

ECRTS 2020

	Introduction
	Related Work
	System Model
	Cache Coherence Background
	Motivation
	Performance Gains of Cache Coherence
	Per-Request WCL
	Total task's WCL
	Distilling Coherence Effects on WCL
	Hit Scenario
	Miss Scenario
	Worst-Case Scenario

	Proposed Solution
	DISCO-AllW: Discriminative Coherence for All Cache Lines
	DISCO-SharedW: Discriminative Coherence for Shared Lines Only

	Worst-Case Latency
	Per-Request Worst-Case Latency
	Total Worst-Case Latency
	Other Considerations: A discussion
	On the Derivation of the Total WCL
	Effect of Write-backs Due to Replacement in DISCO-SharedW
	Realization in Existing Architectures

	Evaluation
	Per-Request Worst-Case Latency
	Total WCL
	Average-Case Performance (Execution Time)
	Average-Case Performance (Average-Case Memory Latency)

	Conclusion

